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Abstract—Adversarial examples are important to test and
enhance the robustness of deep code models. As source code
is discrete and has to strictly stick to complex grammar and
semantics constraints, the adversarial example generation tech-
niques in other domains are hardly applicable. Moreover, the
adversarial example generation techniques specific to deep code
models still suffer from unsatisfactory effectiveness due to the
enormous ingredient search space. In this work, we propose a
novel adversarial example generation technique (i.e., CODA) for
testing deep code models. Its key idea is to use code differences
between the target input (i.e., a given code snippet as the model
input) and reference inputs (i.e., the inputs that have small code
differences but different prediction results with the target input)
to guide the generation of adversarial examples. It considers
both structure differences and identifier differences to preserve
the original semantics. Hence, the ingredient search space can
be largely reduced as the one constituted by the two kinds of
code differences, and thus the testing process can be improved
by designing and guiding corresponding equivalent structure
transformations and identifier renaming transformations. Our
experiments on 15 deep code models demonstrate the effective-
ness and efficiency of CODA, the naturalness of its generated
examples, and its capability of enhancing model robustness after
adversarial fine-tuning. For example, CODA reveals 88.05% and
72.51% more faults in models than the state-of-the-art techniques
(i.e., CARROT and ALERT) on average, respectively.

Index Terms—Adversarial Example, Code Model, Guided
Testing, Code Transformation

I. INTRODUCTION

In recent years, deep learning (DL) has been widely used
to solve code-based software engineering tasks, such as code
clone detection [1] and vulnerability prediction [2] by building
DL models based on a large amount of training code snip-
pets (called deep code models). Indeed, deep code models
have achieved notable performance and largely promoted the
process of software development and maintenance [3]–[6].
In particular, some industrial products on deep code models
have been released and received extensive attention, such as
AlphaCode [7] and Copilot [8].

Like DL models in other areas (e.g., image processing) [9]–
[12], the robustness of deep code models is critical [13],
[14]. As demonstrated by the existing work [15], [16], ad-
versarial examples are important to test and enhance the

†Junjie Chen is the corresponding author.

model robustness. Specifically, adversarial examples can test
a deep code model to reveal faults in it by comparing the
prediction results on adversarial examples and that on the
original input generating these adversarial examples. Such
adversarial examples are called fault-revealing examples for
ease of presentation, which can be used to augment training
data for further enhancing the model robustness. Therefore,
improving test effectiveness through generating fault-revealing
examples is very important.

However, the existing adversarial example generation tech-
niques in other areas are hardly applicable to deep code
models. This is because they tend to perturb an input in
continuous space, while the inputs (i.e., source code) for deep
code models are discrete. Moreover, source code has to strictly
stick to complex grammar and semantics constraints, i.e., the
adversarial example generated from an original input should
have no grammar errors and preserve the original semantics.

Indeed, some adversarial example generation techniques
specific to deep code models have been proposed recently,
such as MHM [15], CARROT [13], and ALERT [16]. In
general, they share two main steps: (1) designing semantic-
preserving code transformation rules, and (2) searching ingre-
dients from the space defined by the rules (i.e., ingredients
are the elements required by transformation rules) for trans-
forming an original input (called target input) to a semantic-
preserving adversarial example. For example, CARROT de-
signs two semantic-preserving code transformation rules (i.e.,
identifier renaming and dead code insertion), and uses the hill-
climbing algorithm to search for the ingredients from the entire
space with the guidance of gradients and model prediction
changes. ALERT considers the rule of identifier renaming, and
uses the naturalness and model prediction changes to guide the
ingredient search process.

Although some of them have been demonstrated effective
to some degree, they still suffer from major limitations:

• The ingredient space defined by code transformation rules
is enormous. For example, all valid identifier names could
be the ingredients for identifier renaming transforma-
tion. Hence, searching for the ingredients that facili-
tate generating fault-revealing examples is challenging.
The existing techniques tend to utilize model prediction
changes after performing transformations on the target
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input greedily to guide the search process, which is
likely to fall into local optimum and thus limits test
effectiveness [16].

• Frequently invoking the target model could affect test
efficiency via adversarial example generation [13], [16],
as model invocation is the most costly part during testing.
However, the existing techniques often involve frequent
model invocations due to calculating gradients or guiding
the search direction via model prediction.

• Developers care about natural semantics of code since
it can assist human comprehension on detected faults in
models [17]. Hence, ensuring the naturalness of generated
adversarial examples is important. However, all the exist-
ing techniques (except ALERT [16]) do not consider this
factor. For example, CARROT designs the rule of dead
code insertion, but it may largely damage the naturalness
of generated examples (especially when a large amount
of dead code is inserted).

Overall, a more effective adversarial example generation
technique for testing deep code models should improve the
ingredient search process, and guarantee the times of model
invocations as few as possible and the naturalness of generated
adversarial examples as much as possible. Our work proposes
such a technique, called CODA (COde Difference guided
Adversarial example generation).

To improve test effectiveness, the key idea of CODA is
to take reference inputs (that have small code differences
with the target input but have different prediction results)
as the guidance for generating adversarial examples. This
is an innovative perspective and closely utilizes the unique
characteristics of deep code models. With reference inputs,
the ingredient space can be largely reduced. Specifically,
reference inputs can be regarded as invalid fault-revealing
adversarial examples generated from the target input, where
“invalid” refers to altering the original semantics and “fault-
revealing” refers to producing different prediction results.
That is, the code differences brought by reference inputs
over the target input contribute to the generation of invalid
but fault-revealing example to a large extent. Hence, if we
extract the ingredients from the code differences to support
semantic-preserving transformations on the target input, their
code differences can be gradually reduced without altering the
original semantics, and thus a valid fault-revealing example
is likely to be generated. In this way, the ingredient space
is reduced as the one constituted by only code differences
between reference inputs and the target input, and thus the
search process can be improved.

Based on the key idea, CODA considers code structure
differences and identifier differences to support ingredient
extraction for equivalent structure transformations and iden-
tifier renaming transformations. It can preserve the original
semantics during the generation process. Equivalent structure
transformations (e.g., transforming a for loop to an equivalent
while loop) do not affect the naturalness of generated exam-
ples, and thus CODA first applies this kind of transformations
to reduce code differences for generating adversarial examples.

