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Abstract—Machine learning has been widely employed in the
literature of malware detection because it is adapted to the
need for scalability in vetting large scale samples of Android.
Feature engineering has therefore been the key focus for research
advances. Recently, a new research direction that builds on the
momentum of Deep Learning for computer vision has produced
promising results with image representations of Android byte-
code. In this work, we postulate that other artifacts such as the
binary (native) code and metadata/configuration files could be
looked at to build more exhaustive representations of Android
apps. We show that binary code and metadata files can also
provide relevant information for Android malware detection, i.e.,
that they can allow to detect Malware that are not detected
by models built only on bytecode. Furthermore, we investigate
the potential benefits of combining all these artifacts into a
unique representation with a strong signal for reasoning about
maliciousness.

I. INTRODUCTION

Android applications have pervaded virtually all aspects of
the lives of hundreds of millions of consumers. Equipping
over a billion devices, Android apps are at the center of
various research initiatives, notably with respect to security.
For example, malware detection research is a never-ending
race where approaches quickly become obsolete as malware
writers evolve their techniques to hide malicious payload
inside different artifacts.

In the early days of Android, malicious behavior patterns
were easily detected with simple static [1] and dynamic
analysis [2] or based on similarity comparisons [3]. As
malware evolved, researchers considered applying machine
learning with a large focus on engineering various sets of
features based on static or dynamic analysis outputs. While
such statistical machine learning approaches [4]–[10] achieved
good performance on literature benchmarks, the trend today
is to investigate neural network architectures towards learn-
ing comprehensive representations of Android apps. Such
representations exploit lexical information of bytecode [11]
and abstract syntax tree representations of code [12], etc.
More recently, inspired by the remarkable successes of Deep
Learning in the field of computer vision, researchers have
started to investigate Android malware detection methods
based on image representations of apps [13], [14]. To advance
research in this direction, Daoudi et al. [15] developed DexRay
as a baseline approach for Android image-based malware
detection. Our work is set in the same ambitious research

agenda that DexRay laid down: how can we best exploit image
representations of Android apps to detect malware?

A very significant reason for the success of deep learning
in computer vision is that natural images contain rich seman-
tic information which could provide meaningful features for
recognition tasks. If the powerful feature learning capabilities
of deep learning are to be used for the task of malware
detection, representing apps as images is indeed an appeal-
ing prospect. Unfortunately, representing an APK (Android
PacKage) as an image is not a straightforward endeavor: In
particular, what should be captured in the image has not
yet been defined nor studied. A model trained on images
presenting a partial view of the objects under study will suffer
from blind-spots in its recognition tasks.

Translated into the Android realm, an APK file is itself made
of a collection of files, that contain artifacts of different nature.
Among the various artifacts in an APK, DexRay and many
prior approaches only consider the Dalvik bytecode (.dex files,
that we will refer to as .dex throughout the paper). Several
other approaches have instead extracted features from the
Manifest XML file (that we will refer to as .xml throughout
the paper), which contains metadata about an Android App.
The native code (.so files i.e., Shared Library files, that will be
referring to as .so) is seldom considered as a signal source
for malware detection. Yet, native code being challenging to
analyze, it is a sweet spot to hide malicious behaviors.

In this paper, we seek to contribute to the systematization of
knowledge around Android malware detection, by investigat-
ing the value of multiple types of artifacts in representing apps
for malware detection. We make the following contributions:

• We evaluate the suitability of three major types of arti-
facts for Android malware detection;

• We assess whether these artifacts each bring added-value,
or whether they are redundant;

• We investigate four possible methods of combining these
artifacts into one Deep Learning approach.

More specifically, we investigate the following research
questions:

• RQ1: Does each of the major artifacts in Android apps
contain relevant information for Malware Detection?

• RQ2: How redundant is the information across three
considered artifacts?



• RQ3: To what extent can the performance of Malware
Detection be improved by combining these artifacts?

II. EXPERIMENTAL SETUP

In this section, we first present a brief description of
DexRay. Then, we present the dataset and the experimental
setup used to conduct our experiments.

