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Abstract

In agile software development, test code can consider-
ably contribute to the overall source code size. Being a
valuable asset both in terms of verification and documen-
tation, the composition of a test suite needs to be well un-
derstood in order to identify opportunities as well as weak-
nesses for further evolution. In this paper, we argue that the
visualization of structural characteristics is a viable means
to support the exploration of test suites. Thanks to general
agreement on a limited set of key test design principles, such
visualizations are relatively easy to interpret. In particular,
we present visualizations that support testers in (i) locat-
ing test cases; (ii) examining the relation between test code
and production code; and (iii) studying the composition of
and dependencies within test cases. By means of two case
studies, we demonstrate how visual patterns help to iden-
tify key test suite characteristics. This approach forms the
first step in assisting a developer to build up understanding
about test suites beyond code reading.

1 Introduction

Pushed by the adoption of agile development methodolo-
gies as well as the availability of free testing frameworks, a
lot of unit tests have been written over the last few years.
Such tests are specified persistently, thereby contributing to
the size of a software project’s artifacts. Studies report a
ratio of test to production code which can extend till 2:3;
occasionally even 1:1 [10, 23]]. As such, unit testing con-
siderably impacts a software project’s development cost.

The benefits of unit testing are well known. In the short
term, the application of unit testing results in software of
higher quality [21} [19} 8]]. Unit testing is observed to find
other defects [22} [11]] and is also reported to be consider-
ably cheaper than strategies relying solely on testing later
in the development cycle [[L1]. In the long term, unit tests
are a valuable asset during regression testing, able to notice
undesired side effects of changes [9, Ch.6].

On the down side, unit test code needs to co-evolve with
production code in order to remain useful. Moreover, a test

suite is subject to the problem of design erosion as well,
gradually loosing the initially intended design and thereby
becoming harder to understand and modify. Constructs in
the tests that hinder modification, e.g. complex test cases or
aresource dependent test [[10]], directly affect developer pro-
ductivity thereby amplifying the overall maintenance cost.
Studies indicate that regression testing can account for as
much as one-third of the total cost of a software system [16].

Therefore, in the context of a legacy system, the asso-
ciated test suite contains both opportunities, in the form of
well designed, isolated unit tests with a high coverage, as
well as weaknesses, in the form of maintenance intensive
test cases, components lacking coverage, etc. Evaluating
the overall condition first requires identifying the location
of test code and relating it to the corresponding produc-
tion code. A first notion of coverage per component can
be obtained by comparing production and test code size-
wise. Next, to explore the amount and kind of test cases
for individual production components, a developer has to
study their interdependencies. Detecting maintenance in-
tensive test cases, finally, requires studying their internals:
typically through code reviewing.

Code reviewing, with known reviewing rates around 150
to 200 lines of code per hour [4], was quickly found not to
be scalable and therefore research went to look for design
recovery techniques at a higher level of abstraction [5} 20].
We identified two ways in which general design recovery
techniques can exploit the more constrained context of test
code. First, in contrast to the heterogeneous design heuris-
tics for production code, design guidelines for test code are
quite strict, emphasizing recurrent design idioms such as
the setup-stimulate-verify-tear down cycle (S-S-V-T). Sec-
ondly, the abstractions typically used in program compre-
hension - e.g. classes, methods, invocations etc. - lack test-
ing semantics. Testers reason in terms of test cases, fixtures
and assertions, suggesting a semantic layer on top of the
abstractions employed in general design recovery.

Accordingly, this work contributes to the general body of
knowledge on software visualization by introducing a test
suite representation that does exploit the more constrained
context of test code, allowing developers to explore the
composition of a test suite, navigating between correspond-



ing production units and test cases, identifying co-evolution
needs or spotting test design anti-patterns.

This paper is structured as follows. In Section[2] we reca-
pitulate desired unit test characteristics. We clarify how the
use of the S-S-V-T cycle as well as unit testing frameworks
assist in composing well-structured tests. The visualization
technique introduced in Section [3] exploits software design
elements in its abstraction. Next, we present three visual
presentations and discuss their interpretation (Section)). In
Section [5] we report about two case studies, the findings
of which we validate by means of design documentation,
reports as well as an interview with a developer. After dis-
cussing related work (Section[6) we wrap up (Section[7).