Then, identifier renaming transformations are applied to fur-
ther reduce code differences to improve test effectiveness. To
ensure the naturalness of generated examples by this kind of
transformations, CODA measures semantic similarity between
identifiers for guiding iterative transformations. Note that we
do not emphasize the novelty in these transformation rules
since some of them have been proposed before, and the
main novelty lies in the code-difference-guided transformation
process in CODA, which is the key to improve the test
effectiveness with these transformations. In particular, CODA
just involves necessary model invocations to check whether
the generated example reveals a fault, without extra gradient
calculation and a large amount of model prediction for guiding
the search process.

We conducted an extensive study to evaluate CODA based
on three popular pre-trained models (i.e., CodeBERT [5],
GraphCodeBERT [6], and CodeT5 [18]) and five code-based
tasks. In total, we used 15 subjects. Our results demonstrate
the effectiveness and efficiency of CODA. For example, on
average across all the subjects, CODA revealed 88.05% and
72.51% more faults in models than the two state-of-the-art
adversarial example generation techniques (i.e., CARROT [13]
and ALERT [16]), respectively. The time spent by CODA on
completing the testing process for the 15 subjects is 196.96
hours, while those by CARROT and ALERT are 290.87 hours
and 374.51 hours, respectively. Furthermore, we investigated
the value of the generated adversarial examples by using them
to enhance the robustness of the target model via an adversarial
fine-tuning strategy. The results show that the models after
fine-tuning with the examples generated by CODA can reduce
62.19%, 65.67%, and 73.95% of faults revealed by CARROT,
ALERT, and CODA on average, respectively.

To sum up, our work makes four major contributions:
• Novel Perspective. We propose a novel perspective of

utilizing code differences between reference inputs and
the target input to guide the fault-revealing example
generation process for testing deep code models.

• Tool Implementation. We implement CODA following
the novel perspective by (1) measuring code structure
and identifier differences and (2) designing and guiding
corresponding semantic-preserving code transformations.

• Performance Evaluation. We conducted an extensive
study on three popular pre-trained models and five code-
based tasks, demonstrating the effectiveness and effi-
ciency of CODA over two state-of-the-art techniques.

• Public Artifact. We released all the experimental data
and our source code at the project homepage [19] for
experiment replication, future research, and practical use.

II. BACKGROUND AND MOTIVATION

A. Deep Code Models
DL has been widely used to process source code [2], [20]–

[25]. Some pre-trained DL models have been built based on a
large number of code snippets, among which CodeBERT [5],
GraphCodeBERT [6], and CodeT5 [18] are three state-of-the-
art pre-trained models. The pre-trained models have brought
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void f1(int a[], int n){
  int i; int j; int k;
  for (i = 0; i < n; i++) {
    for (j = 0; j < ((n - i) - 1); j++) {
      if (a[j] > a[j + 1]){
        k = a[j];
        a[j] = a[j + 1];
        a[j + 1] = k;
      }
    }
  }
}

int f2(int t[], int len){
  int i; int j;
  i = 0; j = 0;
  while (len != 0) {
    t[i] = len % 10;
    len /= 10;
    i = i + 1;
  } 
  while (j < i){
    if (t[j] != t[(i - j) - 1]) return 0;
    j = j + 1;
  }
  return 1;
}

void f3(int t[], int len){
  int i; int j; int k;
  i = 0;
  while (i < len) {
    j = 0;
    while (j < ((len - i) - 1)) {
      if (t[j] > t[j + 1]){
        k = t[j];
        t[j] = t[j + 1];
        t[j + 1] = k;
      } j = j + 1;
    } i = i + 1;
  }
}

Ground-truth Label: sort
Prediction Result: sort (96.52%)

Ground-truth Label: palindrome
Prediction Result: palindrome (99.98%)

Ground-truth Label: sort
Prediction Result: palindrome (90.88%)

Fig. 1. An illustrating example (the target input f1, a reference input f2, and a fault-revealing adversarial example f3 generated from f1)

breakthrough changes to many code-based tasks [26], includ-
ing both classification and generation tasks, by fine-tuning
them on the datasets of the corresponding tasks. The for-
mer makes classification based on the given code snippets
(e.g., vulnerability prediction [2]), while the latter produces
a sequence of information based on code snippets or natural
language descriptions (e.g., code completion [21]). Following
most of the existing work on generating adversarial examples
for deep code models [13], [15], [16], our work also focuses on
the classification tasks and takes the generation tasks (targeted
by ACCENT [27], CCTest [14], etc.) as our future work. In our
study, we adopted all the five classification tasks used in the
studies of evaluating the state-of-the-art adversarial example
generation techniques (i.e., CARROT [13] and ALERT [16]).

B. Problem Definition

Given a code snippet x that is processed as the required
format by the target deep code model M (e.g., abstract syntax
trees required by code2seq [3], control-flow graphs required
by DGCNN [28], or data-flow graphs required by GraphCode-
BERT [6]), M can predict a probability vector for x, each
element in which represents the probability classifying x to
the corresponding class. The class with the largest probability
is the final prediction result of M for x. If the prediction result
is different from the ground-truth label (denoted as y) of x, it
means that M makes a wrong prediction on x; otherwise, M
makes a correct prediction.

Same as the existing work [13], [16], our goal is to
improve test effectiveness through more effectively generating
fault-revealing examples, which subsequently can be used to
enhance model robustness. The existing techniques specific to
deep code models always generate adversarial examples from
a target input by performing a series of semantic-preserving
code transformations [13], [15], [16], which is also followed
by our work. For ease of understanding, we formally present
our problem as finding x′ (x′ ∈ ϵ ∧ y = M(x) ̸= M(x′))
from a target input x for the target model M. Here, ϵ is
the universal set of code snippets that satisfy the grammar
constraints and preserve the semantics of x. y = M(x)
means that we just regard the test inputs on which M makes
correct predictions as target inputs since analyzing robustness
upon such inputs is more meaningful following the existing

work [13], [16], where M(x) refers to the prediction result
of M on x. M(x) ̸= M(x′) means that x′ reveals a fault in
M, that is, it is a fault-revealing example generated from x.
Besides, an effective adversarial example generation technique
should be efficient to find x′ and ensure the naturalness of x′

(i.e., natural to human comprehension [16]), which are indeed
carefully considered by our proposed technique.

C. Motivating Example
We use a real-world example (simplified for ease of illus-

tration) to motivate our key idea: utilizing code differences
between reference inputs and the target input to guide the
generation of adversarial examples. In Figure 1, the first
code snippet f1 is the target input from the test set of the
functionality classification task [29], and the two state-of-the-
art techniques (i.e., CARROT [13] and ALERT [16]) do not
generate fault-revealing examples from it for the deep code
model CodeBERT since they can fall into local optimum in
the enormous ingredient space. The second code snippet f2 is
a reference input from the training set of this task, which has
the different label with f1.

