
HAL Id: hal-04213194
https://hal.science/hal-04213194

Submitted on 21 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

ICO: A Platform for Optimizing Highly Configurable
Systems

Edouard Guégain, Amir Taherkordi, Clément Quinton

To cite this version:
Edouard Guégain, Amir Taherkordi, Clément Quinton. ICO: A Platform for Optimizing Highly
Configurable Systems. 5th International Workshop on Automated and verifiable Software sYstem
DEvelopment - ASYDE 2023, Sep 2023, Kirchberg, Luxembourg. �hal-04213194�

https://hal.science/hal-04213194
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


ICO: A Platform for Optimizing
Highly Configurable Systems

Edouard Guégain∗, Amir Taherkordi†, Clément Quinton∗
∗Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

†University of Oslo, Norway
∗{edouard.guegain;clement.quinton}@univ-lille.fr; †amirhost@ifi.uio.no

Abstract—Dealing with large configuration spaces is a complex
task for developers, especially when manually searching for the
configuration that best suits both their functional and perfor-
mance requirements. Indeed, a well-performing configuration
may not fit developers’ needs because of conflicting functional
requirements, or vice-versa. In this paper, we propose ICO,
a lightweight, domain-agnostic platform that supports multi-
objective optimization for configurable software. The purpose
of ICO is to provide the developer with the best-performing
configuration by altering as little as possible the initial one, in
order to remain as close as possible to the developer’s functional
requirements. We explain the foundations of ICO, describe its
architecture, and explain how it can be used either through a
command-line client or an Eclipse plugin. Finally, we assess ICO
by evaluating its execution time and the time saved to users
compared to a manual optimization.

Index Terms—tools, software, variability, optimization, perfor-
mance

I. INTRODUCTION

Our society relies on numerous software systems that ex-
hibit a large set of functionalities, features, and parameters.
This variability aims at addressing various needs of our daily
lives and satisfies as many requirements as possible. That is,
modern software systems can exhibit millions of configura-
tions [1], i.e., a large configuration space. For developers,
managing such highly configurable systems comes with the
challenges of (i) dealing with the huge number of configura-
tions and (ii) providing the best possible software to end-users.

Although the configuration satisfying the developer’s re-
quirements (i.e., containing all the desired features) may be
valid, it is not possible to ensure that this configuration is
optimal regarding given performance indicators. That is, it is
not possible to manually ensure that, among millions of other
valid configurations, the current configuration also satisfies
performance requirements in terms of, e.g., memory footprint,
response time, or energy consumption.

In this paper, we thus propose the Iterative Configuration
Optimizer (ICO) platform. ICO provides developers with
automated support for finding configurations that meet their
functional requirements (i.e., features that have to be included
or excluded) while also efficiently complying with specified
performance indicators.

II. BACKGROUND AND MOTIVATION

Managing software variability and performance is a difficult
task: configuration spaces can be large and manual inspection

of the performance of each configuration is not a viable option.
A practical way to encode software variability is by means
of feature models [2]. A feature model, such as the one in
Figure 1, is a tree of hierarchically organized features that
describes – with the help of cross-tree constraints expressing
inter-feature dependencies – the possible and allowed feature
combinations, i.e., the software configurations. Automated
analysis of feature models provides support for checking the
validity of a configuration, in particular regarding the set of
features that developers decide to include or exclude from such
configurations [3].

There has been an effort from the software variability
community to tackle the issue of creating high-performing
and valid configurations, by providing various tool supports
[4]–[7]. However such tools usually exhibit one of the two
following drawbacks:

• Ad-hoc mechanisms and algorithms, requiring an upfront
development investment to be used in different contexts
or with different performance indicators [4]–[6];

• Large all-in-one tools, designed to handle a wide range
of projects but requiring users to go through a steep
learning curve and to deal with numerous technical
requirements [7].

Both industrial and academic practitioners and researchers
are thus missing a simple, turnkey solution to manage and op-
timize their software configurations. To address the limitations
previously described, we thus propose a generic, easy-to-use,
and lightweight platform, ICO.

III. RELATED WORK

Numerous researchers have proposed performance predic-
tion approaches with the objective of creating estimated perfor-
mance models for system features [8]–[10]. These techniques
rely on machine learning to infer performance data from
configuration samples, aiming (i) to detect feature interactions
that significantly impact system performance and (ii) provide
more accurate predictions compared to models that neglect
such interactions. In particular, Siegmund et al. predict con-
figuration performance by summing up the impact of each
feature [11], [12].