2 Test Suite Design

In this section, we briefly introduce terminology, design
guidelines and strategies that are commonly used during
unit testing.

Unit Testing Terminology — The standard unit testing
terminology stems from Beck’s pattern system [3]:

e a Unit under Test is the set of production classes
(classes that contribute to the final software product)
that is exercised together during testing. In a strict unit
testing approach a unit corresponds to a single class.

e a Test Case groups a set of tests performed on the same
unit under test. Within JUNIT || a test case is speci-
fied as a class, inheriting from the generic TestCase
class offered by the test framework.

o a Test Case Fixture is the set of attributes a test case
requires to bring the unit under test into the desired
state. The fixture consists of an instance of the unit
under test as well as some shared test data.

e a Test Command is a container for a single test. It is
typically encapsulated in a method of a test case.

o the Test Case Setup is a method of the test case in
which the fixture is initialized into the desired state for
testing. A corresponding Test Case Tear Down method
releases resources again.

Design Guidelines — Unit test design guidelines propose
a strict structure for specifying tests: (i) acquire and initial-
ize the necessary resources, (ii) send one or more stimuli to
the unit under test, (iii) verify that the unit responds prop-
erly; and finally (iv) release the acquired resources. These
four calls are referred to as the setup-stimulate-verify-tear
down cycle (S-S-V-T). The first step, performed in a Test
Case Setup, is repeated before every Test Command in the

IJUNIT is the Java implementation of the XUNIT family of testing
frameworks, the de facto framework for unit testing today

Test Case. Each Test Command stimulates and verifies the
unit under test.

Unit tests are typically specified in the same program-
ming language as the system under test, yet are not tested
extensively themselves. To support code reviewing as the
main means for test quality assurance, test cases are re-
quired to be concise, transparent in their objectives and
isolated in implementing the S-S-V-T cycle, forming an en-
capsulated test. Test Commands exercising the same unit
under test are gathered in a Test Case, thereby sharing an
explicit Test Case Fixture and Setup.

Unit Testing Strategies — The testing plan of a typical
software system entails many strategies: unit tests verify the
functionality of small units at a time, integration tests are fo-
cused on the interaction between components, system tests
consider the behaviour of the system overall, etc. Despite
the clearly distinctive objectives for each strategy, overlap
between strategies occurs, such as unit tests bearing proper-
ties of another testing strategy:

e Units that are tightly coupled with many other units
require more effort to isolate, e.g. by means of test
stubs taking the place of external units. Therefore, a
tester may decide to unit test without isolating - i.e.
setting up a larger unit under test only part of which
is the actual unit under test. Such a test case can be
considered as being more integration testing.

o Certain units are always used by the same other (set of)
units. During testing that unit might also be exercised
via this set for ease of setup or because it closer re-
sembles the actual usage scenario, resulting in multiple
units to be considered. This testing approach is called
Indirect testing. Moonen and van Deursen argue that
this makes understanding and debugging harder [[10]].

e When large data sets are required for testing certain
units, this data is sometimes stored in files and loaded
during test setup. The reading functionality is typi-
cally abstracted and shared among test cases. Test code
classes that implement this functionality are referred to
as test helpers.

e System-wide input/output testing approach can be fed
with test input data specifically chosen to exercise par-
ticular units.

Considering this variation, determining the kind of unit tests
present in a test suite is worthwile, as it may steer upcoming
re-engineering tasks.

3 Visualizing Test Suites

In this work, we propose a visualization technique assist-
ing re-engineers to analyze and comprehend the structure
and quality of the test suite of large systems. To describe
our visualization, we use the five-dimensional framework



of Maletic et al. [18]]. This framework was proposed for
development and maintenance of large-scale software and
stimulates the user to describe how a technique assists in
completing a particular software development task.

3.1 Tasks

The proposed visualization supports three program un-
derstanding tasks that we call First Contact, Understand
Unit(s) and Assess Test Case(s). Together, they form a top-
down and phased approach to explore a test suite.

Perform First Contact. In this task, a developer builds
up an overall mental model of a system at a high level of
abstraction [9]]. Initial understanding of the associated test
suite is obtained by: (i) localizing the test suite code in
the source tree, (ii) looking at overall coverage to get a no-
tion on covere as well as uncovered components; and (iii)
studying test suite design to grasp the granularity of units
that have been used.

