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Abstract—On open source software (OSS) platforms such as
GitHub, forking and accepting pull-requests is an important
approach for OSS projects to receive contributions, especially
from external contributors who cannot directly commit into
the source repositories. Having a large number of forks is
often considered as an indicator of a project being popular.
While extensive studies have been conducted to understand the
reasons of forking, communications between forks, features and
impacts of forks, there are few quantitative measures that can
provide a simple yet informative way to gain insights about an
OSS project’s forks besides their count. Inspired by studies on
biodiversity and OSS team diversity, in this paper, we propose
an approach to measure the diversity of an OSS project’s forks
(i.e., its fork population). We devise a novel fork entropy metric
based on Rao’s quadratic entropy to measure such diversity
according to the forks’ modifications to project files. With
properties including symmetry, continuity, and monotonicity, the
proposed fork entropy metric is effective in quantifying the
diversity of a project’s fork population. To further examine
the usefulness of the proposed metric, we conduct empirical
studies with data retrieved from fifty projects on GitHub. We
observe significant correlations between a project’s fork entropy
and different outcome variables including the project’s external
productivity measured by the number of external contributors’
commits, acceptance rate of external contributors’ pull-requests,
and the number of reported bugs. We also observe significant
interactions between fork entropy and other factors such as the
number of forks. The results suggest that fork entropy effectively
enriches our understanding of OSS projects’ forks beyond the
simple number of forks, and can potentially support further
research and applications.

Index Terms—Open Source Software, Diversity of Forks, Fork
Entropy, Rao’s Quadratic Entropy, Mining Software Repositories

I. INTRODUCTION

Forks play a central role in modern pull-based Open Source

Software (OSS) development as precursors of making contri-

butions to source repositories through pull-requests [1]–[4].

On social coding platforms such as GitHub and GitLab, forks

are created for various purposes including but not limited to

archiving, learning, fixing bugs, adding new features [1], [5].

Existing studies suggest that forks create increased opportu-

nities for community engagement and voluntary participation

[6], [7]. Having a large number of forks is often considered as

an indicator of an OSS project being popular [7], [8]. However,

merely having a large number of forks does not necessarily

imply a productive and healthy OSS project. Inefficient fork

practices can lead to lost, rejected, or redundant contributions

as pointed out in existing studies [3], [6]. Understanding the

factors related to an OSS project’s fork efficiency can provide

valuable insights to help project maintainers and contributors

to diagnose and improve their fork practices [6].

To gain insight into and improve forking efficiency, prior

research has explored the relationship between a project’s

fork efficiency and its own characteristics, such as modularity

and coordination [6]. In contrast, this work takes a different

perspective by examining the population of forks created from

a project. Specifically, we propose to measure the diversity

of an OSS project’s forks by evaluating their differences in

terms of modifications made to project files with the Rao’s

quadratic entropy—a measure widely adopted in quantifying

population and ecological diversity [9], [10]. Our interest in

understanding the diversity, beyond the simple count, of forks

is inspired by the importance of diversity in different related

domains: 1) Biodiversity is shown to have significant effects

on species’ productivity, resilience, competition, and survival

[11]. In this work, we follow the promising approach of

applying concepts and measures from ecological studies to the

field of OSS research [12], [13], and study how a project’s fork

population diversity is linked to its development. 2) OSS Teams

Diversity, including social diversity [14], gender and tenure

diversity [15], [16], culture and country diversity [17], [18],

and linguistic diversity [19], has been extensively studied and

shown to be significantly linked to team performance. While

the above work focuses on the diversity of OSS contributors,

our study examines the diversity of the artifacts they create,
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i.e., the forks. 3) Previous work in redundant change detection

[20] and fork feature extraction [21] has demonstrated how

valuable information, such as patch content, changed file lists,

clusters of features, etc, can be derived from forks’ changes

to project files. In line with this prior work, we focus on

the diversity of forks regarding their modifications to project

files. To summarize, this study broadens the scope of diversity

discussed in OSS development to the artifacts, i.e., forks, by

introducing a new quantity called fork entropy to understand

a project’s fork population beyond simply the number of forks.

To the best of our knowledge, this work is among the first to

quantify the diversity of an OSS project’s fork population, and

study its correlation with pull-based OSS development.

While anyone can fork from a public OSS repository, in

this study, we specifically focus on forks and contributions

from external contributors who cannot directly commit to

OSS projects mainly for the following three reasons. First,

with the OSS model, anyone can potentially be an external

contributor, resulting in a large population in this group

[22]. Second, external contributions’ contribution through pull-

requests and bug reports are critical during the development

and maintenance of OSS projects [4], [8], [23]. Investigating

external contributors’ forks and contributions is crucial for

understanding their effects on OSS projects’ productivity and

fork efficiency. Third, fork and pull-request is the primary, if

not the only, approach for external contributors to contribute

since they do not have write access to the projects [22],

[24], making our study more focused on fork-related features

and performance. It is worth noting that while we restrict

our investigation to external contributors’ forks, we may also

include forks owned by core members if the project strictly

follows the pull-based development model, i.e., fork and

contribute back to the source repository through pull-requests

instead of directly pushing commits into the source repository,

for all contributors including the core developers with write

access. We solely examine external contributors’ forks in this

study to maintain a focused study, and aim at answering the

following research questions using data retrieved from fifty

OSS projects’ on GitHub.

RQ1: What is the correlation between an OSS project’s fork

entropy and its external productivity?

In this work, we operationalize an OSS project’s external

productivity [8], [15], [25], [26] as the number of commits

integrated from external contributor-owned forks into the

project’s source repository. The results of regression analysis

suggest a project’s fork entropy is significantly and positively

correlated to its external productivity, especially for projects

younger in ages.

RQ2: How does an OSS project’s fork entropy relate to its

acceptance rate of external pull-requests?

The acceptance rate of external pull-requests serves as a

useful proxy for measuring fork efficiency [6] and can provide

insight into a project’s openness to external contributions 1.

In this study, we operationalize the acceptance rate as the

1https://chaoss.community/kb/metric-change-request-acceptance-ratio/

proportion of closed pull-requests raised by external contrib-

utors from their respective forks that were ultimately merged

into the project. Our analysis indicates that fork entropy has

a significant, positive correlation with the acceptance rate of

external pull-requests, particularly when those pull-requests

involve modifications to frequently changed ‘hot’ files.

RQ3: What is the correlation between fork entropy and OSS

projects’ number of reported bugs?