In the context of performance optimization for configurable
systems, various methods have been suggested to identify
optimal or near-optimal configurations based on specific per-
formance indicators. Deterministic approaches have been ex-



Fig. 1: An excerpt of a feature model.

plored [13]–[15], as well as genetic algorithms, such as the one
used by Hierons et al. [16], to minimize the number of mea-
surements required for optimization. Other authors leverage
performance prediction techniques as mentioned earlier [7].

However, these approaches do not consider an initial con-
figuration. For example, Nair et al. initiate their optimization
process from a random configuration [15]. In contrast, the
approach presented in this paper focuses on optimizing a set of
performance indicators while staying as close as possible to the
user-defined initial configuration. This optimization objective
is similar to that of Soltani et al., who consider user prefer-
ences to optimize a configuration, but their approach does not
support the optimization of pre-existing configurations [17].

IV. THE ICO PLATFORM

ICO is built upon the approach we presented in [18].
This approach is designed to compute the performance of
individual features and aims at optimizing the performance
of configurations containing such features. Specifically, our
approach aims at maximizing performance gains while min-
imizing changes to the current configuration, as described
in [19], contrary to existing optimization methods that strive to
identify the best possible configuration. This minimization of
changes ensures applicability in critical environments, where
any configuration change is a liability. With ICO, we thus
provide the implantation of such an algorithm as well as the
related automated support.

In particular, the scope of ICO is to optimize a configurable
system regarding any functional or non-functional perfor-
mance indicator as long as its configuration space is encoded
as a feature model. Moreover, it is admitted in the community
that interactions between features can impact performances
[20], [21], and that it is possible to improve performance

through interactions between pairs of features [18]. Thus, ICO
also supports the optimization of performances through pair-
wise interactions. Furthermore, ICO supports multi-objective
optimization, where performance is evaluated based on multi-
ple indicators e.g., both the power usage and memory footprint.
In the remainder of the paper, performance indicators is
used as a placeholder referring to either a unique indicator
or a composition of indicators. Finally, while the approach
described in [18] is tested against one use case, ICO is domain
agnostic and can be used for any configurable software whose
variability is represented by a feature model. Such a model
can be defined at design time, during the specification of the
software, or built a posteriori, relying on domain knowledge
and an analysis of the documentation and source code. Recent
works allow for partial automation of this process [22], [23].

V. IMPLEMENTATION

To address the limitations described in Section II, we thus
propose a generic, easy-to-use, and lightweight tool, ICO, as
an implementation of the previously proposed approach. The
ICO platform1 is a set of software components interacting
together to help developers optimize the configuration – w.r.t.
performance indicators – of the software being developed. The
ICO platform is composed of three tools:

• ICOLIB, a library that performs the optimizations;
• ICOCLI, a command-line tool to interact with ICOLIB;
• ICOPLUGIN, an Eclipse plugin to interact with ICOLIB.
Figure 2 presents the architecture of ICO. ICO executes the

user’s instructions regarding (i) the configuration to optimize,
(ii) the feature model encoding the configuration space of the
software, and (iii) its related performance data files.

1The source code is available at https://gitlab.inria.fr/ico

https://gitlab.inria.fr/ico


Configuration
Feature model

Performance indicators

ICOPLUGINICOCLI

ICOLIB

FeatureIDE

Optimized configuration

Fig. 2: The architecture of the ICO platform.

The architecture of the platform is flexible enough to
be extended by any front-end components interacting with
ICOLIB. These components take as input performance data
as CSV files. Performance files describe the performance of
individual features as well as the performance of pairs of
features, in order to take feature interactions into account [20],
[21]. Such data can be a direct assessment of the feature’s
performances, e.g., the number of lines of code, or an evalua-
tion of their impact on configurations’ performances, e.g., time
or energy. Through either ICOCLI or ICOPLUGIN, the user’s
instructions are sent to ICOLIB which in turn relies on the
FeatureIDE library [24] to perform an automated analysis of
the configurations. In particular, the library checks the validity
of the resulting optimized configurations returned by ICOLIB.
Relying on this library also makes ICO more versatile, as
it provides support for a wide range of feature models and
configuration file formats, such as CNF and DIMACS for
feature models or XML and Equation for configurations.