Understand Unit(s). Koenemann and Koch observed that
programmers only study code in case they are convinced of
the relevance in the context of a particular task [[17)]. As unit
tests also serve the purpose of live documentation, explain-
ing in simple scenario’s how a unit is (and is not) supposed
to be used, information about relevant test cases forms a
next step towards the actual modification of the code. Sec-
ondly, coverage information can reveal important parts, as
we assume that critical, frequently changing or core parts
are tested more extensively.

Assess Test Case(s). After having identified relevant unit
tests, i.e. test cases directly invoking production units of in-
terest, the next step consists of evaluating the internal struc-
ture of individual test cases. Well-designed unit tests are
most suited for documentation purposes, as they (i) are easy
to understand; and (ii) specify how a particular unit is (and
is not supposed to be) used in an isolated scenario. Test
cases may present certain maintenance challenges as well.
Weakly isolated test cases, requiring a complex setup or
bearing unrealistic run-time expectations, become costly to
maintain due to frequent changes, slow execution or seem-
ingly random failures [10]].

Summarizing, for three maintenance tasks we identified
three information topics concerning the test suite: Test Lo-
cation, Test Coverage and Test Design.Table[T|shows which
information topics are required during the three tasks. For
each of them we will introduce a separate view, i.e., a filter
mechanism on the overall visualization technique.

2In the context of this paper, we use a coarse grained definition for
coverage: a class is covered by a test case when at least one of its methods
is invoked by a test command

Task ‘ Perform

Understand ‘ Assess

Topic First Contact Unit(s) Test Case(s)
Test Location Vi Vv

Test Coverage v v

Test Design v V4

Table 1. How are test suite exploration topics
covered by the presented views?

3.2 Audience

The visualization technique is intended to assist software
engineers in exploring the test suite of an unfamiliar system,
as required in the following typical scenarios:

e A newcomer to the project who is asked to build up
knowledge quickly and relatively independent from
the existing team.

e A team of developers assigned to a major modification
of a stabilized, long running legacy system may use it
to characterize the available tests, thereby serving as a
reference for communication.

e A re-engineer, asked to analyze a system X’s opportu-
nities and threats when considered to be integrated into
system Y, will be interested in the test suite as well.

3.3 Target

The target defines the characteristics of the software sys-
tem to be visualized [18]. In this work, we are interested
in the structure of test suites as well as the relationship be-
tween test suites and production code. In a first step, we
fetch information from the system’s source code using a
static fact extractor. This results in a model of the system ac-
cording to the formalism of the Object Oriented Framework
for Coupling and Cohesion (OOFCC) specified by Briand
et al. [6], i.e. a formalism to query and count in terms
of classes, methods, invocations, etc. Secondly, we iden-
tify entities that belong to test code and adapt the model
representation according to the OOFCC refinement that we
proposed for test code that (i) formalizes unit test concepts
as entities and relationships in a test model, (ii) describes
how OOFCC entities map onto test concepts for common
implementations of xUnit and (iii) provides the heuristics
(type, inheritance and ownership properties as well as nam-
ing conventions) required to implement a refining model
transformation [26]. Due to space constrains, we do not re-
produce the formalism here. Next, for each view we query
this model and compose the input for a graph visualization
tool. These steps are automated in a tool called FETCPﬂ

The model entities of [26] were already introduced (in-
formally) in Section 2] (Unit Testing Terminology). We fur-

3stands for Fact Extraction Tool CHain, developed at the University of
Antwerp. Available at http://www.lore.ua.ac.be/Research/Artefacts/
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thermore distinguish three types of relations:

e Containment relations represent the hierarchical de-
composition of a software system in containers.
Classes belong to a parent package, methods belong
to a class, etc. This decomposition applies to both pro-
duction and test code.

e A coverage relation is a relation between a test entity
A and a production entity B, where A has at least one
invocation towards B. As such, we only consider di-
rect relations between production and test code, in line
with a developer’s information needs during the explo-
ration of a test suite’s composition, rather than obtain-
ing finer-grained, exact coverage measures.

o Test dependencies are relations between test entities,
e.g., revealing certain abstractions or recurrent helper
functions in the test design. In practice, such mech-
anisms are typically implemented in an (abstract) test
case superclass. As such, we denote an inheritance re-
lation between two test cases as a test dependency.

