
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

A Parameterless Learning Algorithm for
Behavior-Based Detection

Wang, Can
Department of Informatics, Kyushu University | Institute of Systems, Information Technologies
and Nanotechnologies

Feng, Yaokai
Department of Advanced Information Technology, Kyushu University | Institute of Systems,
Information Technologies and Nanotechnologies

Kawamoto, Junpei
Department of Informatics, Kyushu University | Institute of Systems, Information Technologies
and Nanotechnologie

Hori, Yoshiaki
Organization for General Education, Saga University | Institute of Systems, Information
Technologies and Nanotechnologies

他

https://hdl.handle.net/2324/1498300

出版情報：Proceedings of the 9th Asia Joint Conference on Information Security, pp.11-18,
2014. IEEE Computer Society
バージョン：
権利関係：

A Parameterless Learning Algorithm

for Behavior-based Detection

Can Wang

Department of Informatics

Kyushu University

Institute of Systems, Information Technologies and

Nanotechnologies

Fukuoka, Japan

wangcan@itslab.inf.kyushu-u.ac.jp

Yaokai Feng

Department of Advanced Information Technology

Kyushu University

Institute of Systems, Information Technologies and

Nanotechnologies

Fukuoka, Japan

fengyk@ait.kyushu-u.ac.jp

Junpei Kawamoto

Department of Informatics

Kyushu University

Institute of Systems, Information

Technologies and Nanotechnologies

Fukuoka, Japan

kawamoto@inf.kyushu-u.ac.jp

Yoshiaki Hori

Organization for General Education

Saga University

Institute of Systems, Information

Technologies and Nanotechnologies

Saga, Japan

horiyo@cc.saga-u.ac.jp

Kouichi Sakurai

Department of Informatics

Kyushu University

Institute of Systems, Information

Technologies and Nanotechnologies

Fukuoka, Japan

sakurai@csce.kyushu-u.ac.jp

Abstract—The frequency and the extent of damages caused

by network attacks have been actually increasing greatly in

recent years, although many approaches to avoiding and de-

tecting attacks have been proposed in the community of net-

work security. Thus, how to fast detect actual or potential at-

tacks has become an urgent issue. Among the detection strate-

gies, behavior-based ones, which use normal access patterns

learned from reference data (e.g., history traffic) to detect new

attacks, have attracted attention from many researchers. In

each of all such strategies, a learning algorithm is necessary

and plays a key role. Obviously, whether the learning algo-

rithm can extract the normal behavior modes properly or not

directly influence the detection result. However, some pa-

rameters have to determine in advance in the existing learning

algorithms, which is not easy, even not feasible, in many actu-

al applications. For example, even in the newest learning algo-

rithm, which called FHST learning algorithm in this study,

two parameters are used and they are difficult to be deter-

mined in advance. In this study, we propose a parameterless

learning algorithm for the first time, in which no parameters

are used. The efficiency of our proposal is verified by experi-

ment. Although the proposed learning algorithm in this study

is designed for detecting port scans, it is obviously able to be

used to other behavior-based detections.

Keywords— attack detection, behavior-based detection, learn-

ing algorithm, port scan, network security

I. INTRODUCTION

Many users of the Internet have realized the importance of
preventing their computers from being attacked. According to

the Ministry of Internal Affairs and Communications of Japan,
about 79.5 % of the population of Japan were using the internet
in 2012, of which 72.2% are anxious for preventing their
computers from network attacks. Such users include many
companies, universities, governments and other
organizations[1]. Although many approaches to avoiding and
detecting internet attacks have been and are being proposed in
the community of network security, the frequency and the ex-
tent of damages caused by network attacks have been actually
increasing greatly in recent years. Thus, how to fast and effi-
ciently detect actual and potential keep-changing attacks is still
a big challenge.

#Time unit series

anomaly

#
ac

ce
ss

ed
 p

o
rt

s/
ti

m
e

u
n
it

h

Fig. 1. Example of behavior-based method.

Behavior-based methods have been discussed first in the
work [8]. Fig. 1 shows an example of behavior-based methods.
In this example, the horizontal axis represents the time while
the vertical axis denotes, for example, the number of accessed
ports in each time unit. h can be regarded as the normal range
of the number of ports accessed in a single time unit. However,
the traffic in the red circle is seemingly an anomaly. If we can
know the normal range h (called normal behavior mode in this
study) from the history traffic data over a relatively long time
period, then detection of anomalies becomes easy with the help
of this normal behavior mode. Normal behavior modes (the
range h in Fig. 1) can be obtained if we have sufficient clean
learning data. However, this is often not feasible for many real
situations. Thus, a learning algorithm is necessary that can
extract the normal behavior mode from a training dataset
possibly containing anomaly data. The learning algorithm
plays a core role in behavior-based detection methods. This is
because that, after a proper normal mode has been extracted,
the anomaly detection means only a comparison between the
count result in the current time unit and the normal behavior
mode. According to our investigations, the work [9] proposed
the newest learning algorithm which is called FHST learning
algorithm in this study. That algorithm will be introduced
briefly in Section III.