Based on the user’s inputs (e.g., features that have to be
included or excluded for functional reasons), ICOLIB provides
suggestions to improve the current configuration by maximiz-
ing its performance indicators. Precisely, ICO suggests either
an addition or removal of a feature, or a substitution of a
feature with another one. Such suggestions are presented to
the user either after completing the configuration or in real-
time during the configuration process, e.g., by indicating which
feature should be added next to make the configuration both
valid and more efficient. As such, ICO can thus be considered
both an optimizer and a recommender system [25], [26].

A. ICOlib

ICOLIB is the central component of the platform. It pro-
vides a facade exposing the API handling all operations that
can be performed with ICO: load a project, display
current performances, manage constraints (i.e., the lists of

features that have to be included or excluded from the con-
figuration), list or apply improvement suggestions and
save the new configuration. While managing constraints
and listing/applying suggestions are core functionalities of
ICO, the processes of loading, validating, and saving con-
figuration are delegated to the FeatureIDE library. Relying
on the strategy pattern, ICOLIB is provided with two opti-
mization approaches, implementing respectively the feature-
wise and pairwise approaches from [18]. Thanks to this
architectural design, new optimization algorithms can seam-
lessly be integrated to ICO. The time required to generate
suggestions is highly dependent on the structure of the fea-
ture model, especially on the number of features and cross-
tree constraints (and their complexity). However, as sugges-
tions are independent of each other, their generation can be
parallelized. ICOLIB current Java implementation relies on
Stream.parallelStream() for such a task.

The ICO platform comes with two ICOLIB clients: the first
one as an Eclipse2 Plugin – ICOPLUGIN; the second one as
a command line tool – ICOCLI.

B. ICOPlugin

ICOPLUGIN is an Eclipse plugin developed to interact with
ICOLIB and implemented as an Eclipse view. Whenever a
configuration file is selected by the user, the ICOPLUGIN view
displays the five following tabs:

• Features, to list and apply feature-based suggestions;
• Interactions, to list and apply interaction-based sugges-

tions;
• Constraints, to manage the exclusion and inclusion of

features;
• Details, to monitor the current configuration perfor-

mances;
• Logs, to monitor ICOLIB execution logs.

Figure 3 shows the Interactions suggestion tab of ICOPLU-
GIN. Both Features and Interactions tabs give access to the
Apply all suggestions and Find suggestions functionalities of
their respective mode. When listed, each suggestion exhibits an
Apply button to let the developer perform the proposed sugges-
tion. The optimized configuration belongs to the configuration
space encoded by the feature model presented in Figure 1.
The suggestions are ordered according to their improvement
rate, i.e., applying the first suggestion will have the most
effective impact regarding the considered performance indi-
cators. While each suggestion can be applied individually by
clicking on its related Apply button, the Apply all suggestions
functionality automates the process of applying all the best
suggestions at once. Precisely, ICO computes new suggestions
every time the configuration is improved and applies the best
suggestion recursively until no further improvements can be
made. Suggestions must be recomputed after each iteration,
as the changes applied to the configuration may turn other
recommendations obsolete.

2https://www.eclipse.org/

https://www.eclipse.org/


Fig. 3: A list of suggestions in ICOPLUGIN.

Listing 1: Single-line mode
./ICOcli -P ./project -C config.xml -e feat1,feat2 -i

↪→ feat3 -F -A -S -N

Listing 2: Interactive mode
./ICOcli
> load -P ./project -C config.xml
> exclude --add feat1,feat2
> include --add feat3
> apply -F -A
> save
> exit

Fig. 4: The two modes of ICOCLI.

C. ICOCLI

Another means to interact with ICOLIB is by using ICOCLI,
a lightweight command line interface program. ICOCLI pro-
poses two modes: the single-line mode, where instructions are
given as parameters, and the interactive mode where instruc-
tions are given sequentially by the developer in a shell. It is
also possible to mix the two modes by giving some instructions
as parameters (e.g., the project path), and then running the
remaining ones in the shell. The single-line mode is relevant
for automation (e.g., for CI/CD or in an automated process) or
to perform a single task, whereas the interactive mode provides
a more human-friendly interaction with the tool, enabling an
in-depth exploration of the variability of the software and its
performances, e.g., comparing the performance of features and
interactions or the impact of constraints on suggestions.