The number of reported bugs is commonly used as a proxy

for evaluating software quality in projects [8], [26]–[29], and

in this study, it is operationalized as the monthly reported bugs.

Our analysis reveals a significant, negative correlation between

fork entropy and the number of reported bugs in OSS projects.

We also find that a high level of fork entropy is linked to a

reduced rising trend of bug-reporting issues with the increasing

number of forks in OSS projects.

Through the above studies, we conclude that the diversity

of OSS projects’ fork population plays an important role in

understanding the development of OSS projects under the

pull-based model. And the proposed fork entropy metric is

an effective and useful indicator in assessing fork diversity,

which shows significant correlations to key productivity and

quality indicators about OSS development and maintenance.

In summary, this work makes the following contributions.

• We propose to measure the diversity of OSS projects’

fork populations to gain insights about pull-based OSS

development, which provides a novel point of view about

the forks and diversity about OSS projects.

• We devise the fork entropy metric based on Rao’s

quadratic entropy, and show properties of the metric

including symmetry, continuity, and monotonicity, which

makes the metric effective in measuring fork diversity.

• We conduct empirical studies to reveal the correlations

between fork entropy and the external productivity, the

acceptance rate of external pull-requests, and number of

reported bugs in OSS projects, which demonstrate the

usefulness in understanding the diversity of forks.

• We discuss the implications of fork entropy in under-

standing and guiding practices of pull-based social coding

for OSS development.

The rest of this paper is organized as follows. Sec. II

introduces the background and related work. Sec. III presents

the process of calculating the proposed fork entropy metric

and shows its properties. In Sec. IV, we present the design of

empirical studies, and report the results in Sec. V. We discuss

the implications of this work, and the threats to validity in

Sec. VI. Finally, we conclude the paper in Sec. VII.

II. BACKGROUND & RELATED WORK

This section introduces the background and related work.

A. Studies on Forks and Pull-Based OSS Development

The pull-based development model is a modern paradigm

for software development that is particularly well-suited to

geographically distributed teams [4]. This workflow can be

broken down into seven steps, which include: forking, cloning,



editing, syncing, pushing, submitting, and evaluating [2],

[3]. By providing a code base and a set of tools for task

management, code review, and DevOps, the pull-based model

simplifies participation and lowers entry barriers for external

contributors compared to traditional patch-based models [4].

Forks can be created for many different reasons or in-

tentions. In [1], Jiang et al. summarizes developers’ reasons

and preferences of creating forks, and OSS projects’ attract-

ing characteristics of getting forked. They discover various

reasons of forking including contributing back with pull-

requests, fixing bugs, adding new features, keeping copies,

etc. Stănciulescu et al. conduct a case study using the Marlin

project to explore the reasons, benefits, are challenges of forks

[30]. According to whether they will contribute back to the

source repository, forks can be classified as “hard” forks [31],

[32], independently developed forks (IDFs) [33], or divergent

forks [34] that are not intended to be merged back, and “social”

forks [32] that are created to make contributions.

The many forks created from a source repository (with

different intentions above) form the fork population studied

in this work. The concept is closely related to the concept of

software family in existing work [31], [34], [35]. In [35], Bris-

son et al. study the communication in a software family with

respect to following, pull-requests, and issues, and analyze

the correlation between such communication and a project’s

star counts. In [34], Businge et al. explore the characteristics

including the size, package dependencies, categories, etc, of

software families, as well as their code propagation practices.

Software families composed of hard forks are studied in

the above work [34], [35]. In [31], Hadian et al. study the

evolution and communication between repositories in a family

of projects (forks). They discover differences between hard and

social forks in terms of activity, deviation of dependencies,

and communication. In this work, we study the diversity

of a projects’ contributors-owned fork population created on

GitHub. Although we do not discriminate hard and social forks

in our studies, we are more interested in contributing forks [33]

by analyzing the correlation between the forks’ diversity and

contributions received in the source repository.

For owners of contributing forks that follow the pull-

based model, they can fork and develop in their own forked

repositories before contributing back to the source repository

through pull-requests. However, coordination issues such as

misalignment and conflict among developers can lead to

inefficiencies in forking practices, which include lost contri-

butions, rejected pull requests, redundant development, and

fragmented communities as summarized by Zhou et al in

[6]. Consequently, it is essential to understand the factors,

and develop tools to aid efficient forking practices. In [6],

Zhou et al. explore characters of the source repository such

as modularity, and coordination mechanisms on the efficiency

of forking practices. To better understand the forks of OSS

projects, tools are developed to visualize source code changes

in forks [36], and identify features from commits in a projects

forks [21]. In this work, we propose a new metric called fork

entropy to facilitate studies of the diversity of a forks based

on their modification to files, which offers a new perspective

to understand an OSS project’s fork population.

B. Studies on External Contributors and Pull-Requests

In this work, we focus on forks owned, and contributions

made by external contributors because we focus on the diver-

sity and contributions related to OSS projects’ forks. Unlike

core developers who have write access, and can directly

commit into a source repository, external contributors make

contributions to projects through patches or pull-requests [4],

[22]. In [22], Padhye et al. categorize code committers into

core, external, and mutant, and find that the number of

external committers of projects developed by popular scripting

languages is comparable with the number of core committers.

After inspecting the pull-requests opened in 2013 in GitHub,

Gousios et al. conclude that pull-requests is a way of projects

to get external contributions because 73.07% of the pull-

requests have been merged using facilities provided by GitHub

[4]. In [8], Vasilescu et al. study the influence of adopting

continuous integration (CI) on the of acceptance of core and

external (non-core) developers’ pull-requests, as well as the

impact on software quality. They discover an improvement in

projects’ ability in integrating external contributions without

sacrificing code quality after adopting CI. By inverstigating

the Eclipse community, Sinha et al. discover factors, such

as demonstration of knowledge and skill in bug repositories,

can influence the promotion of external developers to core

committers [37]. In brief, contributions made by external

contributors through pull-requests play an important role in

OSS development and maintenance which worth studying.

Moreover, external contributors are a suitable group for our

study on fork diversity and its correlation on OSS contributions

because, unlike core developers with write access, they need

to fork a repository before making contributions.