As presented before, f2 can be regarded as an invalid fault-
revealing example from f1, as they are semantically inconsis-
tent but have different prediction results. The code differences
between f1 and f2 mainly contribute to this phenomenon.
From this perspective, to generate a valid fault-revealing
example (denoted as f3) from f1, we should perform semantic-
preserving code transformations on f1, and the transformations
should reduce the code differences between f1 and f2 to
alter the prediction result of the model from f1. That is,
the ingredients supporting these transformations should be
extracted from the code differences brought by f2. With
the guidance of code differences, by performing equivalent
structure transformations on f1 (i.e., transforming for loops to
while loops, where while loops are the used loop structure
in f2) and identifier remaining transformations (i.e., renaming
a and n to t and len respectively, where t and len are the
used identifier names in f2), f3 is generated as shown in the
third code snippet in Figure 1 and indeed reveals a fault in the
model, i.e., making a wrong prediction (palindrome) with a
high confidence (90.88%).

Based on the code differences between the target input and
the reference input, the ingredient space is largely reduced. For
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Fig. 2. Overview of CODA.

example, the ingredient space defined by identifier renaming
transformations is reduced from all valid identifier names
(i.e., almost infinite) to the identifier names occurring in
the reference input but not in the target input (i.e., only
two identifiers in this example). Hence, it helps improve the
ingredient search process and thus improves test effectiveness.
On the other hand, too small ingredient space may lose too
many ingredients useful to generate fault-revealing examples,
and thus we will select a set of reference inputs (rather than
only one reference input) for guiding the generation process
so as to balance the ingredient-space size and the number of
useful ingredients.

III. APPROACH

A. Overview

We propose a novel perspective to generate adversarial
examples for better testing deep code models, which utilizes
code differences between reference inputs and the target input
to guide the generation process. From this perspective, we
design an effective adversarial example generation technique,
called CODA. Specifically, the code differences brought by
reference inputs provide effective ingredients for altering the
prediction result of the target input by transforming it with
these ingredients, which can contribute to the generation of
fault-revealing examples in CODA. However, as the semantics
of reference inputs and the target input are different, the
ingredients from some kinds of code differences can alter the
original semantics, which is not allowed by the adversarial
examples for deep code models. Hence, in CODA, we consider
structure differences and identifier differences for measuring
code differences between them, which can preserve the origi-
nal semantics in generation. In this way, the ingredient space
can be reduced as the one constituted by the two kinds of
code differences, and thus the ingredient search process (for
generating adversarial examples) can be largely improved.

In fact, not all inputs that have different prediction results
with the target one, can be regarded as effective reference
inputs for improving test effectiveness. In other words, dif-
ferent inputs could have different degrees of capabilities for
reducing the ingredient search space and providing effective
ingredients for altering the prediction result of the target input.
Hence, the first step in CODA is to select effective reference

TABLE I
DESCRIPTIONS OF EQUIVALENT STRUCTURE TRANSFORMATIONS

Transformation Description

R1-loop equivalent transformation among for structure
and while structure

R2-branch equivalent transformation between if-else(-if)
structure and if-if structure

R3-calculation equivalent numerical calculation transformation, e.g.,
++, --, +=, -=, *=, /=, %=, <<=, >>=, &=, |= , ˆ =

R4-constant equivalent transformation between a constant and
a variable assigned by the same constant

inputs for the target input in order to improve test effectiveness
(Section III-B). Based on the selected reference inputs, CODA
then measures structure differences and identifier differences
over the target input, which support extracting the ingredients
for two corresponding kinds of semantic-preserving code
transformations (i.e., equivalent structure transformations and
identifier renaming transformations). With the guidance of
reducing their code differences, the target input could be
effectively transformed to a fault-revealing example based
on the two kinds of transformations. As equivalent structure
transformations do not affect the naturalness of generated
examples, CODA first applies this kind of transformations to
reduce code differences for improving the generation of fault-
revealing examples (Section III-C). Then, we apply identifier
renaming transformations to further reduce the code differ-
ences for improving the test effectiveness (Section III-D).

Figure 2 shows the overview of CODA. Due to the smaller
ingredient search space (but including effective ingredients)
and clearer generation direction (towards the direction of
reducing code differences without altering the original seman-
tics), the test effectiveness could be improved by CODA.

B. Reference Inputs Selection

The goal of reference inputs is to reduce the ingredient
space. The reduced space should include the ingredients that
are effective to transform the target input to a fault-revealing
example. In this way, the adversarial example generation
process can be largely improved by searching for effective
ingredients more efficiently. Although all the inputs that have
different prediction results with the target one can provide
ingredients for altering the prediction result of the target
one after transformations, their capabilities for adversarial
example generation can be different. To transform the target
input to a fault-revealing example with fewer perturbations,
CODA should select the reference inputs, which provide the
ingredients that are more likely to generate a fault-revealing
example on the target input. Similar to the existing work [30]–
[33], we assume the prediction result of the target input is
more likely to be changed from its original class denoted as
ci (with the largest probability predicted by the target model)
to the class with the second largest probability (denoted as
cj). Hence, the ingredients in the inputs belonging to cj are
more likely to generate a fault-revealing example on the target
input, and thus CODA selects the inputs belonging to cj as the



initial set of reference inputs. Note that all the reference inputs
are selected from the training set to (1) avoid introducing the
contents beyond the cognitive scope of the model and (2)
ensure the sufficiency of the inputs belonging to cj . Moreover,
we only consider the training inputs whose prediction results
are consistent with their ground-truth labels so as to avoid
introducing noise.

However, the number of inputs belonging to the same class
(i.e., cj as above) could be large, and thus the ingredient space
constituted by code differences between them and the target
input could be also large. Hence, to further reduce the ingre-
dient space for more effective adversarial example generation,
CODA selects a subset of inputs with high similarity to the
target input from the initial set of reference inputs, as the
final set of reference inputs used by CODA. This is because
smaller code differences can effectively limit the number of
ingredients, leading to smaller ingredient space. CODA does
not select only one reference input, as too small ingredient
space could incur a high risk of missing too many ingredients
contributing to fault-revealing example generation.