A. Background on DexRay

DexRay [15] is a recent work that presented and evaluated a
simple image-based App representation for Android malware
detection. It converts the Dalvik bytecode of Android apps
into gray-scale vector image representations. Each byte in
the .dex file is mapped to a pixel value in the generated
image, and all images for apps are resized to one single
size, independently of the size of the app or of its bytecode.
The features extraction and the classification are both carried
out automatically using a simple 1-dimensional convolutional
neural network architecture. This approach has been proven to
be highly effective in detecting Android malware by reporting
an F1-score of 0.96.

B. Dataset

We reuse here the dataset that was used in DexRay [15]1,
which was collected from AndroZoo [16]. The APKs (i.e.,
Android PacKages) in the DexRay dataset are from the period
of 2019 to 2020. Benign apps are defined as the apps that
have not been detected by any antivirus from VirusTotal2. The
malware collection contains the apps that have been detected
by at least two antivirus engines. We present in Table I a
summary of this dataset. Since not all the APKs contain native
code, we also summarize in the same Table the number of apps
that include .so files.

TABLE I: Summary of DexRay Dataset

Nbr of APKs Nbr of APKs with .so files
Benign apps 96 858 63 037

Malware apps 61 696 56 678
Total 158 554 119 715

C. Experimental Methodology

In our experiments, we adopt the same experimental setup
of DexRay. Specifically, we use the Hold-out strategy [17]
by dividing the dataset into 80% for training, 10% for val-
idation and 10% for testing. The detection model is trained
on the training dataset, and the model hyper-parameters are
optimized based on its performance on the validation dataset.
The above process is repeated 10 times by randomly shuffling
and splitting the dataset.

We train each model for a maximum of 200 epochs, and we
stop the training using an early stopping strategy (we set the
patience step to 50). Regarding the convolutional layer, we set
the kernel size to 12 and we use relu [18] as the activation
function. The two convolutional layers contain 64 and 128

1https://github.com/Trustworthy-Software/DexRay
2https://www.virustotal.com/

channels respectively. The model architecture also contains
two dense layers with a sigmoid activation function [19]:
a first layer with 64 neurons, and a second layer with one
neuron for the classification.

As we have presented in Section II-B, some APKs do not
contain native code (i.e., .so files). Thus, we have set each
pixel to zero in the corresponding gray-scale image (i.e., blank
image) when the .so files are missing in a given APK.

We evaluate the performance of our models using four
standard metrics: Accuracy, Precision, Recall and F1 score.

III. EMPIRICAL INVESTIGATION

A. RQ1: Does each of the major artifacts in Android apps
contain relevant information for Malware Detection?

To investigate this RQ, we train a model for each of the
three major types of artifacts: .dex, .xml, and .so files.
The .dex model is thus trained only on dex files (as in the
original DexRay paper). For the .so model, we build the
images by considering the bytes of the .so file(s) of an APK
instead of the .dex file(s)3. Similarly, in the .xml model, the
bytes of the Manifest file are used as a source for the images.

As recommended in the DexRay paper [15], we choose the
size of (1, 128 × 128), as it is the best trade-off between the
model accuracy and computational efficiency. We conduct our
experiments using the experimental methodology presented in
Section II-C and we present our results in Table II.

TABLE II: Detection performance for each type of artifacts
on the DexRay dataset

Source Accuracy Precision Recall F1-score
.dex 0.972 0.974 0.953 0.963
.so 0.953 0.985 0.892 0.936
.xml 0.94 0.918 0.927 0.923

As shown in Table II, the detection models have achieved
F1-scores of 0.963, 0.936, and 0.923. From the overall results,
we can conclude that .so files and .xml files can indeed
provide relevant information for detecting malware, and the
detection performance is competitive. We note that the .so
model obtains a Recall of 0.892, even though over 8% of the
malware do not have any .so files.