C. Studies on Diversity Related to OSS Projects

Most existing software engineering studies related to our

work focus primarily on the diversity of team members in

OSS projects. Gender diversity has been widely examined

and found to have positive effects on project growth [14],

team productivity [15], and community health [16]. Studies

have also reported a positive correlation between the country

diversity of team members and project growth [14], and the

impact of tenure diversity on team productivity has been sug-

gested [15]. Additionally, Daniel et al. measured the reputation

and role diversity of participants and found positive effects on

community engagement and market success [17]. However,

as far as we know, there is currently a dearth of formal

measures of fork diversity. Moreover, the diversity metrics

presented above are typically measured using either the Blau

index [38] or the coefficient of variation [39]. While the Blau

index is well-suited for measuring diversity in categorical

variables (such as gender [15] and country [14]), and the

coefficient of variation can measure dispersion in numerical

variables (like tenure and reputation), neither method is ideal

for calculating the proposed metric of fork entropy due to
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limitations on the forms of data associated with understanding

the fork populations of OSS projects.

Diversity is widely acknowledged as a multifaceted con-

cept, which can be categorized into three main components:

richness, evenness, and disparity [40]. Richness refers to the

absolute number of species in a population, evenness describes

the distribution of species abundances, and disparity denotes

the differences among species [41]. Due to its complexity,

diversity has been operationalized using different metrics,

depending on the specific application. For instance, while

species richness is a commonly used indicator of diversity

that emphasizes the richness component, the Gini coefficient,

which measures income inequality, highlights the disparity

component [41]. In the context of OSS development, forks

may naturally differ due to differences in expertise, experi-

ence, and intentions among developers [42]. Therefore, we

focus on the disparity component of diversity and quantify

the differences in file modifications among forks. To this

end, we employ Rao’s quadratic entropy, which measures the

expectation of dissimilarity between two samples randomly

taken from a population [9]. This approach has been widely

used in studies of population and ecological diversity [9], [10].

Further details on how we calculate fork entropy can be found

in Section III.

III. FORK ENTROPY

This section presents the proposed measure of fork diversity

with fork entropy.

A. Overview

Fig. 1 illustrates the overall process of calculating fork

entropy to measure the diversity of forks created for an OSS

project. As shown in Fig. 1(a), for each project involved in

our study, we first collect data about its forks, and construct

a series of snapshots of fork populations with predefined

time intervals. We select projects from GitHub for easy data

collection. We empirically set the time interval to one month

in this work after consulting the literature [26]. Second, as

shown in Fig. 1(b), we build a file modification matrix to

contain the changes made by the forks in snapshot at time

t, denoted as Mt. To keep the notations concise, we slightly

abuse the notations to omit time index t when referring to

the file modification matrix for a snapshot in the rest of the

paper. Finally, as shown in Fig. 1(c), we calculate the fork

entropy with the Rao’s quadratic entropy defined on the pair-

wise distance function that quantifies the difference between

each pair of forks given a file modification matrix. Detailed

steps are as follows.

B. Construct Fork Populations in Snapshots

The first step is to construct the fork population as shown

in Fig. 1(a). Given an OSS project, we first locate its

source repository, e.g., tensorflow/tensorflow, in the

database. We then perform a breadth first search using the

‘forked from’ key in the database to retrieve the direct forks

and indirect forks (i.e., ‘forks of forks’) of the source repos-

itory in an iterative manner until all forks of the project are

retrieved. The retrieved forks are segmented by time intervals

with a fixed duration (empirically set to a month in this work)

to get a series of snapshots. Each snapshot contain forks with

their commits received during the time interval. For a fork

to be included in a snapshot, it must: 1) have at least one

commit with file modifications during the snapshot’s time

interval; and 2) is owned by a external contributor who does

not have write access to, or have privileges to close issues

or pull-requests in the source repository [6]. We determine

a contributor to be external if he / she has never directly

commit into a repository, or performed any privileged actions

such as closing issues opened by other users. A fork can be

included in multiple snapshots if it meets the above criteria in

different time intervals, but with different commits. We restrict

our scope to forks owned by external members of the project to

conduct a focused study as introduced in the beginning of the

paper. It should be noted that fork ownership is not a part of the

proposed fork entropy metric. Following the above approach,

the set of forks in each snapshot forms a fork population of

the project during the corresponding time interval.



C. Build Fork File Modification Matrix for Each Snapshot

Next, we build a file modification matrix to contain the

changes made by the fork population in a snapshot. In the

matrix, a fork, e.g., the i-th fork, is encoded as a row vector:

~ci = 〈ci1, ci2, · · · , cij , · · · , cin〉
⊤,

where n is the number of files in the project that are modified

by one of the forks in the population, and cij ∈ R is the count

of lines in file j which are modified by fork i during the time

interval of the snapshot. Intuitively, ~ci is the fingerprint of the

i-th fork in terms of modifications to project files. Let m be

the number of forks in the population, we can obtain the file

modification matrix, M ∈ R
m×n, by stacking the row vectors

of all of the m forks as shown in Fig. 1(b). Because the set

of files modified by fork populations in different snapshots

are likely to be different, it is common that the number of

columns, n, varies with different time intervals. We include

only files that are modified by the fork population in a snapshot

to guarantee that the file modification matrix does not contain

rows or columns that are all zeros.

D. Calculate Fork Entropy with Rao’s Quadratic Entropy

For each snapshot, we use the Rao’s quadratic entropy with

a distance function defined on the file modification matrix M

to calculate the average degree of difference between forks in

the population following Eq. (1).

QE(M) =
1

m2

m∑

i=1

m∑

j=1

D(~ci,~cj), (1)

where QE(M) denotes the Rao’s quadratic entropy that esti-

mates the expectation of difference between two individuals

randomly selected from the population [9], M is the file

modification matrix correspond to the snapshot (with the time

index t omitted), m is the number of forks in the population,

~ci,~cj are the the i- and j-th row in M , respectively, and D
is a distance function that quantifies the degree of difference

between two vectors as defined in Eq. (2) and visualized in

Fig. 1(c).

D(~ci,~cj) = 1− exp(−γ‖~ci − ~cj‖1), (2)

where exp(−γ‖~ci −~cj‖1) is the Laplacian kernel [43], ‖ · ‖1
is the 1-norm, and γ is the hyperparameter used to adjust

the sensitivity of the function to differences. We adopt the

Laplacian kernel because it is a non-linear transform sensitive

to slight change and performs excellently in many detection

tasks, e.g., character recognition [44].