We further introduce how to measure the similarity between
the target input (denoted as t) and a reference input (denoted
as r) for the above selection. In general, we can adopt some
pre-trained models to represent the code as a vector and then
measure code similarity by calculating the vector distance, like
many existing studies [4], [5], [34]. However, as presented
in Section III-A, CODA first applies equivalent structure
transformations (rather than identifier renaming transforma-
tions) to reduce code differences for adversarial example
generation. Moreover, the identifiers used in different code
snippets are usually different due to the enormous identifier
space, which may lead to the low similarity between various
code snippets. Hence, when measuring code similarity, CODA
eliminates the influence of identifiers by replacing them with
the placeholder <unk>. Specifically, CODA first represents t
and r after placeholder replacement as vectors respectively
based on CodeBERT [5] (one of the most widely-used pre-
trained models [35]–[37]), and then calculates the cosine
similarity between vectors. As the descending order of the
calculated similarity, CODA selects Top-N reference inputs
for the follow-up generation process. Note that to make the
selection process efficient, we randomly sampled U inputs
from the initial set for this step of selection. We will study
the influence of both U and N on CODA in Section VI.

C. Equivalent Structure Transformation

Based on the small set of selected reference inputs and the
guidance of code differences, CODA first reduces structure
differences by applying equivalent structure transformations
to the target input.

To preserve the semantics of the target input, we design
four categories of equivalent structure transformations (without
affecting code naturalness) in CODA following the existing
work in metamorphic testing and code refactoring [38]–[40].
In particular, we systematically consider all common kinds
of code structures, i.e., loop structures, branch structures,

and sequential structures (including numerical calculation and
constant usage). We explain the four categories in detail in
Table I. For each category of transformations, it may include
several specific rules. For example, the rules of transformation
on += and transformation on -= belong to the category of
R3-calculation, and the rules of transforming for loop to
while loop and transforming while loop to for loop belong
to the category of R1-loop. In total, CODA has 20 specific
rules for the four categories of transformations. Due to the
space limit, we list all these specific rules at our project
homepage [19]. These rules are general to the vast majority
of popular programming languages (e.g., C, C++, and Java),
which ensures the generality of CODA to a large extent. Note
that in R4-constant, the newly-defined variable cannot be the
same as the existing variables in the code; otherwise, it may
incur grammar errors and alter the original semantics.

Then, we illustrate how to apply these rules for reducing
code differences. Each rule involves two structures, i.e., the
one before transformation (sb) and the one after transformation
(sa). CODA first counts the occurring times of sb and sa in
the set of selected reference inputs (denoted as nb and na),
and then calculates their occurring distribution, i.e., nb

nb+na
and

na

nb+na
. Further, CODA applies each rule in a probabilistic way

to reduce the occurring distribution differences in terms of sb
and sa between reference inputs and the target input since
probabilistic methods tend to improve effectiveness compared
to deterministic methods in general [41]. In this way, the
structure differences in terms of sb and sa can be reduced.
Specifically, for each occurrence of sb in the target input,
CODA applies this rule with the probability of na

nb+na
, also

indicating it can be retained with the probability of nb

nb+na
.

In this step, CODA obtains M inputs from the target input,
each of which is generated by applying all the applicable rules
together on the target input in the above probabilistic way,
and then selects the input with the highest average similarity
(also measured by the method described in Section III-B) to
the selected reference inputs as the one for the follow-up
generation process.

D. Identifier Renaming Transformation

To facilitate the generation of fault-revealing examples,
CODA then applies identifier renaming transformations to
further reduce code differences. Inspired by the existing
work [13], [15], [16], identifier renaming transformation in
CODA refers to replacing the name of an identifier in the
target input with the name of an identifier in the selected
reference inputs. For ease of presentation, we denote the set of
identifiers in the target input as Vt and the set of identifiers in
the selected reference inputs as Vr. To preserve the semantics
of the target input and ensure the grammatical correctness of
the generated example, CODA ensures that the identifiers used
for replacement do not exist in the target input.

Then, we illustrate how to apply this kind of transformations
to the input obtained from the last step. As demonstrated by the
existing work [13], [15], [16], renaming identifiers is effective
to generate fault-revealing examples, but can negatively affect



naturalness of generated examples. To ensure the naturalness
of generated examples, CODA considers the semantic similar-
ity between identifiers and designs an iterative transformation
process like ALERT [16]. Specifically, CODA measures the
semantic similarity between each identifier in Vt and each
identifier in Vr by representing each identifier as a vector via
word embedding. Here, CODA builds the pre-trained language
model with FastText [42] and calculates the cosine similarity
between vectors to measure their semantic similarity. Then,
CODA prioritizes each pair of identifiers in the descending
order of their semantic similarity, and iteratively applies this
transformation based on each pair of identifiers in the ranking
list, which ensures more natural transformations can be first
performed. CODA ensures the pair of identifiers will not
introduce repetitive identifiers in the generated example in
each iteration; otherwise, this pair will be discarded. After each
iteration, CODA invokes the target model to check whether a
fault is detected by the generated example.

Following the existing work [13], [16], the iterative gener-
ation process terminates until a fault-revealing example from
the target input is generated or all the pairs are used by this
transformation. This is because more fault-revealing examples
generated from the same target input tend to detect duplicate
faults in the model. The setting can be adjusted by users
according to the demand in practice. In this work, we directly
adopt the setting from the existing work [13], [16] in CODA.

Overall, CODA only invokes the target model when check-
ing if a fault is detected by the generated example, which is
necessary for testing the model. Hence, CODA can largely
reduce the number of model invocations compared with the
existing techniques, confirmed by our study (Section V-A).

IV. EVALUATION DESIGN

In the study, we address four research questions (RQs):
• RQ1: How does CODA perform in terms of effectiveness

and efficiency compared with state-of-the-art techniques?
• RQ2: Are the adversarial examples generated by CODA

useful to enhance the robustness of deep code models?
• RQ3: Does each main component contribute to the over-

all effectiveness of CODA?
• RQ4: Are the adversarial examples generated by CODA

natural for humans?

A. Subjects

1) Datasets and Tasks: To sufficiently evaluate CODA,
we consider all the five code-based tasks in the studies of
evaluating state-of-the-art techniques (i.e., CARROT [13] and
ALERT [16]). The statistics of datasets are shown at the first
four columns in Table II, each of which represents the task, the
number of inputs in the training/validation/test set, the number
of classes for the classification task, and the programming
language for the inputs.

The task of vulnerability prediction aims to predict whether
a given code snippet has vulnerabilities. Its used dataset is
extracted from two C projects [2]. The task of clone detection
aims to detect whether two given code snippets are equivalent

TABLE II
STATISTICS OF OUR USED SUBJECTS

Task Train/Val/Test Class Language Model Acc.

