
SeMA: A Design Methodology for Building Secure Android Apps

Joydeep Mitra Venkatesh-Prasad Ranganath
Kansas State University, U.S.A
{joydeep,rvprasad}@k-state.edu

Created: February 15, 2019. Revised: September 19, 2019.

Abstract

UX (user experience) designers visually capture the UX of an app via storyboards. This method is
also used in Android app development to conceptualize and design apps.

Recently, security has become an integral part of Android app UX because mobile apps are used
to perform critical activities such as banking, communication, and health. Therefore, securing user
information is imperative in mobile apps.

In this context, storyboarding tools offer limited capabilities to capture and reason about the security
requirements of an app. Consequently, security cannot be baked into the app at design time. Hence,
vulnerabilities stemming from design flaws can often occur in apps. To address this concern, in this
paper, we propose a storyboard based design methodology to enable the specification and verification of
security properties of an Android app at design time.

1 Why a new methodology?

Android app development teams use storyboarding as part of their design process [20, 13]. A storyboard
is a sequence of images that serves as a specification of the user observed behavior in terms of screens and
transitions between screens. Storyboarding helps designers identify different kinds of app users (user profiles),
explore possible real world scenarios in which a user will interact with the app, and develop wireframes to
capture the scenarios for identified user profiles [13, 9, 11]. Numerous tools such as Xcode [1], Sketch [16],
and Android JetPack’s Navigation Component [7] help designers digitally express the storyboard of an app.

Storyboarding is meant to be participatory because it can be used by designers to get feedback from po-
tential users about likely user scenarios, and from developers about the technical challenges of implementing
the design. However, in their current form, storyboards do not capture non-functional requirements such as
security. Consequently, Android app designers and developers cannot use storyboarding to collaborate and
express security requirements at design time. As a result, verification of security requirements is delayed
until later stages. This delay increases the cost of app development as vulnerabilities due to flaws detected
in later stages increase the cost of development [19].

In this context, to enable reasoning about security at design time, we are exploring two ideas: 1) extend
storyboards to capture non-functional properties and 2) develop a methodology that uses storyboards to specify
and verify security requirements of apps at design time.

To understand the reasons for and benefits of these ideas, we need to understand the current landscape
of Android app development practices.

Today, developers consider the security requirements of an app while or after implementing the app.
Existing research efforts related to Android app security have focused on developing tools and techniques
to help detect vulnerabilities in an app’s implementation [18, 8]. Despite such efforts, apps with known
vulnerabilities find their way to app stores [15, 4]. This is possibly because existing tools are neither accurate
[14] nor scalable [12] in terms of detecting known vulnerabilities. Given this landscape, we believe it is
worthwhile to explore the unexplored: preemptively eliminate vulnerabilities in apps by enabling developers
and designers to consider security at design time and thwart the exploits of malicious apps.

Besides complementing existing techniques, such exploration will help consider the following research
questions:

1

ar
X

iv
:1

90
2.

10
05

6v
4 

 [
cs

.S
E

] 
 2

0 
Se

p 
20

19



a) How much effort is required in terms of time and cost to formally reason about Android apps at design
time?

b) In the context of Android app development, is secure-by-design cost-effective?

c) Is verifying an app based on its storyboard easier than verifying an app based on its code?

d) In terms of improving security, how will the proposed approach compare to existing curative approaches,
i.e., detect vulnerabilities after they occur?

2 What is the methodology?

Motivated by the above reasons, we propose the following methodology, Securing Mobile Apps (SeMA), that
borrows heavily from model driven development [3, 5].

1) App development begins with the storyboard (model) of an app that captures the screens of the app,
the transitions between screens, and the resources used by the app.

2) The storyboard is iteratively refined by adding behavioral and security properties.

3) As the storyboard is refined, verification techniques are used to check the behavior of the storyboard
satisfies the security properties. Once the refined storyboard satisfies the desired requirements, property
preserving structural code1 of the app is automatically generated.

4) Business logic is added to the generated code.

2.1 An Illustrative Example

To understand SeMA, consider the development of an app that sends a message to a set of pre-identified
contacts at the push of a button.

2.1.1 App Specification

Figure 1 shows the storyboard of this example app along with a brief description of various concepts captured
in the storyboard.

Initially, the app designer specifies the required screens and the transitions between the screens as shown
in the sub-diagram in the top left corner of the figure (labeled A). The initial snapshot is similar to how
storyboards are used in designing apps today. Besides the graphical description of screens of the app, this
snapshot captures the navigational possibilities in the app: 1) user will see the Messenger screen up on
launching the app, 2) the user can transition to either Contacts or MsgStatus screens from the Messenger
screen, and 3) the user can transition to SaveStatus screen from the Contacts screen.