Practical considerations also led us to adopt the Laplacian

kernel in our study. Our analysis revealed that many forks in

our dataset contain only minor changes to project files—some

forks modifying only a single line in a single file, similar to

findings from previous research [45], [46]. Consequently, we

observed a substantial number of small differences, resulting

in a fork entropy distribution that roughly followed a bell

curve. After testing various distance functions, including the

Laplacian and Gaussian kernels [43], we ultimately selected

the distance function presented in Equation (2) based on its

real-world performance.

By substituting Eq. (2) into Eq. (1), we have the Eq. (3) for

fork entropy.

Hfork(M) =
1

m2

m∑

i=1

m∑

j=1

(
1− exp(−γ‖~ci − ~cj‖1)

)
, (3)

where γ is set to 1 to compute the raw difference between two

vectors in practice. With the above definition, it is trivial to

see that 0 ≤ Hfork < 1, and Hfork takes the minimum value

when the numbers of changed lines for all files modified by

different forks are identical.

E. Properties of the Proposed Fork Entropy

Considering the basic axioms [41] of a diversity index and

expectations in the particular context jointly, the following

properties are met by the proposed fork entropy:

Symmetry. The fork entropy is not related to the order of

forks during its calculation. It is straightforward to see Hfork

satisfies the symmetry property because its distance function

D is symmetric, i.e., D(~ci,~cj) = D(~cj ,~ci).

Continuity. The fork entropy is a continuous function. It is

also easy to see that Hfork is in a continuous interval Hfork ∈
[0, 1) by its definition.

Symmetry and continuity are two fundamental properties of

a diversity index [41]. Next, we introduce monotonicity as a

property to meet our goal of measuring fork diversity.

Monotonicity. Adding a redundant (or distinctive) fork will

decrease (or increase) fork entropy. We first explain the terms

before proving monotonicity. Given m existing forks and a

new fork ~cm+1, Eq. (4) calculates the difference of the new

fork to existing ones.

D̃(~cm+1) =
1

m

m∑

i=1

D(~ci,~cm+1). (4)

We say ~cm+1 is redundant if its difference to existing forks is

less than the average difference among the existing m forks;

in contrast, ~cm+1 is distinctive if the new fork’s difference

to existing forks exceeds the average difference among the

existing m forks.

Assuming that the vector for a new fork ~cm+1 is added to

an existing file modification matrix M that contains m forks

to obtain a new matrix M ′, we derive the new fork entropy

of M ′ in Eq. (5).

Hfork(M
′) =

1

(m + 1)2

m+1∑

i=1

m+1∑

j=1

D(~ci,~cj)

=
1

(m + 1)2

(
m∑

i=1

m∑

j=1

D(~ci,~cj) + 2
m∑

i=1

D(~ci,~cm+1)

)

=
m2

(m + 1)2
Hfork(M) +

2

(m+ 1)2

m∑

i=1

D(~ci,~cm+1).

(5)



We denote Hfork(M
′) − Hfork(M) as ∆ and obtain Eq.

(6) by substituting ∆ into Eq. (5).

∆ =
2m+ 1

(m+ 1)2

(
1

m+ 0.5

m∑

i=1

D(~ci,~cm+1)−Hfork(M)

)

≈
2m+ 1

(m+ 1)2

(
D̃(~cm+1)−Hfork(M)

)
.

(6)

According to Eq. (6), ∆ is negative when ~cm+1 is redun-

dant and is positive when ~cm+1 is distinctive. It means that

fork entropy decreases after adding a redundant fork while

increases after adding a distinctive fork. Consequently, fork

entropy possesses the above properties and is valid to quantify

the diversity of forks.

IV. METHODS FOR EMPIRICAL STUDIES

This section presents the variables, dataset, and analysis

methods for the studies about the proposed fork entropy with

respect to our research questions.

A. Variables

We measure a project’s outcomes, including external pro-

ductivity, the acceptance rate of external pull-requests, and

number of reported bugs. We also introduce control variables

relevant to those outcomes.

Outcome: external productivity. The number of commits

is a widely used indicator of the productivity of OSS projects

[8], [15], [25], [26]. In this work, we focus on external

productivity that quantifies external contributor’ contributions

to a project, which is measured by the number of commits

integrated into the project’s source repository through pull-

requests from external contributor-owned forks. The monthly

external productivity is obtained to perform regression analysis

with fork entropy in each snapshot to answer RQ1. A possible

threat lies in that maintainers may change the origins of

commits, for example, by “cherry-picking” in pull-requests

[4], which can cause us to miss some contributions made by

external contributors. Fortunately, we find such cases are rare

in our dataset after manual inspections.

It is important note that software developers’ productivity is

a multifaceted concept which covers the activity, performance,

efficiency, satisfaction and well-being, etc, of the developers

as suggested in [47], and can be influenced by many factors

beyond the ones studied in this paper such as the team sizes

[48]. In this paper, we adopt the number of commits as

a commonly used measure of productivity with respect to

developers’ activity, which should not be considered as a

comprehensive measure of external developers’ productivity.

Outcome: external pull-request acceptance rate. Re-

searchers regard the acceptance rate of pull-requests as a

crucial indicator of the development efficiency of OSS projects

[6] because maintainers reject pull-requests that are obsolete,

conflicting, duplicated, etc [4], [49], [50]. We focus on the ac-

ceptance rate of external pull-requests delivered from external

contributor-owned forks to an OSS project’s source repository,

measured as the proportion of the merged pull-requests among

closed ones. The list of merged and closed pull-requests can be

obtained from GitHub’s rest API. The monthly acceptance rate

of external pull-requests is calculated to perform regression

analysis with fork entropy in each snapshot to answer RQ2. As

many developers integrate pull-requests via other mechanisms

rather than GitHub interface, the status of pull-requests is

not very reliable reported by GitHub [4], [6]. We follow the

heuristics first proposed by Gousios et al. [4] and subsequently

refined by Zhou et al. [6] to determine pull-requests’ status. A

pull-request is considered been merged if any of the following

conditions is met: 1) Maintainers perform a ‘merged’ action

for the pull-request on GitHub. 2) The pull-request is closed

by a commit using certain phrase conventions (e.g., fixes

#1234) advocated by GitHub2, or any of the last three

comments of the pull-request refers to a commit indicating

the merge of the pull-request3, and the commit exists in the

source repository’s commit history.