Figure 4 presents the same set of tasks computed
in the two different modes. The developer loads the
software project ./project and the configuration file

./project/config.xml respectively with parameters -P

and -C. Then, features feat1 and feat2 are added to the
exclusion list and feature feat3 is added to the inclusion
list using parameters -e and -i in single-line mode and
the exclude/include commands in interactive mode. All
the best feature-related suggestions are then applied with
parameters -F -A in single-line mode or by using command
apply -F -A in interactive mode. Finally the configuration
./default.xml is overwritten by -S in single-line mode or
save in an interactive mode. The developer quits the program
with exit in interactive and mixed modes, while in single-line
mode the -N parameter prevents the shell from opening.

Finally, ICOCLI offers the ability to perform arbitrary edits
to the configuration (e.g., removing a feature), a functionality
also offered by ICOPLUGIN through the FeatureIDE API.

VI. EVALUATION

In our previous work [18], [19], we conducted empirical
evaluations to assess the accuracy and effectiveness of our
optimization algorithms when optimizing the highly config-
urable systems RobocodeSPL and GPL-FH-java. In this paper,
we complete these evaluations with an assessment of the
implementation of the ICO platform, especially regarding its
time efficiency and usability.

A. Internal Evaluation

The time efficiency of ICO is assessed through several
configurable software of different sizes. In particular, we mon-
itored the time that ICO needs to return a list of suggestions
over the configurable software GPL-FH-java, JHipster, PPU,
TightVNC, RobocodeSPL, and axTLS. For JHipster and GPL-
FH-java, all the valid configurations were assessed by ICO.
For larger systems PPU, TightVNC, Robocode, and axTLS,



50 configurations were randomly3 sampled and evaluated.
The considered performance indicators are the boot time for
JHipster, the size and execution time for GPL-JH-java [19],
and the energy consumption for Robocode [18], whose related
performance data were monitored during our previous work.
Regarding PPU, TightVNC, and axTLS, the performance data
were randomly generated. All the measures were performed
on an Intel i5 CPU @ 2GHz with 16GB of RAM. Table I
summarizes the average response time of ICO for each of the
assessed configurable systems.

Features Products median time (s)

JHipster 26 118 0.060

GPL-FH-java 38 156 0.093

PPU 52 28800 0.053

TightVNC 28 295201 0.209

Robocode 72 1, 3e+ 6 0.263

axTLS 96 8.3e+ 11 55.679

TABLE I: The response time of ICO.

In the smallest feature models JHipster, GPL-FH-java, and
PPU, the execution time is trivial. The median generation
time for TightVNC and Robocode is higher but remains
limited for a human user. However, larger feature models
are more challenging to tackle, as the parallelization of the
implementation reaches the limits of the machine. Therefore,
in future work, we plan to refine the implementation of
parallelization, for instance by leveraging GPU resources. We
also plan to implement heuristics to reduce the number of
invalid candidates that are generated and then dismissed.

B. External validation

The purpose of the ICO platform is to automate the
optimization of configurations, in order to save time and to
reduce the error rate of this process. We conducted a survey to
determine how developers could benefit from using ICO when
trying to find the best suitable configuration in a large con-
figuration space, with respect to their functional requirements
(i.e., the options to include or exclude) and non-functional
requirements (i.e., the performance of the system). Precisely,
15 software developers, with 5 to 20 years of professional
experience, were asked to perform the same experiment with
and without ICO.

We provided the participants with a configuration file and
the following question: “How to improve the configuration of
this software?”. The configurable system is Robocode, and the
performance indicator to optimize is the energy consumption
of the system. The energy consumption of the system was
assessed in [18], and the performance data of each option was
provided to the user.

The experiment consists in comparing the time saved by
optimizing a configuration with ICO instead of a tool-less

3Random according to FeatureIDE product generator.

approach. Specifically, the users were given two tasks: im-
proving a specific configuration a first time w.r.t. feature per-
formances and a second time w.r.t. interaction performances.
They were asked to perform these two tasks first by relying
on a spreadsheet containing the performance data, and then by
using ICOPLUGIN.

The participants received an explanation of the usage of the
spreadsheet and ICOPLUGIN, and they performed the tasks
first on a toy configuration before the actual evaluation.