Next, the app designer refines the initial snapshot with constraints based on user actions (marked in red
in the main diagram). For example, when the user clicks the Add button in the Messenger screen, the app
transitions to the Contacts screen.

As the next refinement, the app developer (in collaboration with the app designer)adds more behavioral
constraints to the storyboard. For example, a constraint based on the state of the app (marked in blue) is
added to the transition from the Contacts screen. Other transitions in the app are enriched with constraints
in subsequent refinements.

Many constraints rely on operations involving the resources in the device. While such resources are
pre-defined, apps can specify views of resources that they will use.

The resource view of the app (shown in Figure 1) describes the view of the resources used in the example
app as follows.

• EXT STORE denotes the external storage on Android devices that can be accessed by all apps installed
on the device. The app uses the following two capabilities of this resource: write(f,p) writes the
value p into file f and read(f) reads a value from file f and returns it.

1Structural code is traditional skeletal code along with some non-trivial logic to enforce properties.

2



Initial snapshot of the storyboard

A

Figure 1: Storyboard of the Emergency App. The clouds are not part of the storyboard; they provide
information about the different graphical elements in the figure.

• SMS denotes a pre-defined service available on Android devices that the app uses to send a SMS
message m to a list of phone number p via send(m,p) operation.

The final storyboard with all the behavior and resource operations specified will look like Figure 1.
To give an example of how the constraints in a transition are interpreted, the transition from the Messen-

ger screen to the MsgStatus screen is taken when 1) the SendMsg button is pressed and 2) an SMS message
is successfully sent to the phone numbers in the file named MyContacts.txt.

2.1.2 Analysis

In this example, suppose we are interested in the violation of this property: malicious input should not
influence data flow in the app.

Based on the semantics of EXT STORE, all apps can access data in EXT STORE. Hence, EXT STORE
can possibly contain malicious inputs as malicious apps can modify the contacts stored by the example app.
Since the phone numbers from EXT STORE is used in SMS.send(. . . ), a violation of the property is detected
by analyzing the data flow through the storyboard in accordance with the semantics of resources used by
the app.

This vulnerability can be fixed by storing the phone numbers in a more secure way. For example,
MyContacts.txt file can be stored in the app’s internal storage that is accessible only by the app. This fix

3



can be suggested by tooling support, expressed by the developer in the storyboard by using appropriate
resources, and enforced via code generation.

3 Realizing the methodology

To validate the feasibility of this methodology, we are currently developing the design language, its formal
syntax and semantics, and the analysis engine required to reason about the design. In addition, we are
exploring the following few design choices.

3.1 Leverage existing mobile app design frameworks

Android JetPack Navigation (AJN) [7] is a suite of libraries that helps Android developers design their
apps’ navigation. Navigation refers to the interactions that allow users to move between screens with simple
button clicks and other more complex patterns. Since AJN is open source, is already supported in Android
Studio, and can easily be extended, we chose to extend AJN with functionality to enable the specification
and analysis of an app’s design as described in Section 2.1.1. The modified library currently allows users to
do the following:

1. Initialize the widgets of a screen with data.

2. Annotate transitions between screens with constraints.

3. Pass data as arguments on a transition into a screen.

3.2 Support pre-defined security properties

We do not want to burden app developers or designers with specifying the security properties required
for verification because specifying such properties may initially be a non-trivial burden for the average
app developer or designer. Moreover, requiring app developers or designers to specify such properties will
unnecessarily complicate the existing design process. Therefore, we envision SeMA will initially support the
checking of pre-defined security properties that are based on classes of common vulnerabilities [10] e.g., listed
in Section 4.

3.3 Leverage existing tooling framework

Android Lint [6] is a static code analysis tool that helps analyze Android project source files. We have
extended Android Lint with customized checks on navigation graphs. Currently, our extension to Android
Lint can check the following properties:

1. Data accepted as input via an exported screen2 is used to perform a sensitive operation in the app.

2. Data from an untrusted source (e.g., app’s external storage) is used to perform a sensitive operation in
the apps.

To check these properties, we rely on Android Lint to identify data sources and sinks. Then, our Lint
extension tracks the data flow between data sources and data sinks. A violation is flagged when data flows
from a potential malicious data source into a data sink associated with sensitive operations.

We use the JavaPoet library [17] to translate the verified navigation graph into Android source code. The
generated source code can be extended by developers with business logic. Such extensions might introduce
behavioral inconsistencies between the storyboard and the implementation. To detect such inconsistencies,
we plan to generate characterization tests based on the behavioral specifications captured in the storyboard.