Outcome: number of reported bugs. The number of bugs

per unit time is a popular proxy of code quality [8], [26]–

[29]. We refer to [8], [26] to count emerging bug-report

issues in each snapshot. We do not distinguish bug reports

from core members or external contributors. To identify bug-

report issues, we process issue titles and labels by lowercasing

and Porter stemming [51] then search bug-related keywords,

including defect, error, bug, issue, mistake, incorrect, fault,

and flaw. If the title or any label of an issue contains at least

one keyword, we mark it as a bug-report issue. The monthly

code quality is assessed to perform regression analysis with

fork entropy in each snapshot to answer RQ3. Since the count-

based assessment of code quality relies heavily on the issue

base, a threat arises if projects rarely utilize GitHub’s default

issue-trackers. Thus, we examine the number of issues in each

project and exclude projects with few issues.

Control variables. Based on prior software engineering

literature [4], [6], [8], [52] and our experience, we include

the following factors potentially relevant to the above project

outcomes as control variables.

• NumForks and NumFiles: The two variables are the

number of forks and that of modified files, respectively.

They jointly describe the shape of a file modification

matrix. The more forks a project has, the more pull-

requests are submitted by non-core developers [8].

• ProjectAge: The age of a project’s source repository

in days. The older the project, the fewer external pull-

requests maintainers merge or reject [8].

• NumStars: The number of stars a project’s source reposi-

tory receives. This variable usually refers to the popularity

of OSS projects. External contributors are more likely to

contribute to more popular projects [8].

• RatioOldContributors: The ratio of external contribu-

tors with prior experience in successfully submitting pull-

requests to a project’s source repository. Core developers

2https://github.blog/2011-04-09-issues-2-0-the-next-generation/
3Comment matches regular expression (merg|apply|appl|pull|

push|integrat|land|cherry(-|\s+)pick|squash)(ing|i?ed).



prefer to trust contributors they have worked with before

[4], [6], [52].

• RatioPRsWithTests: The ratio of pull-requests that con-

tain test cases. A pull-request has test cases if any file

pathname contains ‘test’ [52]. Pull-requests that contain

test cases are more likely to be merged [52].

• RatioPRsTouchHotFiles: The ratio of pull-requests that

touch hot files. A hot file is that one modified by any

merged pull-request in the past three months [4]. Existing

studies suggest pull-requests that modify hot files are

more likely to be accepted [4].

B. Data Collection

We collect data through GHTorrent [53] and GitHub REST

API4, with the aid of the OSS Compass community [54].

We start by selecting the most popular five thousand projects

from the May 2019 GHTorrent dump according to the number

of stars a source repository receives. Then, we filter projects

based on the following criteria.

• Projects that do not develop software applications or

frameworks are removed. We remove projects that serve

for document storage or course teaching. We exam-

ine project names and ‘README’ files by searching

keywords, including awesome, homework, assignment,

course, note, and document. If any keyword is found, we

remove the project after manually rechecking. We also

delete projects with no programming-language-specific

files by looking at the file extensions.

• Projects whose number of active forks or external pull-

requests are less than one hundred are removed. To

ensure a project has sufficient forks and contributions, we

retain projects that 1) contain at least one hundred active

forks, i.e., forks that have pushed at least one commit

into the forked repository [34], and 2) contain at least

one hundred external pull-requests submitted by external

contributors.

• Projects whose issues are less than one hundred are also

removed. To reduce the threat to RQ3, we conservatively

exclude projects with less than one hundred issues to

ensure the remaining projects actively use the default

issue-trackers on GitHub.

Among the 2533 candidate projects selected with

the above criteria, we sample fifty projects5 to cover

different application domains, which include ten application

software (e.g., Atom/atom), two system software (e.g.,

kubernetes/kubernetes), sixteen web libraries

and frameworks (e.g., angular/angular.js),

nine non-web libraries and frameworks (e.g.,

tensorflow/tensorflow), and thirteen software

tools (e.g., Microsoft/vscode).

4https://docs.github.com/en/rest
5A complete list of the fifty projects studied in this paper can be found at

https://github.com/wangliang-cs/fork-entropy-ase-2023-repos.

C. Regression Analysis

We calculate monthly variables for each project from its

creation to May 2019. All variables in each project snapshot

compose an independent unit for regression analyses. We omit

units with empty fork populations because fork entropy is

meaningless without forks, even if it has a value of zero.

Before fitting models with the data, we perform log-transform

on control variables under skewed distributions to stabilize

variance and reduce heteroscedasticity [55], including Num-

Forks, NumFiles, NumStars, and RatioOldContributors. Then,

we standardize fork entropy and all control variables to make

the mean of each one is zero and the standard deviation is one,

which makes all estimated coefficients of the model are on the

same scale. Additionally, we manually examine distributions

of outcome variables and conservatively remove about 1%

of values as outliers to ensure the models are robust against

outliers [56].

We build generalized linear mixed models (GLMMs) to

analyze the correlations between fork entropy and the outcome

variables. GLMMs inherit from generalized linear models

(GLMs) to allow response variables from non-normal distri-

butions and extend GLMs to include both fixed and random

effects [57]. After exploratory data analysis, GLMMs are

appropriate because the response variables in our data are

non-normal and show apparent variability among projects.

Specifically, fork entropy, control variables, and interactions

between fork entropy and each control variable are modeled

as fixed effects. To capture the project-to-project variability in

the response (e.g., some projects naturally attract more external

contributors and receive more contributions than others), we

add a random-effects term for projects into the models. We

also allow for deviations in the slope of the number of a

project’s forks from the population values (i.e., we accept

the possibility that, for example, projects with higher initial

external productivity may, on average, be less strongly affected

by the increase in fork counts). We use the glmer function

provided by the lme4 package [58] in R to build models.

Following prior practices [6], [59], the Poisson and logistic

regressions are specified for count (i.e., external productivity

and number of reported bugs) and ratio (i.e., the acceptance

rate of external pull-requests) response variables, respectively.

We also explicitly set the denominator (i.e., the number of

closed pull-requests) from the ratio as the weights parameter

when modeling the acceptance rate of external pull-requests.

We check the collinearity among independent variables

using the variance inflation factors (VIF below five is recom-

mended [60]). All values are below 2 in our models, which

means collinearity is not a problem in our data. We adopt

the marginal R-squared (R2
m) and the conditional R-squared

(R2
c) to assess the goodness-of-fit of the models. R2

m and

R2
c describe the proportion of variance explained by the fixed

effects alone and explained by the fixed and random effects

together, respectively [61], [62]. In addition, we report the

estimated effect, standard error, and significance level (i.e.,

p-value) for each model variable. We also report the results



TABLE I
FIXED EFFECTS OF EXTERNAL PRODUCTIVITY MODEL.