Behavior-based methods have many advantages including
the extracted normal behavior modes can reflect the actual
features of the specific networks and the normal behavior
modes can be upgraded automatically and repeatedly to follow
the real situations. In addition, multiple normal modes can be
extracted even for the same network, responding to different
situations (e.g., weekdays and weekends).

Because of these advantages, behavior-based detection
methods have attracted attention from many researchers [9]. In
each of all such strategies, a learning algorithm that extracts the
normal behavior modes from reference data is necessary and
plays a key role. However, some parameters have to be deter-
mined in advance in the existing learning algorithms, which is
not easy, even not feasible, in many actual applications. Even
in the newest learning algorithm proposed in the work [9],
which is called FHST algorithm in this study, the two parame-
ters are difficult to be determined in advance.

In this study, we propose a parameterless learning algo-
rithm for the first time. The explanation and experiment result
indicate that our proposal can extract a reasonable normal be-
havior mode from the reference traffic data (history data in this
study), although it does not use any parameters. We want to
note that, although the proposed learning algorithm is designed
for port scan detection in this study, obviously, it is also able to
be used to other behavior-based detections. In other words, in
this study, port scan attacks are detected as an example using
the proposed learning algorithm. For detection of a different
kind of attacks, the input of this algorithm (a frequency distri-
bution histogram) may be built in a different way.

A port scan can be defined as an action that sends client
requests to a range of server port that addresses on a host or
multiple hosts, with the goal of finding an active port and
exploiting a known vulnerability of that service [9]. That is,
attackers usually conduct port scans to collect vulnerabilities of

Table 1. Behavior-based Detection of Port Scan.

1. Collecting the training data

2. Counting the number of accessed ports in each

time unit (see Fig. 1).

3. Drawing the frequency distribution of the number

of accessed different ports

4. Extracting the normal behavior mode from the

frequency distribution obtained in Step 3, using a

learning algorithm

5. Anomaly detection

the targets before starting an actual attacks. By scanning the
ports on the target, attackers can determine the type of OS and
the application software running on the targets, and examining
whether vulnerable ports exist or not. If a security hole is found,
actual attacks will be conducted. Thus it is very important for
system administrators and other network defenders to detect
port scans as possible preliminaries to a more serious attack [3,
4, 5, 6].

Generally, there are the following four types of port scans
[9]. 1) Vertical Scan: To scan one or multiple ports of a host
from a single source IP address. 2) Horizontal Scan: To scan
one vulnerable port of multiple hosts from a single source IP
address. 3) Distributed Vertical Scan: To scan one or multiple
ports from multiple source IP addresses. 4) Distributed
Horizontal Scan: To scan one port of multiple hosts from
multiple source IP addresses.

The last two kinds of scan attacks are related to
collaborative attacks, which is referred to as next generation
cyber-attacks [5]. In order to introduce our novel learning
algorithm, the 3rd kind of port scan is taken as example in this
study. Thus, henceforth in this study, the term port scan refers
to the distributed vertical port scan.

There have been many researches on how to detect port
scans [3, 4, 5, 6]. Almost all of them uses threshold values to
decide abnormalities. That is, it will be treated as a port scan
and an alarm will be generated if the number of ports accessed
in a time unit exceeds the given threshold. However, the
thresholds are often difficult to determine in advance in real
applications and the proper thresholds may change in different
situations even for the same network. In the work [9], a
learning algorithm is proposed to extract a threshold
automatically from history traffic data. The problem is that, in
that learning algorithm, two parameters are used and they are
not easy to determine. In this study, a parameterless learning
algorithm is proposed, which can extract a proper normal
behavior mode without using any parameters. The normal
behavior mode can be used as a threshold to detect actual
attacks.

This paper is organized as follows. After explaining how to
realize behavior-based detection of port scans in Section II, the
FHST learning algorithm proposed in the work [9] is briefly
introduced in Section III. Section IV is our main contribution -
a parameterless learning algorithm. Then, in Section V we
present our experimental results. Finally, we state our
conclusion in Section VI.