Further, not all security properties can be checked statically at the design stage. Such properties can be
checked preemptively at runtime, and we plan to explore this possibility.

2An exported screen can be triggered by any component outside the app.

4



3.4 Stitching a Workflow

As described in Section 2, the methodology will help the user build an app iteratively. First, the user uses the
extended version of AJN to create an app’s storyboard. Second, this storyboard is refined with behavioral
properties. Third, the storyboard is verified against pre-defined properties after every refinement. Fourth,
the structural code is generated once the refined storyboard satisfies the desired properties. Finally, the user
extends the structural code to build a working app. The extended code is then tested against the generated
characterization tests to ensure that the implementation is consistent with the design. Currently, we have
prototyped the methodology (with the exception of characterization test generation step) in Android Studio.

4 What lies in the future?

Going forward, we plan to extend AJN with more features that will enable the analysis of navigation graphs.
We will also extend the custom lint checker with more properties based on known vulnerabilities that plague
Android apps.

Existing efforts have identified vulnerabilities that commonly plague Android apps [2] and have developed
benchmarks to capture them [10]. Most known vulnerabilities can be classified as follows:

1. Reliance on Data from Potentially Malicious Sources: If an app X blindly trusts input from an external
component not in the app and uses it to manipulate data or perform a critical task, then the app is
vulnerable.

2. Disclosure of Sensitive Information: An app can accidentally expose sensitive information.

3. Exposure of Privileged Resources: An app with access to privileged resources can accidentally allow
other apps to access to such resources and enable privilege escalation.

The above classes of vulnerabilities can be prevented by SeMA.
As for vulnerabilities that stem from implementation errors (e.g. using HTTP instead of HTTPS when

contacting a server). They can be prevented by smart code generation techniques.

5 Challenges

To successfully realize the proposed methodology, the following interesting challenges need to be addressed
while developing SeMA.

1. Storyboard Extensions to Capture Non-UI Behavior : Today, storyboards of Android apps capture only
the UI components of an app and behavior triggered by user actions. However, Android apps also
exhibit non-UI related behavior, e.g., reading a file from the app’s storage as shown in the earlier
illustrative example. Therefore, existing storyboards will have to be extended with features to capture
behavior that stem from non-UI elements without disrupting the workflow and the mental model
associated with storyboards.

2. Context-Aware Analysis: Android apps do not run in isolation. They communicate with remote servers,
other apps on the device, and the underlying Android framework. Therefore, the security of an app
depends on the context in which it is operating. Security analysis of app storyboards will have to be
aware of such contexts; otherwise, the analysis will be imprecise.

3. Reactive Nature of Android Apps: Android apps interact with the underlying platform via platform-
defined application lifecycle methods to handle the numerous system and user events. These events
could trigger the execution of an app from different entry points. Also, apps have the ability to persist
information across different executions. This allows for different executions of an app that start at
different entry points to be implicitly related by persisted data. This possibility should be considered
to accurately reconstruct the behavior of an app for the purpose of security reasoning.

5



4. Scalability of Analysis: To be accurate and effective, security analysis of Android apps will have to
consider various contexts and rich features of the Java (or Kotlin) programming language used to
implement the apps. Such analysis is neither scalable [12] nor accurate [14] as they are plagued by the
challenges faced by non-trivial source code analysis [8].

5. Checking Richer Security Properties: Given the limitations of simple static checkers like Android Lint
and the richness of security properties (e.g., temporality), more involved analysis/checking techniques
may be needed to check/enforce richer security properties. Such techniques could be adopted from
program analysis/verification community or custom techniques could be developed from scratch.

References

[1] Apple. Storyboards in Xcode. https://developer.apple.com/library/archive/documentation/

General/Conceptual/Devpedia-CocoaApp/Storyboard.html, 2019. Accessed: 05-Feb-2019.

[2] Erika Chin. Helping Developers Construct Secure Mobile Applications. PhD thesis, University of Cali-
fornia, Berkeley, USA, 2013. Available at https://escholarship.org/uc/item/4x48p6rz#page-1.

[3] Robert France and Bernhard Rumpe. Model-driven development of complex software: A research
roadmap. In 2007 Future of Software Engineering, pages 37–54. IEEE Computer Society, 2007.

[4] Maria Gomez, Romain Rouvoy, Martin Monperrus, and Lionel Seinturier. A Recommender System of
Buggy App Checkers for App Store Moderators, 2014. Available at Online Tech Report.