3.4 Representation & Medium

Directed graphs have been shown to be natural represen-
tations of software systems [ 15} [24]]. Tableexplains which
entities and relations we represent as nodes and edges. The
symbols for class and test case vary per view. For the
’medium’ dimension, characterizing where the visualiza-
tion is to be rendered [18]], we adopted GUESS. GUESS
is an exploratory data analysis and visualization tool for
graphs and networks |[1]], as a part of FETCH. This environ-
ment assists the user in graph exploration through capabil-
ities such as applying graph layouts, highlighting, zooming
and moving as well as customizable filtering.

Model Entity Type | Prod/Test | Repr.
Package Node Prod

Class Node Prod /
Method Node Prod

Test Case Node Test n/e
Test Command | Node Test L
Containment Edge -

Coverage Edge - ~
Dependency Edge -

Table 2. Visualization Legend

4 Three Test Suite Views

In this section we present three views as filters on the
overall graph representation introduced above. Each view
corresponds to an exploration task. We expand upon the
intent and motivation for each view, and the interpretation
that should be given to any of the observed indicators.

4.1 System-wide Test Suite View

The core of this visualization is the hierarchical decom-
position of a software system into packages and classes.
The filter we apply on the graph therefore skips all enti-
ties below the class level. To distinguish packages entities
from class entities we use square and circle shapes respec-
tively. The Graph EMbedder (GEM) algorithm applied on
the containment edges provides both an easy to interpret as
well as aesthetically pleasing layout [13].

In line with the re-engineering pattern ”Study the excep-
tional entities” [9]], entities exhibiting either a lack of, oppo-
sitely, plenty of incoming and outgoing edges deserve spe-
cial attention. In the former case, one has to look further for
other testing strategies. In the latter case, an important role
during testing can be assumed.

4.1.1 Test Location

Intent. Localize the system test code.

Motivation. Typically, localization of test code is a config-
uration management responsibility, as it is a consequence of
source tree structure in the version control system. Feathers
discusses pro and contras of possible test code localization:
the whole test suite may be gathered in a common location,
test cases may be stored per component, but may as well
reside among production code [12].

Interpretation. A consistent location means that we iden-
tified earlier project conventions that we can rely on. In case
of no dominant visual indicators, we can deduce the absence
of such conventions. The view still helps to determine the
test code associated with a particular component.

Visual Indicators. We demonstrate two kinds of locations
deducible from the system-wide view (see Figure/I)).

e Test cases located in the same package as produc-
tion code will result in package nodes containing both
white and black nodes.

e We observe two packages, one filled with white nodes
next to one with black nodes, connected by coverage
edges when test code resides in another package than
production code.

4.1.2 Test Coverage

Intent. Obtain a basic notion of test coverage.

Motivation. The desired notion of test coverage is cheap
to obtain and scalable. It helps to make assumptions about
earlier test efforts and system-critical components. Ob-
serving coverage for evolving components gives an impres-
sion about the risks (and possible counteractions) for further
modifications.
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(a) Same Package (b) Different Package
Figure 1. Possible locations of test cases

Interpretation. Components that are not directly tested
might be trivial (e.g. data holders), have been decided only
to be tested in conjunction with other components or might
not have been tested, e.g., due to time constraints. For
stronger tested components we assume a more important
role such as being critical, frequently changing, belonging
to the system core, etc. Assumptions need to be verified
further on in subsequent exploration tasks, eventually by
obtaining actual, fine-grained coverage measures.

Visual Indicators. Components not covered by unit tests
will show as clusters of classes (i) without test cases in
the same package; and (ii) without incoming test coverage
edges (e.g., Figure[2(a)). The components in Figure[I]serve
as examples of better covered components. Highly covered
classes, such as class A in Figure are represented as
nodes receiving many test coverage edges.

(a) Untested Components (b) Highly Covered Class
Figure 2. Test Coverage Indicators

4.1.3 Test Design

Intent. Grasp the overall test suite design.

Motivation. The test design reveals first hand information
on what kind of testing strategies have been applied in the
past. This tells us at which point such tests become most
useful as well as how difficult tests will be to understand
and modify.