Task

Avg. time
Without ICO With ICO Gain

Feature-wise 131,9s 14,3s 89%

Interaction-wise 164,7s 10,1s 94%

TABLE II: The time to optimize a configuration by the users.

Table II presents the results of this evaluation. Regarding
the feature-wise optimization, the average time to perform the
experiment was 131.9 seconds without ICO and 14,3 seconds
with ICO, resulting in an 89% time reduction. As of the
interaction-wise optimization, the average time to perform the
experiment was 164,7 seconds without ICO and 10,1 seconds
with ICO, i.e., a 94% time reduction. The average time to
perform the experiment without ICO increased between the
feature-wise optimization and the interaction-wise one, as the
latter is more complicated. Contrarily, it remained consistent
when using ICO as both optimizations take the form of a
similar task in ICOPLUGIN.

ICO thus offers substantial time savings on the optimization
process, while requiring a very minimal learning step. Such
results tend to confirm the relevance of ICO as cost-effective
and easily accessible optimization tool.

VII. CONCLUSION

In this paper, we presented ICO, a platform designed to
improve the performance of a configuration. Our approach
extends our previous work [18] and provides developers with
suggestions to improve the performances of their configura-
tions. We conducted a preliminary evaluation assessing the
time performance of ICO and how it can be used in practice
by developers to save time during the configuration and opti-
mization of their software. In future work, we plan to develop a
plugin to be integrated with IntelliJ IDEA to address a wider
range of developers. We are also considering improving the
parallelization process (used for generating suggestions) by
leveraging GPU with the CUDA framework [27], in order to
tackle larger feature models.

ACKNOWLEDGEMENTS

The research leading to these results received funding from
French Research Agency through the ANR-19-CE25-0003
KOALA project and from the Norwegian Research Council
through the DILUTE project (Grant No. 262854/F20).



REFERENCES

[1] H. Martin, M. Acher, L. Lesoil, J. M. Jezequel, D. E. Khelladi, J. A.
Pereira, Transfer learning across variants and versions : The case of
linux kernel size, IEEE Transactions on Software Engineering (2021).

[2] A. Metzger, C. Quinton, Z. Á. Mann, L. Baresi, K. Pohl, Feature
model-guided online reinforcement learning for self-adaptive services,
in: E. Kafeza, B. Benatallah, F. Martinelli, H. Hacid, A. Bouguettaya,
H. Motahari (Eds.), Service-Oriented Computing, Springer International
Publishing, Cham, 2020, pp. 269–286.

[3] D. Benavides, S. Segura, A. Ruiz-Cortés, Automated analysis of feature
models 20 years later: A literature review, Information Systems 35
(2010) 615–636.

[4] J. Rodas-Silva, J. A. Galindo, J. Garcia-Gutierrez, D. Benavides,
Selection of software product line implementation components using
recommender systems: An application to wordpress, IEEE Access 7
(2019) 69226–69245.

[5] J. Guo, J. White, G. Wang, J. Li, Y. Wang, A genetic algorithm for
optimized feature selection with resource constraints in software product
lines, Journal of Systems and Software 84 (2011).

[6] X. Lian, L. Zhang, J. Jiang, W. Goss, An approach for optimized feature
selection in large-scale software product lines, Journal of Systems and
Software 137 (2018) 636–651.

[7] N. Siegmund, M. Rosenmüller, M. Kuhlemann, C. Kästner, S. Apel,
G. Saake, Spl conqueror: Toward optimization of non-functional proper-
ties in software product lines, Software Quality Journal (2012) 487–517.

[8] C. Kaltenecker, A. Grebhahn, N. Siegmund, S. Apel, The interplay of
sampling and machine learning for software performance prediction,
IEEE Software 37 (4) (2020) 58–66.

[9] J. Guo, K. Czarnecki, S. Apel, N. Siegmund, A. Wasowski, Variability-
aware performance prediction: A statistical learning approach, in: 2013
28th IEEE/ACM International Conference on Automated Software En-
gineering (ASE), 2013, pp. 301–311.

[10] N. Siegmund, A. Grebhahn, S. Apel, C. Kästner, Performance-influence
models for highly configurable systems, in: Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2015, 2015, p. 284–294.