II. BEHAVIOR-BASED DETECTION OF PORT SCAN

The proposed process in this paper for behavior-based
detection of port scan is shown in Table 1. After training data
has been collected in Step 1, the number of accessed ports in
each time unit is counted. Then, a frequency distribution of the
different accessed ports is built in Step 3. In Step 4, using a
learning algorithm, the normal behavior mode is extracted from
the frequency distribution built in Step 3. At last, as mentioned
above, anomaly detection can be easily conducted after the
normal behavior mode has been exacted properly in Step 4.

Since Steps 1,2 are straightforward and step 5 is also simple
as mentioned above and Step 4 will be explained in details in

Section Ⅳ as our main contribution. Thus, only Steps 3 is

explained here.

 For extracting the normal behavior mode, a frequency
distribution of the number of accessed different ports in one
time unit (see Fig. 2 for an example) is created as follows. The

0

5

10

15

20

25

30

35

40

45

50

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

Normal range

Outliers

#Different ports accessed in one time unit

#
T

im
e

u
n

it
s

Fig. 2．Frequency Distribution of the number of different

accessed ports in one time unit.

0

10

20

30

40

50

60

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

Outliers

Normal range

#Sources that contacted the monitored port in one time unit

#
T

im
e

u
n

it
s

Fig.3.The frequency distribution and the behavior mode in
work [9].

total range of the number of accessed ports is divided into bins
(the bin-width is a parameter), which is shown in the x-axis.
Note that, as an example, the right-most bin in Fig. 2
corresponds to “>170”. Then, the number of time units are
counted for each bin and shown as the vertical axis. For
example, if the vertical axis value is 49 corresponding to the
bin whose range is from 40 to 50 at the horizontal axis, then it
means that, during the whole learning time period, there are 49
time units in each of which the number of accessed different
ports is located in between 40 and 50.

III. THE FHST LEARNING ALGORITHM

As mentioned above, the work [9] proposed the newest
learning algorithm, which is called by FHST learning
algorithm in this study, for extracting the normal behavior
mode from a frequency distribution (an example is shown in
Fig.3) of the number of source IPs that connected the
monitored port is shown in Fig. 3. Note that, the work [9] is for
detecting different attacks from this study. Thus, Fig. 3 is built

Table 2: The FHST Learning Algorithm (From [9]).

Input: Frequency Distribution of the number of sources that ac-
cessed one port in one time unit

Output: Normal behavior mode

Steps Descriptions

1  The bins are checked one by one starting from the
rightmost bin in the frequency distribution
 (see Fig. 3).

 The checked bins are placed in 

 Let dn be the distance from the bin that was just
checked, to the next bin.

If there is no next bin, use the distance from the current
bin to the y-axis as dn

2 Check the next bin if it exists.

If ((dn > 1))) and (the area2)) in  is less than %3) of the
total area)) then

the bins in  are regarded as outliers and are discarded

go to step 1 // to find other outliers \\

Else

 put the current bin in 

 go to step 2 // not finished

1) Here  is a threshold.

2) The area denotes the number of time units.

3)  is another threshold, used to avoid the case where most of
the bins are regarded as outliers.

Note that: dn is large enough (e.g., larger than 2) then  is
ignored, which means that if a bin cluster is far enough from
the y-axis, it will be regarded as an anomaly even if this
cluster has a large enough area.

in a different way from Fig.2. The difference is in the
definition of the horizontal axis. In Fig. 3, the meaning of the
horizontal axis is “the number of sources that contact the goal
in one time unit (see Fig. 3), however in Fig. 2 the horizontal
axis means “the number of different ports accessed in one time
unit”. Anyway, the purpose of the learning algorithm in the
work [9] is the same as that in this study in the meaning that
they both try to find the normal range from a frequency
distribution.

The learning algorithm in the work [9] is as follows. In the
example shown in Fig. 3, the small bins located at the right far
from the largest group tend to be regarded as outliers, which
obviously should be discarded. After all the outliers have been
removed, the range of the remaining bins on the x-axis is
regarded as the normal range of the number of sources in one
time unit. That is, the learning algorithm can obtain the normal
mode from the frequency distribution (built from history traffic
data) of the number of different sources that contact the
monitored port in one time unit. During the detection, if the
number of sources in the current time unit exceeds this normal
mode, an alert is given. The learning algorithm proposed in
work [9] is shown in Table 2.

From Table 2, we know that this learning algorithm checks
all the bin from right to left and the two parameters

(thresholds)  and  are used to determine if a bin or bin-group

is outlier.  is a threshold on the area (total value of a bin-

group) and  is a threshold on distance from the current bin to
its left-neighboring bin. That is, if the current bin or bin-group
has small enough area and big enough distance from its left
neighbor bin, then the current bin or bin-group will be regarded
as outlier. Obviously, these two thresholds are very important
since they decide the result of learning phase.