Interpretation. To grasp testing strategies, we mainly
look at the size of a unit and the presence of test helpers.
Units of a limited size (e.g. a single class) can play an im-
port role as test harness for local changes, due to being eas-
ier to understand and modify. When units are larger or when

dealing with a more integration testing style, tests are more
suited to give feedback about the overall status of a modified
system. Such tests risk to be more complex and change sen-
sitive, however, due to the many dependencies. Test helpers
are typically used to abstract away recurring setup, stimu-
late or verification behavior, but also to facilitate access to
more complex test data and input/output tests. As reusable
entities, test helpers help to avoid duplication in test code.

Visual Indicators. Units tested in isolation are shown as
package-clustered nodes receive a limited number of edges
from similarly clustered test case nodes (Figure [3(a)). We
identify indirect tests in case test cases do not cover the
units expected from the identified test location, but rather
(1) access units in other packages or (ii) multiple test cases
target a single unit in a package as in Figure 3(b)] A test
case receiving many test dependency edges, such as A in Fi-
gure [3(c)| serves, at least partially, as fest helper and forms
as such an opportunity during test suite extension.
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Figure 3. Test Design Indicators
4.2 Unit under Test View

This view focuses on an individual production class visu-
alized in terms of its accessible methods. Test case invoking
one or more methods of this unit are displayed as well, with
coverage edges drawn from the test commands to the in-
volved methods. To distinguish classes from their methods,
these entities are drawn as squares and circles respectively.

4.2.1 Test Location

Intent. Identify test cases for a particular unit under test.

Motivation. During evolution of component, a developer
gathers the set of production classes as well as test cases
that require modification.

Interpretation. Depending on past test strategies, a unit
can be exercised by one or more test cases. In case unit test-
ing as well as integration testing are specified in test code,
units are covered by test cases of each strategy. Test cases
might also be split up when growing too large [10].

Visual Indicators. Trivially, production classes that are
not covered directly, and as such are not likely to be the



subject of a focused unit test, will show up in the view as
untested units — components without black test nodes. Ev-
ery involved test case will be represented in terms of its test
commands. Coverage edges make the relationship with the
unit explicit (see Figure [4).

4.2.2 Test Coverage

Intent. Which parts of a unit are being tested?

Motivation. Once the scope of interest for a certain main-
tenance task has been reduced to a couple of units, the Unit
under Test view presents how these units are covered by test
commands of involved test cases. These test commands are
worth exploring in detail, because of their documentation
power as well as their co-evolution needs.

Interpretation. Complementary to assumptions derived
from studying the location of involved test cases, in the
context of coverage assessment the focus lies on identifying
combinations of production methods being exercised. This
allows the developer to understand which methods are not
directly tested, methods covered by means of simple sce-
narios and methods tested together within a test command.

Visual Indicators. An example of Multi-Test Case Cov-
erage is shown in Figure[d} a unit receiving coverage edges
from multiple test cases A, B and C. If only A would have
existed, we encountered a unit with partial coverage, i.e.
only a small part of its methods are directly covered.
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Figure 4. Multi-Test Coverage
4.3 Test Case View

The Test Case View centers around individual test cases,
which are represented in terms of the S-S-V-T entities and
the exercised production units. Again, classes are repre-
sented as squares; methods as circles. In addition to the
nodes introduced in the visualization technique, this view
adds two meta-nodes named Fixture and Test Commands,
thereby making these two test concepts explicit.

4.3.1 Test Design

Intent. Identify opportunities in the form of well designed
test cases as well as possible maintenance threats by study-
ing the internal structure of selected test cases.

Motivation. Test cases that are designed according to strict
unit test design guidelines, with explicit fixture and concise
setup and test commands, are an opportunity to understand
(1) typical usage of the unit under test as well as (ii) how
the test suite covers such units. Integration-style test cases
demonstrate how components interact. Using method-level
information a developer can better motivate whether a cer-
tain test case is a possible threat or rather a manifestation of
a certain test strategy.

Interpretation. Deviations from the design guidelines are
potential maintenance threats. A list of complex and thus
undesired test structures can be found in [10]].

e Test cases can lack an explicitly defined fixture,
thereby removing the distinction between the defined
unit of interest and surrounding helper units.

e A test command invoking many production methods,
possibly from multiple production classes, entails a
complex (integration) test scenario.

e Test cases with a large fixture that is only partially used
by individual test commands indicates that the con-
tained test commands do not logically belong together,
therefore violating the guidelines of encapsulation and
transparency in test objective.