RQ1 Answer: The major artifacts (i.e., .dex files, .so
files and .xml files) in Android apps contain relevant in-
formation for malware detection. Although the .so and the
.xml models do not reach the same performance as the .dex
model, they still perform relatively well.

B. RQ2: How redundant is the information across three con-
sidered artifacts?

The models that are trained on .so and .xml files have
shown promising scores for malware detection, but have a
lower Recall than the model built on .dex. Hence it is possi-
ble that the malware detected by the.so and .xml models are
just a subset of the malware detected by the .dex model. An
explanation for such a case could be that the .so and .xml

3In case no .so file is present, a blank image is used.
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artifacts do not bring additional information compared to the
.dex artifacts. The goal of RQ2 is to investigate whether
.so and .xml could provide complementary information to
.dex models. Therefore, we examine the overlap between the
samples that are detected by each of the three models, as well
as the samples that are detected by a model and missed by
another. We present our results in Table III.

TABLE III: Overlap and Differences of predictions made by
.dex, .so, and .xml models

Detected by Missed by

Detected

.dex .so .xml .dex .so .xml

by

.dex na 14 917 14 655 na 476 738
.so 14 917 na 14 415 186 na 688
.xml 14 655 14 415 na 242 482 na

As shown in Table III, most of the samples can be correctly
classified (i.e., malware or benign apps) by the three models.
At the same time, there are malware samples that the .dex
model fails to detect but the .so model and/or the .xml
model detect and vice versa. Specifically, in all 15 855 APKs
in the test dataset, .so model can detect 186 APKs that
escape the detection of .dex model. Also, the .xml model
successfully detects 242 APKs that the .dex model fails
to detect. This observation suggests that there is knowledge
that could be harnessed from the three different sources of
information to enhance the detection performance of the .dex
model.

RQ2 Answer: Most of the apps are detected by the three
models, indicating that most of the information contained in
the different artifacts is redundant in the context of malware
detection. Nevertheless, each model detects malware that the
other models do not. Therefore, it is expected that a model
built on all three sources of artifacts could outperform a single-
source model.

C. RQ3: To what extent can the performance of Malware
Detection be improved by combining these artifacts?

As we have concluded in Section III-B, the three types
of artifacts can complement each other. In this section, we
investigate different methods to combine the information pro-
vided by the .dex, the .so, and the .xml files. In the
following, we present a brief description of four malware
detection approaches that consider information from the three
types of artifacts.

1) Long-vector images: For this model, we generate one
image that contains the concatenation of the gray-scale 1-d
images horizontally, i.e., the resulting image has a (1, 128 ×
128 × 3) dimension. Since the Long-vector images have the
same form of the gray-scale 1-d images (They only differ in
the width), we rely on the same model architecture of DexRay.

2) Rectangular images: For the rectangle images, the three
gray-scale 1-d images are stacked vertically, i.e., the resulting
image has a (3, 128 × 128) dimension. The same model
architecture of DexRay is used with the rectangular images.

3) Color images: As a potential method to combine the
three sources of artifacts, we investigate a ”color” image,

where each color (”channel”) of the resulting image is built
from the gray-scale image for one artifact source. We use the
same model architecture of DexRay, and we apply minor mod-
ifications in order to make it compatible with the 3-channel
image. Specifically, we use MaxPooling2D with pool_size =
(12, 1), instead of MaxPooling1D with pool_size = (12). As
for the convolutional layers, we have not made any change
since the Keras API4 automatically adapts to inputs with
different dimensions. In our case, the 1-d convolutional layer
thus has 3 kernels for the 3-channel input image.

4) Ensemble Model: In the ensemble version (as shown in
Figure 1), we separately learn the features from each gray-
scale 1-d image. Similar to the model for gray-scale image,
each type of image undergoes its corresponding model branch
which consists of two 1-d convolutional layers and two 1-d
pooling layers. Next, we use a Concatenation layer to combine
the feature maps extracted from the three gray-scale images.
Then, we add another 1-d convolutional layer to learn and
combine features from the three images. For the classification,
we use the same two dense layers of DexRay.