[5] John Hatcliff, Xinghua Deng, Matthew B. Dwyer, Georg Jung, and Venkatesh Prasad Ranganath. Ca-
dena: An integrated development, analysis, and verification environment for component-based systems.
In Proceedings of the 25th International Conference on Software Engineering, pages 160–173. IEEE
Computer Society, 2003.

[6] Google Inc. Android lint overview. Available at http://tools.android.com/lint/overview.

[7] Google Inc. Navigation. Available at https://developer.android.com/guide/navigation.

[8] Li Li, Tegawend F. Bissyand, Mike Papadakis, Siegfried Rasthofer, Alexandre Bartel, Damien Octeau,
Jacques Klein, and Le Traon. Static analysis of android apps: A systematic literature review. Informa-
tion and Software Technology, pages 67 – 95, 2017.

[9] Ambrose Little. Storyboarding in the software design process. https://uxmag.com/articles/

storyboarding-in-the-software-design-process, 2013. Accessed: 05-Feb-2019.

[10] Joydeep Mitra and Venkatesh-Prasad Ranganath. Ghera: A repository of android app vulnerability
benchmarks. In Proceedings of the 13th International Conference on Predictive Models and Data Ana-
lytics in Software Engineering, pages 43–52. ACM, 2017.

[11] Arvind Padmanabhan. Storyboards for designing mobile apps.
https://indianengineeringdesignforum.wordpress.com/2015/11/07/

storyboards-for-designing-mobile-apps/, 2015. Accessed: 05-Feb-2019.

[12] Felix Pauck, Eric Bodden, and Heike Wehrheim. Do android taint analysis tools keep their promises?
In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE 2018, pages 331–341. ACM, 2018.

[13] Dmitry Prudnikov. UX design techniques for mobile apps. https://yalantis.com/blog/

ux-design-techniques-mobile-app-design/, 2019. Accessed: 05-Feb-2019.

[14] Venkatesh-Prasad Ranganath and Joydeep Mitra. Are free android app security analysis tools effective
in detecting known vulnerabilities? CoRR, 2018.

6

https://developer.apple.com/library/archive/documentation/General/Conceptual/Devpedia-CocoaApp/Storyboard.html
https://developer.apple.com/library/archive/documentation/General/Conceptual/Devpedia-CocoaApp/Storyboard.html
https://escholarship.org/uc/item/4x48p6rz#page-1
https://hal.inria.fr/hal-01079681/file/RR_BuggyAppCheckers-v2.pdf
http://tools.android.com/lint/overview
https://developer.android.com/guide/navigation
https://uxmag.com/articles/storyboarding-in-the-software-design-process
https://uxmag.com/articles/storyboarding-in-the-software-design-process
https://indianengineeringdesignforum.wordpress.com/2015/11/07/storyboards-for-designing-mobile-apps/
https://indianengineeringdesignforum.wordpress.com/2015/11/07/storyboards-for-designing-mobile-apps/
https://yalantis.com/blog/ux-design-techniques-mobile-app-design/
https://yalantis.com/blog/ux-design-techniques-mobile-app-design/


[15] Alireza Sadeghi, Naeem Esfahani, and Sam Malek. Mining the categorized software repositories to
improve the analysis of security vulnerabilities. In International Conference on Fundamental Approaches
to Software Engineering, pages 155–169. Springer, 2014.

[16] Sketch. Sketch Design ToolKit. https://www.sketchapp.com/, 2019. Accessed: 05-Feb-2019.

[17] Square Open Source. A java api for generating java source. Available at https://github.com/square/
javapoet.

[18] Sufatrio, Darell J. J. Tan, Tong-Wei Chua, and Vrizlynn L. L. Thing. Securing Android: A survey,
taxonomy, and challenges. ACM Comput. Surv., 47(4):58:1–58:45, 2015.

[19] Rahul Telang and Sunil Wattal. An empirical analysis of the impact of software vulnerability announce-
ments on firm stock price. IEEE Trans. Softw. Eng., 33:544–557, 2007.

[20] Marcus Trapp and René Yasmin. Addressing animated transitions already in mobile app storyboards.
In Aaron Marcus, editor, Design, User Experience, and Usability. Web, Mobile, and Product Design,
pages 723–732. Springer Berlin Heidelberg, 2013.

7

https://www.sketchapp.com/
https://github.com/square/javapoet
https://github.com/square/javapoet

	1 Why a new methodology?
	2 What is the methodology?
	2.1 An Illustrative Example
	2.1.1 App Specification
	2.1.2 Analysis


	3 Realizing the methodology
	3.1 Leverage existing mobile app design frameworks
	3.2 Support pre-defined security properties
	3.3 Leverage existing tooling framework
	3.4 Stitching a Workflow

	4 What lies in the future?
	5 Challenges