Visual Indicators. Figure[5(a)|shows an example of a well
designed test case. It contains an isolated and explicit fix-
ture, the methods of which are consistently tested by single
test commands. The Lack of Explicit Fixture (Figure
renders a test case more difficult to understand, as the com-
mon unit under test (if at all present) is implicitly interwo-
ven within every single test command. Making the fixture
explicit implies introducing a test case attribute that is ini-
tialized by the Test Case Setup. A Complex Test Scenario
in a test command can be recognized by the many coverage
edges that target production methods (e.g. test command
A in Figure [5(c)). Moreover, the Large Fixture of this test
case is diagnosed by the many production class entities in
the fixture that are extensively, yet not fully, shared among
the test commands. Within a unit test suite, we identify the
more Integration Test type of test case (e.g., Figure[5(d)) by
the multiple production classes that are accessed without a
dominant unit under test.

5 Case Studies

In this section we report on two case studies to evaluate
our visualization technique. We used FETCH to statically
extract the required information and compose the graphs.
As a first project, we selected the open source build system
APACHE ANT, a middle-sized, industry-strength software
system. Secondly we analyzed a small system, CPP2FAMIX,
that is developed using a strict unit testing approach. This
allows us to confront test suites resulting of two testing
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(c) Large Fixture and Com-
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Figure 5. Test Design Indicators

(d) Integration Test

strategies. For each case study, we undertake the three iden-
tified program understanding tasks and formulate our find-
ings based upon what we derive from the three views. Next,
we validate these findings by skimming through the docu-
mentation, by looking at external references or, in the case
of CPP2FAMIX, by interviewing the developer.

5.1 Apache Ant

As a first case study we use the well-known APACHE
ANT project. The 1.6.5 release consists of about 104
kSLOC, 18 kSLOC (17%) of which is JUNIT test code.

5.1.1 Findings

First Contact. Figure[6]gives an overview of the system-
wide view for test suites, based on part of the system
core (due to scalability constraints on paper, we filtered
out entities and relations other than the core packages
o.a.f]ant and o.a.t.ant.taskdefs). We observe the presence
of a considerable amount of test cases, residing in the same
packages as production code. For packages outside of the
core, the testing strategy seems different: some components
seem not tested at all (e.g. o.a.t.ant.helper), others are
tested in isolation (e.g. o.a.t.zip). Although located among
production classes, we notice that ANT’s test cases do
not cover the units in the same package. Combined with
the fact that many tests are covering o.a.t.ant.Project
and depend upon o.a.t.ant.tools.BuildFileTest, we assume
an indirect testing approach. Next to o.a.t.ant.Project,
we identify o.a.t.ant.util.{FileUtils,JavaEnvUrils} and

“abbreviation for org.apache.tools

o.a.t.ant.types.{AbstractFileSet,Path} as key classes

through their extensive test coverage.

Understand Units. In the 1.6.4 release of ANT, sev-
eral bugs where found in the directory scanner as well
as the wunzip and untar featuresﬂ Therefore, we analyze
the existing testing facilities for these units. The con-
cept of a directory scanner is implemented in the class
o.a.t.ant.DirectoryScanner. Using the Unit under Test view
in Figure[7] we note that four test cases exercise this produc-
tion class: one test case is exercising eight out of twenty-
two production methods, the other three invoke just two
methods. Therefore, we derive that the actual unit test for
this unit is o.a.t.ant.DirectoryScannerTest, while the three
other test cases are only using the directory scanner as a
helper unit. Indeed, these test cases only invoke so called
getter methods, fetching data from the DirectoryScanner
object to evaluate the expected result for their unit under
test against the actual test result.

Directo'ryScannerTest

DirectoryScanner

4
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I5efa ultExcludesTest
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Figure 7. Unit o.a.t.DirectoryScanner.

The wuntar functionality is implemented in
o.a.t.ant.taskdefs.Untar, which shows as untested. How-
ever, we do know, from the System-Wide View, that for the
ANT project test cases are located in the same package as
the production classes. We identify UntarTest as the actual
test case based on naming.