Fig. 1: Architecture of Ensemble Model for Color-scale Im-
ages

5) Results: We evaluate the detection performance of each
of the previous models and we report our results in Table IV.

TABLE IV: Detection Results of combined sources on DexRay
Dataset

Source Accuracy Precision Recall F1-score
long vector 0.969 0.97 0.949 0.959
rectangle 0.972 0.972 0.956 0.964

color 0.972 0.973 0.953 0.963
ensemble 0.974 0.973 0.959 0.966

Overall, we notice that the long-vector and the color image-
based models do not improve the detection performance com-
pared to the .dex image-based model. As for the rectangular

4https://www.tensorflow.org/api docs/python/tf/keras/layers/Conv1D
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and the ensemble models, they bring a slight improvement.
In our experiments, the same dataset splits are used for the
evaluation of all the model, which means that the ensemble
model (i.e., the best combination method) outperforms the
.dex model on the same exact applications. Although the
ensemble model fails to detect 165 apps that are correctly
predicted by the .dex model, it manages to detect 201
samples that have escaped the detection of the .dex model.

RQ3 Answer: Some combination methods can bring some
improvements—although very minor—to the detection perfor-
mance. None of the four proposed methods seem to fully ben-
efit from the additional information brought by the different
types of artifacts.

IV. DISCUSSION

In this section, we first describe some insights about the
image representations of Android apps for malware detection
in Section IV-A. Then, we discuss some potential threats to
validity of the proposed methods in Section IV-B. Finally, we
discuss some future works which are worth studying next in
Section IV-C.

A. Some Insights

In this work, we find that in addition to Dalvik bytecode,
binary native code and Manifest files can also provide rich
and relevant information for Android malware detection. Both
the Dalvik bytecode and the Manifest files have been heavily
used in the literature. However, to the best of our knowledge,
there has been no comparative evaluation of their relative
discriminating power in the context of malware detection.

Several ready-to-use tools have been developed to analyze
.dex files. In contrast, analyzing Android apps’ native code is
not as streamlined a task. This could potentially explain why
so few prior works leverage native code. One contribution of
the present paper is to demonstrate that native code can indeed
be leveraged without complex analysis, using a simple and
straightforward representation.

An important point about Android Malware detection is that
the performance exhibited by state-of-the-art approaches—and
even by a single source .dex model—is already very high.
Therefore, the potential gain in performance is very small, but
nonetheless highly sought after: Even a mere 1% performance
improvement could mean thousands of additional malware
uncovered each month.

The present work offers a perspective to a simple yet
important question: In the field of Android malware detection,
where can improvements come from?

B. Threats to Validity

Our experiments and conclusions face some threats to
validity. First, our experiments being conducted on a single
dataset, the generalizability of our conclusions needs to be
further verified. Nevertheless, the dataset we use is large,
recent, and likely representative of what can be found on
Android apps markets. It is furthermore made available to
researchers for further experiments.

Second, the results we obtain may be specific to the image
representation that we used. Indeed, how to best represent an
Android app (or part of it) as an image is still an open question.
By reusing the representation introduced in DexRay, our
results are directly comparable to those of the original DexRay.
Furthermore, we note that all the models we investigate in
this paper achieve an f1-score above 0.9, suggesting that the
representations used are adequate for Malware detection.

Similarly, the Deep-Learning architecture, and the training
parameters we use may not be optimal. In particular, the
combined artifacts may require a bigger model to be able to
capture rich additional information.

C. Future Works

The present work established that there is information to
be harnessed from the different types of artifacts. One open
question is to investigate how to best leverage those various
sources of information together. For example, here we have
used the same size of image for each artifacts despite the
significant difference in sizes of the artifacts: In an app, .dex
files can amount to tens of Megabytes while the Manifest file is
rarely more than tens of Kilobytes. Therefore an investigation
of the optimal image size to use for each type of artifacts will
help optimize a combination.

Another direction for improvement would be to investigate
methods to concatenate/merge the representations of artifacts,
since the four considered here that could not fully take
advantage of all the artifacts.