Estimate (Std. Errors) Chisq

(Intercept) -3.360 (0.136)***
Hfork -0.325 (0.005)*** 5038.09***
NumForks -0.614 (0.075)*** 0067.84***
NumFiles -0.510 (0.006)*** 7700.90***
ProjectAge -0.176 (0.005)*** 1097.94***
NumStars -0.032 (0.004)*** 0098.00***
RatioOldContributors -0.079 (0.003)*** 0600.72***
Hfork:NumForks -0.116 (0.006)*** 0383.30***
Hfork:NumFiles -0.064 (0.005)*** 0147.55***
Hfork:ProjectAge -0.123 (0.004)*** 1070.85***
Hfork:NumStars -0.087 (0.005)*** 0311.58***
Hfork:RatioOldContributors -0.015 (0.003)*** 0021.59***

AIC=65465.38; BIC=65558.12; R2
m=0.40; R2

c=0.98
Num. obs.=3579; Num. groups: ProjectID=50

*** p < 0.001, ** p < 0.01, * p < 0.05
Log-transformed and standardized variables following Sec. IV-C.

of ANOVA type-II analysis, and Akaike’s information criteria

(AIC) [63] and Bayesian’s information criteria (BIC) [64] for

each model using the car and performance package [65]

in R, respectively.

V. RESULTS OF THE STUDIES

This section shows the results of regression analyses for our

research questions.

A. RQ1: What is the correlation between an OSS project’s

fork entropy and its external productivity?

To answer RQ1, we model the number of commits inte-

grated from external contributor-owned forks into a project’s

source repository as a function of fork entropy. In the regres-

sion, we control factors including the number of forks, the

number of modified files, project age, the number of stars,

and the ratio of external contributors with prior experience.

Table I summarizes the regression results. We can see that the

model is effective by explaining about 98% of the variance

with the fixed and random effects together, which exceeds the

fixed effects alone by approximately 58 percentage points.

The results in Table I suggest that fork entropy significantly

and positively correlates to the external productivity of OSS

projects (p-value below 0.001), with the third largest estimated

coefficient just lower than the coefficients of NumForks and

NumFiles. This result suggest that projects with more diverse

fork populations integrate more commits created by external

contributors. In addition, the controlled factors in the model

are also significantly linked to external productivity. Table

I shows that all controls except project age are positively

correlated to the external productivity of OSS projects. As a

result, OSS projects with more forks and modified files, higher

popularity, younger in age, and more proportion of external

contributors with prior experience generally correspond to

higher external productivity.

We next analyze the interactions between fork entropy and

the control variables in the model. As shown in Table I, all

interactions show significance. The interactions between fork

entropy and the number of forks and between fork entropy and
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(a) The interaction between Fork Entropy and NumForks

(b) The interaction between Fork Entropy and ProjectAge
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Fig. 2. Interactions in the external productivity model shown in Table I.

project age negatively correlate to the external productivity of

OSS projects, and the remaining interactions show positive

correlation with the response. We can also observe from the

table that the two interactions negatively correlated to the

response have the two largest effects as discussed below.

Fig. 2(a) illustrates the trends of external productivity with

the increasing number of forks at low, middle, and high

levels of fork entropy, respectively. We define the low, middle,

and high levels of fork entropy respectively to correspond to

its values with mean minus one standard deviation (Mean -

Std.), mean, and mean plus one standard deviation (Mean +

Std.) after consulting the literature [66]. In general, external

productivity raises with the increase in NumForks. And the

interaction suggests a higher level of fork entropy is associated

with a lower growth rate of external productivity with respect

to NumForks. With a fixed number of forks, an increase in

a project’s fork entropy is related to an increased external

productivity. This result suggests that, a project with a larger

and more diverse population of forks have a higher probability

of receiving contributions from the external contributors.

Fig. 2(b) depicts the interaction between fork entropy and

project age. We can see that the external productivity generally

decreases with the increasing of project age. The ratio of

decreasing in external productivity with increased project age

is amplified with higher levels of fork entropy. A possible

explanation to this result is, younger projects under active

development are possibly more open to accepting diverse

contributions from external contributors than older projects.

And projects older in age may have possibly entered a stage

of stable maintenance, or slowly dying for lacking the capacity

of handling diverse external contributions.

Fork entropy shows a positive and significant interaction be-

tween each of the other control variables including NumFiles,

NumStars, and RatioOldContributors, respectively, as reported

in Table I. We omit the details due to page limits.

In summary, we answer RQ1 as follows. Fork entropy



TABLE II
FIXED EFFECTS OF EXTERNAL PULL-REQUEST ACCEPTANCE RATE MODEL.

Estimate (Std. Errors) Chisq

(Intercept) -0.729 (0.195)***
Hfork -0.179 (0.015)*** 0145.07***
NumForks -0.196 (0.158) 0001.55***
NumFiles -0.049 (0.020)* 0011.54***
ProjectAge -0.490 (0.011)*** 2710.74***
RatioOldContributors -0.614 (0.010)*** 4578.80***
RatioPRsWithTests -0.135 (0.017)*** 0063.97***
RatioPRsTouchHotFiles -0.091 (0.015)*** 0043.30***
Hfork:NumFiles -0.122 (0.012)*** 0097.07***
Hfork:ProjectAge -0.053 (0.009)*** 0038.38***
Hfork:RatioOldContributors -0.028 (0.009)** 0010.01***
Hfork:RatioPRsWithTests -0.230 (0.011)*** 0421.33***
Hfork:RatioPRsTouchHotFiles -0.140 (0.011)*** 0155.37***

AIC=46173.12; BIC=46272.04; R2
m=0.09; R2

c=0.53
Num. obs.=3579; Num. groups: ProjectID=50

*** p < 0.001, ** p < 0.01, * p < 0.05
Log-transformed and standardized variables following Sec. IV-C.

shows a significant, positive correlation with the external

productivity of OSS projects. Further analysis uncovers signif-

icant interactions between fork entropy and other variables,

including the number of forks, project age, number of files,

number of stars, and ratio of old contributors. We observe that

increasing fork entropy is related to a higher level of external

productivity, particularly with respect to the number of forks.

Additionally, our results indicate that for younger projects,

increasing fork entropy shows a stronger positive relation with

external productivity compared to older projects.

B. RQ2: How does an OSS project’s fork entropy relate to its

acceptance rate of external pull-requests?