Vulnerability
Prediction 21,854/2,732/2,732 2 C

CodeBERT 63.76%
GCBERT 63.65%
CodeT5 63.83%

Clone
Detection 90,102/4,000/4,000 2 Java

CodeBERT 96.97%
GCBERT 97.36%
CodeT5 98.08%

Authorship
Attribution 528/–/132 66 Python

CodeBERT 90.35%
GCBERT 89.48%
CodeT5 92.30%

Functionality
Classification 41,581/–/10,395 104 C

CodeBERT 98.18%
GCBERT 98.66%
CodeT5 98.79%

Defect
Prediction 27,058/–/6,764 4 C/C++

CodeBERT 84.37%
GCBERT 83.98%
CodeT5 81.54%

* GCBERT is short for GraphCodeBERT.

in semantics. Its used dataset is from BigCloneBench [43],
the most widely-used dataset for clone detection. The task
of authorship attribution aims to identify the author of a
given code snippet. Its used dataset is the Google Code Jam
(GCJ) dataset [44], which contains 660 Python code files
and 66 author information after removing 40 code files in
other programming languages [16]. The task of functionality
classification aims to classify the functionality of a given
code snippet. Its used dataset is the Open Judge (OJ) bench-
mark [45]. The task of defect prediction aims to predict
whether a given code snippet is defective and its defect type.
Its used dataset is the CodeChef dataset [46].

2) Models: Same as the existing work [16], we used the
state-of-the-art pre-trained models, i.e., CodeBERT [5] and
GraphCodeBERT [6], in our study, and also used the more
recent CodeT5 [18]. Several alternative pre-trained models
have been studied in the experiments of CARROT (such
as LSTM and TBCNN). However, these models did not
demonstrate superior performance compared to CodeBERT,
GraphCodeBERT, and CodeT5. As a result, our investigation
in this study focused on the latter three models.

We fine-tuned them on the five tasks based on the corre-
sponding datasets, respectively. When fine-tuning CodeBERT
and GraphCodeBERT on these tasks (except GraphCodeBERT
on functionality classification and defect prediction), we used
the same hyper-parameter settings provided by the existing
work [13], [16]. As there is no instruction on the hyper-
parameter settings for fine-tuning GraphCodeBERT on func-
tionality classification and defect prediction, we used the
same settings as the one used by authorship attribution (they
are all multi-class classification tasks). Indeed, the achieved
model performance outperforms that achieved by the models
(e.g., TBCNN [45] and CodeBERT [5]) used in the existing
work [13] on the same datasets [13], indicating that the
transferred hyper-parameter settings are reasonable. Similarly,
we used the same settings for CodeT5 as CodeBERT and the
achieved performance of CodeT5 is better than (or close to)
those achieved by CodeBERT and GraphCodeBERT on all
the tasks. The detailed settings can be found at our project



homepage [19]. In total, we obtained 15 deep code models as
the subjects. The last two columns in Table II show the used
pre-trained model and the accuracy of the deep code model
after fine-tuning on the corresponding task, respectively.

Overall, the subjects used in our study are diverse, involving
different tasks, different pre-trained models, different numbers
of classes, different programming languages, etc. It is very
helpful to sufficiently evaluate the performance of CODA.

B. Compared Techniques

In the study, we compared CODA with two state-of-the-
art adversarial example generation techniques for deep code
models, i.e., CARROT [13] and ALERT [16], which have
been introduced in Section I (the third paragraph). We adopted
their implementations and the recommended parameter set-
tings provided by the corresponding papers [13], [16]. As the
original version of CARROT can only support C/C++ code, we
extended it to Python and Java code for sufficient comparison.

C. Implementations

We implemented CODA in Python and adopted tree-
sitter [47] to extract identifiers from code following the
existing work [16]. We set the parameters in CODA by
conducting a preliminary experiment, i.e., U = 256 (the
number of sampled inputs from the initial set for similarity
calculation), N = 64 (the number of reference inputs selected
after similarity calculation), and M = 64 (the number of
examples generated via structure transformations). We will
discuss the influence of the settings of main parameters in
Section VI. All the experiments were conducted on a server
with an Ubuntu 20.04 system with Intel(R) Xeon(R) Silver
4214 @ 2.20GHz CPU, and NVIDIA GeForce RTX 2080 Ti
GPU.

V. RESULTS AND ANALYSIS

A. RQ1: Effectiveness and Efficiency

1) Setup: For each deep code model, we applied CODA,
CARROT, and ALERT to generate adversarial examples from
each target input in the test set to test it, respectively. We mea-
sured their effectiveness and efficiency based on the following
metrics. To reduce the influence of randomness, we repeated
all the experiments (including those for other RQs) 10 times,
and reported the average results.

We first measured the number of revealed faults by each
technique. As presented in Section III-D, the faults revealed
by several adversarial examples from the same target input
tend to be duplicate as claimed in the existing work [48], [49].
Hence, CODA produces at most one fault-revealing example
for each target input same as the generation process of ALERT
and CARROT. That is, when a fault-revealing example is
generated for a given target input, it will move to the next
target input. Therefore, the number of revealed faults is equal
to the number of targets inputs from which a fault-revealing
example is generated here. Since the sizes of different test
sets are different, we reported the rate of revealed faults
(RFR), instead of the number of revealed faults, for better

presentation, same as the existing work [13], [48]. The rate
of revealed faults for each subject refers to the ratio of the
number of revealed faults to the total number of target inputs
(that are correctly predicted as mentioned in Section II-B) in
the test set of the subject. Larger RFR values mean better test
effectiveness.

Also, it is important to measure whether the prediction
confidence (i.e., the probability of being the ground-truth class
of the target input) is decreased by the generated examples
(although there is no fault-revealing example generated from
a target input). Reducing prediction confidence indicates that
the generated examples make the model less robust. Hence,
we calculated prediction confidence decrement (PCD) to
measure the effectiveness of each technique. PCD is calculated
by the prediction confidence of the target input minus the min-
imum prediction confidence of the set of generated examples
from the target input. If the former is smaller than the latter,
we regard PCD to be 0, indicating that the generated examples
cannot decrease the prediction confidence of the target input.
Larger PCD values mean better test effectiveness.

Following the existing work [13], [16], we used the time
spent on the overall testing process (i.e., completing the
testing process for all the subjects) and the average number
of model invocations for generating examples from a target
input, to measure the efficiency of each technique. Less time
and fewer model invocations mean higher test efficiency.