Assess Test Cases. o.a.t.ant.DirectoryScannerTest is ob-
served to be a test command-rich test case. Most of these
test commands appear to be similar in composition, target-
ing the same side objects of Project and FileUtils. Un-
tarTest is characterized by indirect testing behaviour by
test cases relaying via BuildFileTest, Project and FileUtils.
Neither of the two test cases has an explicitly defined fix-
ture. Summarizing, both test cases make use of key system
classes to exercise the unit under test.

5.1.2 Validation

Using the code coverage tool EMMAE we compute a
method coverage of 65% (80% class coverage) for ANT,

Smentioned in the release notes of version 1.6.5
Shttp://emma.sourceforge.net/
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confirming our initial impression of a reasonably tested sys-
tem. From ANT’s documentatiorﬂ we derive that the key
classes in the design as identified by its architects are a.o.
Project, Task and Target. The documentation header of
o.a.t.ant.Project describes this class as the central represen-
tation of an ANT project. As this class also provides the
means to start a build, its frequent usage by test cases con-
firms the indirect testing approach in which several project
scenarios are constructed, executed and verified using this
generic Project class. The focus of ANT on Java software
and the fact that build instructions are specified in XML files
explains the importance of the other classes we noted. By
looking into one of the test cases making use of the FileU-
tils class, we were able to find the XML files containing
test data in the distribution. Thus, ANT’s documentation
confirms our assumption that production classes invoked by
many test cases play a major role in the system itself.

Our claim that o.a.t.ant.tools.BuildFileTest is an impor-
tant test class gets backed up by Van Geet and Zaidman,
who identify it as an abstraction of a unit test that uses a
build file as test data [25]. For each test run, a Project in-
stance is created which loads this XML file and executes the
contained build instructions. This class thus indeed serves
as a fest helper , used by no less than 414 test commands.

The ANT case reveals a major limitation of our visual-
ization technique: when dealing with indirect tests, we fail
to trace coverage relationships between test cases and cor-
responding unit under test. We argue however that in a first
contact phase, where overall system comprehension as well
as identification of components worth investigating further
are the prime objectives, information such as actual, com-
plete coverage measurements requiring dynamic analysis
are too expensive and less suited for visualization. Given

http://www.codefeed.com/tutorial/ant_config.html

org.apache.tools.ant.Project

org.apache.tools.ant.taskdefs

Figure 6. Ant System-wide Test View

the underlying test model, graph querying is also a viable
alternative to reveal indirect testing relations.

5.2 CPP2FAMIX

As a second case study we opt for the CPP2FAMIX,
a C++ fact extractor of about 13.5 kSLOC Java code.
CPP2FAMIX extracts information about a C++ software sys-
tem out of the AST unit dumps of the GNU Compiler
Collection. This information is transformed into a re-
engineering model. The JUNIT test suite accounts for 29%
of the overall system size. We chose this system because the
developer is a colleague of ours, hence we can thoroughly
interview him.

5.2.1 Findings

First Contact. From Figure [8}] we derive a consistent,
per production class unit testing approach. The unit
test code resides in a subpackage test of each compo-
nent, except for four components that are weakly or
even completely uncovered. Furthermore, we identify
cpp2famix.test. TestGCCTreeDumpParser as an integra-
tion test, exercising the parsing and filtering of a GCC
tree dump into the system’s internal tree representa-
tion. For test dependencies, we noticed fest helpers
cpp2famix.node.traversal.test. NodeTraversalTest and
cpp2famix.test. TestWithTreeFragment, helping test cases
with traversing AST representations and with composing
small test data trees respectively.

Understand Units.  The developer points out six pro-
duction classes that are currently being modified: ClassEx-
tractor, FieldExtractor, Fieldslterator, Attribute, Clazz and



\

gpp2famix . metamodel . famix

te  — ——

R

gpp2famix. metamodel .moose

NodeTraversalTest

Figure 8. cpp2famix System-wide Test View

Statementlterator. Using the Unit under Test Views, we
identify and navigate to the test cases involved:

o Attribute and Clazz are not directly tested as they be-
long to generated code, conform to our earlier findings
using the System-Wide view.

o ClassExtractor, Fieldlterator and Statementlterator
are exercised by corresponding *7est test cases.

e FieldExtractor is covered by FieldslteratorTest as well
as by FieldExtractorTest.