[11] N. Siegmund, S. S. Kolesnikov, C. Kästner, S. Apel, D. Batory,
M. Rosenmüller, G. Saake, Predicting performance via automated
feature-interaction detection, in: Proceedings of the 34th International
Conference on Software Engineering, ICSE ’12, Zurich, Switzerland,
2012, p. 167–177.

[12] N. Siegmund, M. Rosenmüller, C. Kästner, P. G. Giarrusso, S. Apel,
S. S. Kolesnikov, Scalable prediction of non-functional properties in
software product lines: Footprint and memory consumption, Information
and Software Technology 55 (3) (2013) 491–507.

[13] I. Švogor, I. Crnković, N. Vrček, An extensible framework for software
configuration optimization on heterogeneous computing systems: Time
and energy case study, Information and Software Technology 105 (2019)
30–42.

[14] R. Olaechea, S. Stewart, K. Czarnecki, D. Rayside, Modelling and multi-
objective optimization of quality attributes in variability-rich software,
in: Proceedings of the fourth international workshop on nonfunctional
system properties in domain specific modeling languages, 2012, pp. 1–6.

[15] V. Nair, Z. Yu, T. Menzies, N. Siegmund, S. Apel, Finding faster
configurations using flash, IEEE Transactions on Software Engineering
46 (7) (2020) 794–811.

[16] R. M. Hierons, M. Li, X. Liu, S. Segura, W. Zheng, Sip: Optimal
product selection from feature models using many-objective evolutionary
optimization, ACM Trans. Softw. Eng. Methodol. 25 (4 2016).

[17] S. Soltani, M. Asadi, D. Gašević, M. Hatala, E. Bagheri, Automated
planning for feature model configuration based on functional and non-
functional requirements, in: Proceedings of the 16th International Soft-
ware Product Line Conference-Volume 1, 2012, pp. 56–65.

[18] E. Guégain, C. Quinton, R. Rouvoy, On reducing the energy con-
sumption of software product lines, Proceedings of the 25th ACM
International Systems and Software Product Line Conference - Volume
A (2021) 89–99.

[19] E. Guégain, A. Taherkordi, C. Quinton, Configuration optimization with
limited functional impact, in: International Conference on Advanced
Information Systems Engineering, Springer, 2023, pp. 53–68.

[20] N. Siegmund, S. S. Kolesnikov, C. Kästner, S. Apel, D. Batory,
M. Rosenmüller, G. Saake, Predicting performance via automated

feature-interaction detection, Proceedings of the 34th International Con-
ference on Software Engineering (2012) 167–177.

[21] M. Calder, A. Miller, Feature interaction detection by pairwise analysis
of ltl properties—a case study, Formal Methods in System Design 28
(2006) 213–261.

[22] J. Martinez, D. Wolfart, W. K. Assunção, E. Figueiredo, Insights on
software product line extraction processes: argouml to argouml-spl
revisited, in: Proceedings of the 24th ACM Conference on Systems and
Software Product Line: Volume A-Volume A, 2020, pp. 1–6.

[23] G. K. Michelon, L. Linsbauer, W. K. Assunção, S. Fischer, A. Egyed, A
hybrid feature location technique for re-engineeringsingle systems into
software product lines, in: Proceedings of the 15th International Working
Conference on Variability Modelling of Software-Intensive Systems,
2021, pp. 1–9.

[24] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, T. Leich,
Featureide: An extensible framework for feature-oriented software de-
velopment, Science of Computer Programming 79 (2014) 70–85.

[25] J. A. Pereira, P. Matuszyk, S. Krieter, M. Spiliopoulou, G. Saake,
A feature-based personalized recommender system for product-line
configuration, Proceedings of the 2016 ACM SIGPLAN International
Conference on Generative Programming: Concepts and Experiences
(2016).

[26] J. A. Pereira, S. Schulze, S. Krieter, M. Ribeiro, G. Saake, A context-
aware recommender system for extended software product line config-
urations, Proceedings of the 12th International Workshop on Variability
Modelling of Software-Intensive Systems (2018).

[27] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, J. C.
Phillips, Gpu computing, Proceedings of the IEEE 96 (2008) 879–899.


	Introduction
	Background and Motivation
	Related Work
	The ICO Platform
	Implementation
	ICOlib
	ICOPlugin
	ICOcli

	Evaluation
	Internal Evaluation
	External validation

	Conclusion
	References