We have evaluated the potential of three types of artifacts.
Those do not represent the entirety of an Android app.
Other artifacts could also be evaluated such as cryptographic
certificates, images, sound files, User Interface layouts, or even
external metadata like user reviews.

Finally, our work does not use different Deep-Learning
architectures for the different artifacts. It is conceivable that
the information of each artifacts could be best captured by a
specific DL architecture.

V. RELATED WORK

Android malware has been studied extensively in the litera-
ture. We introduce the fundamental technologies for Android
analysis in Section V-A. Then, we present existing image
representation methods of Android apps in Section V-B.
Finally, we introduce ML-based/DL-based methods and multi-
view techniques for malware detection in Section V-A.

A. Android Analysis Technologies

Static and dynamic analysis are two main methods to
analyze Android applications. Static analysis examines the
application based on information extracted statistically from its
APK, and dynamic analysis studies the execution and behavior
of the app when it is running. Many studies have investigated
Android malware detection based on static analysis, which
focus on information extracted from the artifacts of the APK:
permissions [20], sensitive API calls [21], Dalvik Executable
(DEX) file [22], control-flow and data-flow graphs [23], [24],
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and specific control flow patterns that is in native code
level [25].

As an effective supplement to static analysis, dynamic
analysis also plays an important role in Android malware
detection. It can help find dynamic malicious behavior [26],
[27], collect data from physical devices [28], and provide
visualized information [29].

B. Image Representation of Android Apps

Many learning-based methods rely on image representation
of Android apps, which could be roughly divided as gray-
scale images and color-scale images. A usual way to generate
gray-scale images is to regard bytes of artifacts in APKs as
pixel values [30]–[32], or to just convert the Manifest file to
permission vectors [33]. Other works that use color image
representations are generally based on the .dex files [13],
[34], or on an analysis of .dex files [14], [35]. In both cases,
despite using color images, those approaches rely on a single
source of artifacts.

C. Malware Detection Methods

1) ML-based and DL-based Methods: Machine learning
approaches [4]–[7], [36] usually extract hand-crafted features
from the apps. After converting features to vectors, a ML
classifier is used for the detection task.

In recent few years, many Android malware detection
approaches [37]–[39] based on deep learning have been pro-
posed. However, most of these methods rely on a variety
of hand-crafted features, and some other methods lever-
age advanced model architectures such as ResNet [40], and
Inception-v4 [41]. Recently, Daoudi et al. have proposed a
baseline pipeline [15] for image-based malware detection with
straightforward steps.

2) Multi-view Techniques: Most of the malware detection
approaches mentioned above rely on a single source of arti-
facts for their features. In order to pursue higher and more
robust performance, some researchers has considered multi-
view techniques to incorporate different single-view features
for malware detection. As being leveraged in previous stud-
ies [42]–[44], common choices for multi-view features are app
permissions, API calls, sensor usage, and proprietary Android
API package usage, etc.. Other approaches [45]–[47] have con-
sidered OpCodes, ByteCodes, header information, attacker’s
intent and system-calls multi-view features. In [48], [49],
a unified framework that systematically integrates multiple
views of the apps to perform comprehensive malware detection
has been proposed.

VI. CONCLUSION

We demonstrate that the image representations of the three
major types of artifacts considered in this work contain rele-
vant information for malware detection. We show that each
type of artifacts brings its very own valuable information,
absent from the other artifacts. Indeed, the models that rely on
the .xml and the .so images can detect android apps that
escape the detection of the .dex model. We then experiment

with four approaches to construct an image representation of
Apps that encompass all three types of artifacts. Some of the
tested approaches achieve slightly better performance.

Our work highlights the potential benefits of combining
multiple sources of artifacts, and identifies the need for a
strengthened research effort on combination methods, and on
the evaluation of artifacts’ value.

VII. DATA AVAILABILITY

All artifacts are available online at:
https://github.com/Trustworthy-Software/

Looking-beyond-Dalvik-Bytecode
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