®FieldslteratorTest

Fieldslterator

CodeSnippetFile

GCCTUDump FieldExtractor

Figure 9. Test case FieldslteratorTest

Assess Test Cases. From the Test Case View, we deduce
that quite some helper objects are needed to test the behav-
ior of the Extractor and Iterator classes. The class names of
the test helpers, however, reveals that sample pieces of data
are composed to exercise the units under test (Figure[J). As
such we conclude that these are broadly isolated unit tests.

5.2.2 Validation

During an interview, we confronted the system’s devel-
oper with our analysis. He testifies that a tight unit test-
ing approach (using JUNIT) has been undertaken, with test
cases being written either just before (test-driven) or just
after the corresponding production code. This results in a
class and method coverage of 90% and 79% respectively.
The developer acknowledges the presence of untested
components, explaining that he did not see the need to
test the generated components cpp2famix.metamodel.famix
and cpp2famix.metamodel.moose.  For the classes in
cpp2famix.metamodel, he commented that we were look-
ing at dead code that was replaced by the classes in the two
subpackages. cpp2famix.extractors.*, at last, only contains
simple data holders and as such it was not considered worth-
while to be unit tested.

cpp2famix.test. TestGCCTreeDumpParser is confirmed
to be an integration test, but the developer stated that it



is an old test that even failed when we tried to execute it.
Instead, he points to cpp2famix.test. FAMIXExtractorTest as
being the current integration test, although it is not imple-
mented in a traditional S-S-V-T style, but merely a "user” of
the top level production class. That explains why we did not
identify this test case as one that deserves special attention.

6 Related Work

We identified the following work in the domain of test
suite reverse engineering.

Agrawal et al. introduce a set of techniques to enhance
program understanding, debugging and testing [2]. Among
others, the xSuds tool suite contains tools to assist develop-
ers in achieving high test coverage, locating errors as well
as minimizing regression sets. Via source code coloring, the
developer perceives the coverage level, erroneous locations
or execution frequency.

Gaelli et al. observe that not all unit tests are alike [14]).
Therefore, a taxonomy that distinguishes unit tests based
on the focus on one or more methods, type of expected
outcome, etc. Their automated classification approach for
SUnit tests using heuristics achieves a high overall preci-
sion (89%) and a moderate recall (52%). One of the steps
the authors identify as future work involves making explicit
the relationship between unit tests and methods under test.

Van Geet and Zaidman hypothesize that unit tests cover-
ing multiple units are less suited as documentation as such
tests are harder to understand [25]. In a case study involving
the ANT project, the median number of methods executed
by a test command is more than 200, which make them con-
clude that the test suite of this particular project is not well
suited for documentation purposes.

To gain knowledge about the inner working of a software
system, Cornelissen et al. use sequence diagrams obtained
from test execution [7]. The use of abstraction, separation
of test stages and stack depth limitations make such dia-
grams scalable.

7 Conclusion & Future work

In this work, we proposed a visualization technique as-
sisting re-engineers to explore the composition of an object-
oriented system’s unit test suite. We propose three graph-
based views, representing (aspects of) a test suite in terms
of the S-S-V-T cycle’s test concepts. These views assist a
re-engineer in building initial understanding and assessing
opportunities and weaknesses for further evolution. We de-
scribe how certain visual indicators in these views reveal
information about the location of test cases, the coverage
level (in an exploration context) as well as the followed unit
test strategy.
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We validated the technique by means of two case stud-
ies. In the first one, we compared the results of our analysis
with ANT’s system documentation as well as with finding
of other authors. Our initial findings regarding coverage,
key system classes as well as test design were confirmed.
Secondly, we investigated a system which has been devel-
oped with a tight unit testing approach. The lead developer
of this system, CPP2FAMIX, confirmed most of our claims
about the test suite.

Based on these two case studies, we conclude that the
visual exploration technique, as a first contact technique,
serves its purpose. As a next step in the reverse engineering
of test suites, we identify a need for finer-grained analysis,
such as (i) obtaining actual coverage measurements via test
execution and (ii) incorporating information about size and
complexity of components for a more detailed assessment.
We identify the integration of such information, e.g., via
polymetric views, as future work.
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