2) Results: Table III shows the comparison results among
CARROT, ALERT, and CODA in terms of RFR. From this
table, CODA always outperforms CARROT and ALERT on
all the subjects, demonstrating the stable effectiveness of
CODA. On average, CODA improves 70.11% and 89.83%
higher RFR than CARROT and ALERT across all the five
tasks on CodeBERT, 89.34% and 57.67% higher RFR on
GraphCodeBERT, and 109.26% and 73.12% higher RFR on
CodeT5, respectively.

We then investigated the unique value of each technique by
analyzing their overlap on target inputs where fault-revealing
examples are generated. On average across all the subjects,
there are 30.68% target inputs where only CODA generates
fault-revealing examples among the three techniques, while
there are just 7.48% and 2.88% target inputs where only
CARROT and ALERT generate fault-revealing examples, re-
spectively. The results demonstrate that CODA has the largest
unique value in revealing faults in deep code models among
the three techniques.

We analyzed the effectiveness of CODA on different lengths
of code snippets (ranging from 3 to 8,148 across the five
datasets). We measured the Spearman correlation [50] between
code-snippet length and RFR of CODA, and the coefficient
is 0.17 (p-value < 0.001). That is, there is a weak positive
correlation between them. That indicates the test effectiveness
of CODA is not significantly affected by code-snippet length,
even slightly better on larger code snippets in statistics.

Figures 3(a), 3(b), and 3(c) show the comparison results
among the three techniques in terms of PCD on Code-
BERT, GraphCodeBERT, and CodeT5, respectively. From



TABLE III
EFFECTIVENESS COMPARISON IN TERMS OF RFR

Task CodeBERT GraphCodeBERT CodeT5

CARROT ALERT CODA CARROT ALERT CODA CARROT ALERT CODA

Vulnerability Prediction 33.72% 53.62% 89.58% 37.40% 76.95% 94.72% 84.32% 82.69% 98.87%
Clone Detection 20.78% 27.79% 44.65% 3.50% 7.96% 27.37% 12.89% 14.29% 42.07%

Authorship Attribution 44.44% 35.78% 79.05% 31.68% 61.47% 92.00% 20.56% 66.41% 97.17%
Functionality Classification 44.15% 10.04% 56.74% 42.76% 11.22% 57.44% 38.26% 35.37% 78.07%

Defect Prediction 71.59% 65.15% 95.18% 79.08% 75.87% 96.58% 38.26% 35.37% 78.07%

Average 42.94% 38.48% 73.04% 38.88% 46.69% 73.62% 33.91% 40.99% 70.96%
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Fig. 3. Comparison in terms of prediction confidence decrement
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(c) Model invocations on testing CodeT5

Fig. 4. Comparison in terms of model invocations (y-axis shows the normalized values following the existing work [16])

these figures, the upper quartile, median, and lower quartile
of CODA are always larger than (or equal to) those of both
CARROT and ALERT regardless of the tasks and the pre-
trained models, demonstrating that the adversarial examples
generated by CODA can decrease model prediction confi-
dence more significantly. For example, on CodeBERT, the
average improvements of CODA over CARROT and ALERT
are 101.88% and 520.65% across all the tasks in terms of
average PCD, respectively. Similarly, CODA improves 76.35%
and 560.15% higher PCD than CARROT and ALERT on
GraphCodeBERT, and 389.10% and 397.08% higher PCD on
CodeT5, respectively.

Besides, CARROT, ALERT, and CODA take 290.87 hours,
374.51 hours, and 196.96 hours to complete the entire testing
process on all subjects, respectively. Further, we measured the
number of model invocations for each target input during the
testing process, whose results are shown in Figures 4(a), 4(b),
and 4(c). From these figures, CODA performs fewer model
invocations than both CARROT and ALERT regardless of the
tasks and pre-trained models. On average, CODA performs
65.73% and 78.58% fewer model invocations than CARROT
and ALERT across all the tasks on CodeBERT, 34.07% and
75.31% fewer model invocations on GraphCodeBERT, and
52.97% and 70.09% fewer model invocations on CodeT5,
respectively. The results demonstrate that CODA has the

significantly highest efficiency among the three techniques.
Overall, the guidance of code differences in CODA largely

improve test effectiveness and efficiency, which is also the rea-
son why ALERT and CARROT underperform CODA. Besides,
the reason why ALERT usually outperforms CARROT may lie
in the former searches more sufficiently, which is confirmed
by more model invocations made by ALERT as above.

Answer to RQ1: CODA takes less time with fewer
model invocations on completing the entire testing
process, but generates more fault-revealing examples
with more significant prediction confidence decrement
on all the subjects, than the state-of-the-art baselines.

B. RQ2: Model Robustness Enhancement

1) Setup: We studied the value of generated adversarial
examples by using them to enhance the robustness of the target
model via an adversarial fine-tuning strategy. For each subject,
we divided the test set into two equal parts (S1 and S2), to
avoid data leakage between the augmented training set and the
evaluation set constructed by the same technique. Specifically,
we applied each technique to generate examples from S1,
and obtained an fault-revealing example or an example that
produces the largest decrement on prediction confidence (if



TABLE IV
ROBUSTNESS ENHANCEMENT OF THE TARGET MODELS AFTER ADVERSARIAL FINE-TUNING

Task Model Ori CARROT ALERT CODA

CARROT ALERT CODA CARROT ALERT CODA CARROT ALERT CODA CARROT ALERT CODA

Vulnerability
Prediction

CodeBERT 62.96% 62.77% 63.03% 29.14% 21.11% 29.69% 23.43% 26.27% 34.44% 32.16% 31.73% 38.82%
GraphCodeBERT 62.99% 62.88% 62.92% 12.37% 19.59% 21.65% 16.33% 17.35% 23.71% 25.77% 24.74% 34.02%

CodeT5 63.69% 63.81% 63.92% 52.03% 39.76% 82.03% 42.26% 49.11% 44.26% 41.43% 45.52% 52.54%

Clone
Detection

CodeBERT 97.39% 96.45% 97.45% 83.15% 42.31% 94.44% 52.65% 72.46% 75.32% 38.51% 71.45% 89.78%
GraphCodeBERT 97.01% 97.22% 97.43% 75.00% 66.67% 77.50% 79.17% 84.29% 92.31% 35.71% 57.69% 92.97%

CodeT5 97.73% 97.14% 98.10% 67.77% 57.63% 75.85% 69.94% 64.36% 81.63% 42.15% 51.74% 79.88%