To answer RQ2, we study the correlation between fork

entropy and the acceptance rate of pull-requests submitted by

external contributors. Here we calculate fork entropy based

on a variant of the file modification matrix that only in-

cludes modifications involved in pull-requests. We perform

the adjustment because pull-requests allow us to figure out

which modifications are submitted to source repositories in

each time interval. We exclude modifications made in forks

but not included in pull-requests because they are largely

invisible to maintainers who make decisions. We apply logistic

regression for the acceptance rate by considering fork entropy.

We control other factors, including NumForks, NumFiles, Pro-

jectAge, RatioOldContributors, RatioPRsWithTests, and Ra-

tioPRsTouchHotFiles. Interactions between fork entropy and

each control variable are also involved in the model. We ignore

the interaction between fork entropy and NumForks because

the control variable does not show a significant correlation

with the response. Table II summarizes the model’s results.

The model explains about 53% of variability by including

the fixed and random effects together, achieving a significant

improvement compared to the fixed effects alone.

From Table II, we find fork entropy significantly and

positively correlates to the acceptance rate of external pull-

requests, despite that fork entropy has a smaller estimated

effect of 0.179 compared with the estimated coefficients of Ra-
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Fig. 3. Interactions in the acceptance rate model shown in Table II. Negative
response values caused by the logit function.

tioOldContributors, ProjectAge, and NumForks of 0.614, 0.49,

-0.196, respectively. However, the effect of NumForks fails to

show statistical significance. Except for RatioPRsTouchHot-

Files, the other four control variables are positively linked to

the acceptance rate of external pull-requests.

For the model’s interaction terms, only the interaction

between fork entropy and the proportion of pull-requests that

touch hot files show significant and positive correlation with

the acceptance rate of external pull-requests. The remaining

interactions are significantly and negatively correlated to the

response. Furthermore, we analyze the interactions with rela-

tively notable effects, i.e., the interaction between fork entropy

and RatioPRsTouchHotFile, as well as its interaction with

RatioPRsWithTests, as follows.

First, as illustrated in Fig. 3(a), the correlation between

the proportion of pull-requests that touch hot files (Ratio-

PRsTouchHotFiles) and external pull-requests’ acceptance rate

differs with different levels of fork entropy. The acceptance

rate declines with RatioPRsTouchHotFiles when fork entropy

is at a median or low level, and increases when fork entropy

is high. A possible explanation is that, when fork entropy is at

the median or low level, pull-requests are touching the same or

similar sets of hot files, which result in conflicts and duplica-

tion among them, leading to a reduced acceptance rate. On the

contrary, when fork entropy is at a high level, the pull-requests

are touching different, less overlapped, hot files in the recent

history. As a result, an increase in RatioPRsTouchHotFiles also

leads to a increase in acceptance rate.

Next, Fig. 3(b) illustrates the interaction between fork

entropy and RatioPRsWithTests on the acceptance rate of

external pull-requests. We observe that an increase in the

proportion of pull-requests that contain test cases is correlated

to a higher acceptance rate when fork entropy is at a low level,

which is consistent with existing observations that including

test cases are helpful to make a pull request being accepted



TABLE III
FIXED EFFECTS OF NUMBER OF REPORTED BUGS MODEL.

Estimate (Std. Errors) Chisq

(Intercept) -2.632 (0.204)***
Hfork -0.086 (0.006)*** 222.49***
NumForks -0.356 (0.066)*** 032.51***
NumFiles -0.065 (0.007)*** 082.53***
ProjectAge -0.078 (0.007)*** 118.94***
NumStars -0.115 (0.006)*** 332.64***
Hfork:NumForks -0.063 (0.008)*** 062.36***
Hfork:NumFiles -0.045 (0.007)*** 040.92***
Hfork:ProjectAge -0.032 (0.005)*** 037.03***
Hfork:NumStars -0.037 (0.006)*** 038.55***

AIC=35052.62; BIC=35133.00; R2
m=0.08; R2

c=0.96
Num. obs.=3579; Num. groups: ProjectID=50

*** p < 0.001, ** p < 0.01, * p < 0.05
Log-transformed and standardized variables following Sec. IV-C.

[52]. However, the above direction of correlation inverses at a

high level of fork entropy. From the perspective of varying fork

entropy by fixing the other factor, i.e., comparing the left and

right parts separated by the vertical dashed line in Fig. 3(b),

the acceptance rate generally increases with an increasing fork

entropy with respect to the number of pull-requests contain

test cases. But when the majority of pull-requests contain test

cases, as shown by the part to the right of the dashed line, the

increase in fork entropy instead shows a negative correlation

with the acceptance rate.

We omit the details about the interactions between fork

entropy and other control variables including NumFiles, Pro-

jectAge, and ProjectAge, which show significant and negative

interactions as listed in Table II due to page limites.

In summary, our answer to RQ2 is as follows. Fork entropy

has a statistically significant, positive correlation with the

acceptance rate of external pull-requests, albeit with a limited

effect. Our analysis indicates that fork entropy also positive

interacts with the number of pull-requests that touch hot files

on the response. We find that the acceptance rate of pull-

requests touching hot files only exhibits an upward trend when

fork entropy is at a high level.

C. RQ3: What is the correlation between fork entropy and

OSS projects’ number of reported bugs?

In this section, we study the correlation between fork

entropy and the number of reported bugs of OSS projects. We

model the number of bug-report issues as a function of fork

entropy with controlling other factors including the number

of forks, the number of modified files, project age, and the

number of stars. Interactions between fork entropy and each

controlled factor are also involved in the model as fixed effects.

Table III summarizes the results of the number of reported

bugs model. The model fits the data well by explaining about

96% of the variability by including both fixed and random

effects, achieving a considerable improvement compared to

the fixed effects alone by about 88 percentage points.

The results in Table III suggest that fork entropy signifi-

cantly and negatively correlates to the number of bug-report

issues with an estimated coefficient of -0.086. The absolute
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Fig. 4. The interaction between fork entropy and NumForks in the number
of reported bugs model shown in Table III.

value is the third largest among the factors, lower than the

estimated coefficient of NumForks and ProjectAge, which are

0.356, and 0.115, respectively. The results also suggest that the

number of modified files significantly and negatively correlates

to the number of bug-reporting issues, while the other con-

trolled factors show significant and positive correlations with

the response. All interaction terms show significance, with the

interaction of fork entropy and the number of forks negatively

correlates to the response.