Authorship
Attribution

CodeBERT 90.55% 89.39% 90.91% 45.06% 40.67% 41.03% 51.25% 56.25% 58.82% 45.67% 43.33% 76.47%
GraphCodeBERT 89.39% 88.72% 90.35% 81.75% 67.08% 72.40% 79.41% 78.67% 100.00% 45.59% 80.39% 84.75%

CodeT5 92.43% 92.68% 93.03% 70.95% 65.91% 73.48% 55.73% 71.88% 76.44% 44.31% 52.56% 72.37%

Functionality
Classification

CodeBERT 98.11% 98.52% 98.56% 83.46% 72.80% 81.51% 70.83% 71.75% 79.41% 78.92% 71.18% 95.43%
GraphCodeBERT 98.48% 98.55% 98.72% 67.53% 75.19% 77.27% 32.04% 52.62% 62.98% 91.22% 90.81% 93.08%

CodeT5 97.92% 98.46% 98.63% 25.31% 21.33% 27.36% 41.07% 57.14% 57.42% 24.87% 59.58% 63.76%

Defect
Prediction

CodeBERT 83.50% 84.16% 84.44% 52.73% 25.81% 66.03% 74.88% 75.87% 83.12% 76.86% 68.66% 85.36%
GraphCodeBERT 83.34% 84.00% 84.53% 68.20% 48.54% 74.88% 52.73% 63.91% 59.45% 67.08% 68.66% 76.14%

CodeT5 80.92% 81.32% 81.57% 31.48% 34.08% 37.73% 31.75% 42.22% 55.77% 54.45% 54.18% 73.83%

Average 86.43% 86.40% 86.91% 56.40% 46.57% 62.19% 51.56% 58.94% 65.67% 49.65% 58.15% 73.95%

no fault-revealing example is generated) for each target input.
These examples were integrated with the training set to form
the augmented training set, which is used for fine-tuning the
model. Hence, for a given subject, the size of the augmented
training set constructed by each technique is the same.

After obtaining a fine-tuned model for each subject with
each technique, we evaluated it on the evaluation set of
the fault-revealing examples generated from S2 by CODA,
CARROT, and ALERT, respectively. Then, we measured the
accuracy of the fine-tuned model on the three evaluation sets
to measure its ability of reducing faults.

2) Results: Table IV shows the effectiveness of enhancing
model robustness with the generated examples by the studied
techniques, respectively. The first row (except Column Ori)
represents the evaluation set constructed by the corresponding
technique, while the second row represents the augmented
training set constructed by the corresponding technique. Col-
umn Ori lists the accuracy of the fine-tuned model on the
original test set. The values in the columns (except Column
Ori) represent the ratio of the faults (revealed by the evaluation
set) that can be eliminated by the fine-tuned model based on
the augmented training set. We found that on most subjects,
CODA enhance the model robustness to reduce the largest
ratio of faults revealed by CODA, CARROT, ALERT, respec-
tively. On average, the models fine-tuned by CODA can reduce
62.19%, 65.67%, 73.95% of faults revealed by CARROT,
ALERT, and CODA respectively, with the improvement of
10.27%, 27.37%, 48.94% over those by CARROT and 33.54%,
11.42%, 27.17% over those by ALERT respectively. Besides,
the results of robustness enhancement between different tech-
niques indicate that the examples generated by CODA could
subsume those by CARROT and ALERT to a large extent. In
five cases, CODA performs worse than ALERT or CARROT,
as the augmented training set and the evaluation set generated
by the same technique could share a higher degree of similarity
(facilitating fine-tuning).

By comparing Column Ori in Table IV and the last column

in Table II, the original model and the fine-tuned model via
CODA have close accuracy, i.e., all the absolute accuracy
differences are less than 1%. The results demonstrate CODA is
more helpful to improve model robustness than CARROT and
ALERT without damaging the original model performance.

Answer to RQ2: CODA helps enhance the model ro-
bustness more effectively than CARROT and ALERT,
in terms of reducing faults revealed by the examples
generated by itself as well as the examples generated
by the other two techniques.

C. RQ3: Contribution of Main Components
1) Setup: We studied the contribution of each main com-

ponent in CODA, i.e., reference inputs selection (RIS), equiv-
alent structure transformations (EST), and identifier renaming
transformations (IRT). We constructed four variants of CODA:

• w/o RIS: we replaced RIS with the method that randomly
selects N inputs from training data as reference inputs.

• w/o EST: we removed EST from CODA, i.e., it directly
performs identifier renaming transformations after select-
ing reference inputs.

• w/o CDG (code difference guidance in EST): we re-
placed the code-difference-guided strategy used for EST
in CODA with randomly selecting rules for EST.

• w/o IRT: we removed IRT from CODA, i.e., it directly
checks whether a fault-revealing example is generated
after equivalent structure transformations.

2) Results: Table V shows the average RFR values of
each technique across all the tasks on CodeBERT, Graph-
CodeBERT, and CodeT5, respectively. The results on each
task can be found at our project homepage [19] due to the
space limit. CODA outperforms all four variants in terms
of average RFR with improvements of 15.79%∼165.27%,
demonstrating the contribution of each main component in
CODA. Also, reference inputs selection and identifier renam-
ing transformations contribute more than equivalent structure



TABLE V
ABLATION TEST FOR CODA IN TERMS OF AVERAGE RFR

Model w/o RIS w/o EST w/o CDG w/o IRT CODA

CodeBERT 30.83% 62.73% 63.08% 35.14% 73.04%
GraphCodeBERT 29.49% 62.41% 61.98% 26.24% 73.62%

CodeT5 26.75% 50.74% 57.98% 38.21% 70.96%

transformations. The possible reason is that not all the rules
of equivalent structure transformations can be applicable to
all the target inputs, but identifier renaming transformations
are applicable to all the inputs. We can enrich the rules of
equivalent structure transformations in the future to further
improve the test effectiveness. The comparison results among
CODA, w/o EST, and w/o CDG demonstrate the contribution
of our code-difference-guided strategy for applying equivalent
structure transformations for testing deep code models. Be-
sides, ALERT targets only identifier-level adversarial example
generation, and thus we further compared ALERT with w/o
EST for fairer comparison. The results also demonstrate the
superiority of the latter, showing the effectiveness of our code
difference guided adversarial example generation (despite only
considering identifier renaming transformation).

Answer to RQ3: All the components of reference in-
put selection, equivalent structure transformations, and
identifier renaming transformations make contributions
to the overall effectiveness of CODA, demonstrating
the necessity of each of them in CODA.

D. RQ4: Naturalness of Adversarial Examples

1) Setup: It is important to check whether the generated
fault-revealing examples are natural to human judges [16],
[51]. Here, we conducted a user study to compare the nat-
uralness of examples generated by CODA, CARROT, and
ALERT, and our user study shares the same design as the
one conducted by the existing work [16]:

Data Preparation. For each subject, we randomly sampled
10 target inputs, and then for each technique on each target
input, we randomly sampled a generated example. That is,
for each sampled target input, we construct three pairs of
code snippets, each of which contains the target input and
an adversarial example generated by CODA, CARROT, or
ALERT. In total, we obtained 450 pairs of code snippets for
the user study due to 15 subjects × 3 techniques.

Participants. Same as the existing work [16], the user study
also involves four non-author participants, each of whom has
a Bachelor/Master degree in Computer Science with at least
five years of programming experience.

Process. For objective evaluation, we did not tell partici-
pants which technique generates the adversarial example in a
pair of code snippets. Also, we highlighted the changes in each
pair of code snippets for facilitating manual evaluation. Then,
each participant individually evaluated each pair by evaluating
to what extent the changes are natural to the code context
and the changed identifiers preserve the original semantics,
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Fig. 5. Average score to evaluate naturalness of examples

TABLE VI
INFLUENCE OF HYPER-PARAMETER U .

U 64 128 256 512 1024

CodeBERT 60.14% 67.90% 73.04% 75.27% 75.83%
GraphCodeBERT 61.92% 70.16% 73.62% 74.98% 75.69%

CodeT5 51.22% 61.74% 70.96% 72.96% 76.88%

following the existing work [16]. Specifically, participants
gave a score for each pair based on a 5-point Likert scale [52]
(1 means strongly disagree and 5 means strongly agree). More
details about the design can be found in the existing work [16].

2) Results: Figure 5 shows the average score of the ex-
amples generated by each technique for each participant.
The conclusions from different participants are consistent: the
naturalness of the examples generated by CODA and ALERT
is closely high (round 4.50 on average), and significantly
higher than that by CARROT (just 2.94 on average). ALERT
is a naturalness-aware technique, whose core contribution is to
ensure naturalness of generated examples, but CODA achieves
similar naturalness scores to it, demonstrating that CODA can
generate highly natural adversarial examples.

Answer to RQ4: The adversarial examples gener-
ated by CODA are natural closely to the state-of-the-
art naturalness-aware adversarial example generation
technique (i.e., ALERT), which is consistently con-
firmed by participants.

VI. THREATS TO VALIDITY

The main threat to validity lies in the settings of param-
eters in CODA. Here, we investigated the influence of two
important parameters in CODA (i.e., U and N introduced in
Section III-B). They affect the selection of reference inputs.
Tables VI and VII show the influence of U and N in terms
of average RFR across all the tasks. As U increases, CODA
performs better, as incorporating more inputs for the selection
based on similarity can increase the possibility of finding
more effective reference inputs. Similarly, as N increases
within our studied range, more effective ingredients could
be included, leading to better effectiveness. However, the
amount of increase in terms of average RFR becomes smaller
with U and N increasing, and meanwhile incorporating more
inputs can incur more costs in similarity calculation or code
transformations. Hence, by balancing the effectiveness and
efficiency of CODA, we set U to 256 and N to 64 as the
default settings in CODA for practical use.



TABLE VII
INFLUENCE OF HYPER-PARAMETER N

N 1 4 16 32 64 128

CodeBERT 28.08% 46.33% 61.07% 67.12% 73.04% 76.38%
GraphCodeBERT 31.84% 46.46% 60.40% 66.12% 73.62% 74.93%

CodeT5 27.05% 43.71% 58.19% 64.82% 70.96% 73.25%

VII. RELATED WORK

Besides the state-of-the-art techniques compared in our
study (i.e., CARROT [13] and ALERT [16]), there are some
other adversarial example generation techniques for deep
code models [15], [53], [54]. For example, Yefet et al. [55]
proposed DAMP, which changes variables in the target input
by gradient computation. It only works for the models using
one-hot encoding to process code, and thus cannot generate
adversarial examples for the models based on state-of-the-art
CodeBERT [5], GraphCodeBERT [6], and CodeT5 [18] due to
different encoding methods. Zhang et al. [15] proposed MHM,
which iteratively performs identifier renaming transformations
to generate adversarial examples based on the Metropolis-
Hastings [56]–[58] algorithm. MHM underperforms CARROT
and ALERT as presented by the existing studies [13], [16].
Pour et al. [59] proposed a search-based technique with an
iterative refactoring-based process. Ramakrishnan et al. [40]
generated adversarial examples for deep code models via
gradient-based optimization, including renaming transforma-
tions and dead code insertion. Jha et al. [60] proposed CodeAt-
tack, which adopts the masked language model with greedy
search to predict substitutes for vulnerable tokens. All of
them do not ensure the naturalness of generated examples,
especially with the rule of dead code insertion. Also, these
techniques still search for ingredients in the enormous space,
limiting their effectiveness. Different from them, our work
designs the first code-difference-guided adversarial example
generation technique, which can largely reduce ingredient
space for improving the test effectiveness.

VIII. CONCLUSION AND FUTURE WORK

To improve test effectiveness on deep code models, we
propose a novel perspective by exploiting the code differences
between reference inputs and the target input to guide the
generation of adversarial examples. From this perspective, we
design CODA, which reduces the ingredient space as the one
constituted by structure and identifier differences and designs
equivalent structure transformations and identifier renaming
transformations to preserve original semantics. We conducted
an extensive study on 15 subjects. The results demonstrate that
CODA reveals more faults with less time than the state-of-the-
art techniques (i.e., CARROT and ALERT), and confirm the
capability of enhancing the model robustness.

In the future, we can improve CODA from several aspects.
First, CODA successively applies equivalent structure trans-
formations and identifier renaming transformations without
backtracking. In the future, we can improve it by backtrack-
ing and trying more rounds of transformations if the first
round of equivalent structure transformations and identifier

renaming transformations fails, which may help transform
more target inputs to fault-revealing examples. Second, the
number of inputs belonging to the class with the second
largest probability may be not enough, even though we did
not come across this case in our evaluation. If it occurs in the
future, CODA may use the next highest-probability classes as
a compromise. Third, we will explore the use of test data to
provide reference inputs to further improve CODA. Fourth,
we will investigate some other strategies (such as the type
obfuscation strategy [61]) to replace the simple strategy using
the placeholder <unk> in RIS, in order to further improve the
effectiveness of CODA.
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