We observe an opposition between fork entropy and the

number of forks, where the former negatively correlates to

the response and the latter positively relates to the response,

respectively. Fig. 4 shows the interaction. We find that more

bug-report issues are submitted with the increasing in the

number of forks regardless of fork entropy. There is a slower

growth in bug-report issues when fork entropy is at a higher

level. Combined with the results in in RQ 1 and RQ 2,

a possible explanation to the above result is that increased

fork entropy are related to more commits and pull-requests

been accepted, including bug-fixing ones, before potential bugs

are reported. With the above results, if we agree with the

assumption that less reported bugs indicates a higher software

quality [26], [27], we can state that a higher level of fork

entropy is positively linked to an improved software quality.

In summary, we answer RQ3 as below. Our study reveals

a significant, negative correlation between fork entropy and

the number of reported bugs in OSS projects. Furthermore, it

shows that the rising trend of bug-reporting issues associated

with the increasing number of OSS projects’ forks is reduced

when fork entropy is at high levels.

VI. DISCUSSION

This section discusses the implications of our work, and the

threats to validity.

A. Implications and Discussion

This section discuss the implications of our work.

Developing metrics and models that measure the health

of OSS projects has received much attention from both re-

searchers and practitioners of OSS recently. For example,

communities such as CHAOSS [67] and OSS Compass [54]

are founded to achieve an understanding, and provide ser-

vices to measure the health of OSS communities, projects,

and ecosystems through numerous qualitative and quantitative



metrics. Fork related metrics, such as the number of technical

forks [68], is considered as a useful indicator. The fork entropy

proposed in this paper is a new metric about an OSS project’s

forks, and can potentially be added to the collection of metrics

provided by the above communities due to its correlations with

projects’ external productivity, pull-request acceptance ratio,

and number of reported bugs as shown in our studies.

The proposed fork entropy metric also provides oppor-

tunities for further research on OSS projects’ forks. For

instance, one could utilize pattern mining and time series

analysis technologies to examine the evolving patterns and

future trends of fork entropy over time [69]. Furthermore,

it is potentially important to identify and assess the various

factors and events that contribute to the rise and fall of

fork diversity in OSS projects, and analyze their impact on

the sustainability and prosperity of OSS projects [12], [33].

With a thorough understanding of fork diversity trends and

influencing factors, it is possible to develop monitoring tools

and guidelines to facilitate effective forking and collaboration

during the development and maintenance of OSS projects.

B. Threats to Validity

We discuss the threats to validity as follows.

Construct Validity. This work explores the diversity of

OSS projects’ fork populations measured by the proposed

fork entropy metric. The construct validity concerns about

whether the fork entropy measures the diversity of the fork

population. Because fork entropy is built on top of the well-

established metric of Rao’s quadratic entropy [9] which has

shown to be effective in measuring population diversity [10],

and because we have shown the properties of for entropy

including symmetry, continuity, and monotonicity, we argue

that the proposed fork entropy is valid in measuring the

diversity of an OSS project’s fork population.

Internal Validity. In this work, we conduct a data-driven

approach to study the correlation between fork entropy and

OSS projects’ external productivity, pull-request acceptance

rate, and number of reported bugs. We also restrict our scope to

forks owned, and contributions made, by external contributors.

The restriction is designed to make our study more focused

on fork-related properties about OSS projects. However, there

are many other factors affecting the contributions made to an

OSS project [13]. External contributors’ contribution are also

partially determined by the core-members of OSS teams. As a

result, the conclusions made in this paper do not fully explain

how fork-related contributions made to OSS projects or imply

a causal relationship. In addition, we set the time interval to

one month when taking snapshots to build file modification

matrices and calculate fork entropy. Although this size is

widely used in previous OSS-related studies [26], changing the

time granularity during the analysis may potentially change the

results. It is our future work to test the results with different

time intervals.

External Validity. We select fifty projects from GitHub that

cover various application domains in our studies. However, the

collection of projects studied is small compared to the number

of projects hosted on OSS platforms. The conclusions made

in this paper may not generalize well to other projects, or to

projects hosted on other platforms. It is our future work to

include more projects in our studies.

VII. CONCLUSION

In this work, we focus on the pull-based OSS development

and propose a novel metric called fork entropy to measure the

diversity of the population of forks around an OSS project. We

calculate fork entropy by applying the Rao’s quadratic entropy

with a distance function that measures the dissimilarity of the

forks’ modifications to project files. By conducting empirical

studies on fifty real-world OSS projects from GitHub, we

reveal that there exist significant correlations between fork

entropy and the external productivity, the acceptance rate of

external pull-requests, and number of reported bugs in these

projects. We also find significant interactions between fork

entropy and other influencing factors such as the number of

forks, project age, ratio of pull-requests that touch hot files, etc,

which have previously found to correlate to the productivity

and quality of OSS projects. The proposed fork entropy

metric not only enriches the current available metrics about

understanding OSS projects’ forks, it also offers opportunities

for conducting further research on pull-based social coding.
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[6] S. Zhou, B. Vasilescu, and C. Kästner, “What the fork: a study of ineffi-
cient and efficient forking practices in social coding,” in Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering,
2019, pp. 350–361.

[7] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in
github: transparency and collaboration in an open software repository,”
in Proceedings of the ACM 2012 conference on computer supported
cooperative work, 2012, pp. 1277–1286.

[8] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, “Quality and
productivity outcomes relating to continuous integration in github,” in
Proceedings of the 2015 10th Joint Meeting on Foundations of Software

Engineering, 2015, pp. 805–816.

[9] C. R. Rao, “Diversity and dissimilarity coefficients: a unified approach,”
Theoretical population biology, vol. 21, no. 1, pp. 24–43, 1982.



[10] Z. Botta-Dukát, “Rao’s quadratic entropy as a measure of functional
diversity based on multiple traits,” Journal of vegetation science, vol. 16,
no. 5, pp. 533–540, 2005.

[11] A. R. Hughes, B. D. Inouye, M. T. Johnson, N. Underwood, and
M. Vellend, “Ecological consequences of genetic diversity,” Ecology

letters, vol. 11, no. 6, pp. 609–623, 2008.

[12] U. Raja and M. J. Tretter, “Defining and evaluating a measure of open
source project survivability,” IEEE Transactions on Software Engineer-
ing, vol. 38, no. 1, pp. 163–174, 2012.

[13] S. Jansen, “Measuring the health of open source software ecosystems:
Beyond the scope of project health,” Information and Software Technol-

ogy, vol. 56, no. 11, pp. 1508–1519, 2014.
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