However, how to properly determine these two parameters
is obviously a difficult issue in many actual applications. In
this study, we propose a parameterless learning algorithm, in
which no parameters are used.

IV. OUR PARAMETERLESS LEARNING ALGORITHM

4.1 Algorithm

As mentioned above, the purpose of the learning algorithm
is in this study to extract the normal behavior mode from the
frequency distribution of the number of accessed different
ports, an example is shown in Fig. 2. In this example, the right-
most three bins tend to be removed as outliers. After that the
normal range can be found. Our proposed parameterless
learning algorithm is shown in Table 3.

Note that, in the algorithm shown in Table 3, we assume
that all bins in the frequency distribution are divided into some
groups by zero-bins. If only one bin-group exists then the end
position of this bin group is reported as learning result (see
Step 1), which means no bins can be removed. Area of a bin-
group in this study means the summation of the values (y-axis)
of all the bins in this bin-group.

Table 3. Our Proposed Learning algorithm

Input: Frequency Distribution of the number of accessed dif-
ferent ports in one time unit

Output: Normal behavior mode

Steps Descriptions

Initializing

Left_Pointer:

pointing to endpoint of the left-most 1st bin-
group

Right_Pointer:

pointing to the end point of the right-most
bin-group

Span:

the difference between the right-most and
the left-most bins

Total_area: summation of all bins

Dist_right:

the distance between the Left_Pointer and its
right-neighboring bin-group

Dist_left:

the distance between Right_Pointer and its
left-neighboring bin-group

Area_right:

the area of the Left_Pointer’s right-
neighboring bin-group

Area_left:

the area of Right_Pointer’s left-neighboring
bin-group

Step 1

Special case

If the frequency distribution contains only one bin
group then, the end position of this bin group is
reported as learning result

Step 2

Move
Right_Pointer
to left

While (Dist_left/Span > Area_left/Total_area)

 Move Right_Pointer to the end of the left-
neighboring bin-group

Step 3

Move
Left_Pointer
to right

While (Area_right/Total_area  Dist_right/Span)

Move Left_Pointer to the start of the next
right- hand zero-bin-group

Step 4

Finish or cir-
culate

If (Left_Pointer=Right_point)

learning result=Left_Pointer

Else

1) Combine the left-neighboring and the right-
neighboring bin-groups of Right_Pointer

2) Let Right_Pointer point to the end of the
new bin-group

 3) Go to Step 1.

4.2 Rough Idea

In this algorithm, two pointers of the Right_Pointer and the
Left_Pointer are used, which initially point, respectively, at the
end positions of the right-most bin-group and the left-most bin-
group of the frequency distribution (see Fig. 2 for an example).
The Left_Pointer moves to right by one step (jump one bin-
group) if a certain condition is satisfied. The Right_Pointer
moves to left by one step (jump one bin group) if a certain
Condition is satisfied. The bins jumped by the Left_Pointer are
regarded as normal ones. And the bins jumped by the
Right_Pointer are regarded as abnormal ones. The movement
conditions of the Left_Pointer and the Right_Pointer will be
discussed later.

The above movement of the two pointers are repeated.
When the two pointers meets each other, the position of the
two pointers is reported as the final result. If both of the two
pointers cannot move further and there are still some bins
between them, then the two left-neighboring bin-groups of the
Right_Pointer are merged into a new bin-group. After that, the
algorithm will be repeated again. The convergence of this
algorithm can be guaranteed, which will be discussed later.

Note that, if the frequency distribution contains only one
bin group then, the end position of this bin group is reported as
learning result. This means that no outliers exist if all the bins
are distributed continuously. See Step 1 in this algorithm.

In this algorithm, bin-group is the minimum unit by which
the Left_Pointer and the Right_Pointer are moved. In other
words, the Left_Pointer may only point at the end point of
some bin-group when it moves from left to right. And the
Right_Pointer also only point at the end point of some bin-
group when it moves from right to left.

4.3 Movement Conditions of Right_Pointer and Left_Pointer

 In Step 2, the movement condition of the Right_Pointer is
“Dist_left/Span > Area_left/Total_area”, which means that,
when we try to decide whether or not the left-neighboring bin-
group of the Right_Pointer should be regarded as outliers, the
ratio of the area of this bin-group to the total bins, which
means how heavy it is, and the ratio of the distance of this
group from its left-neighboring bin-group to the whole
span,which means how far this bin-group separates from its
left-neighboring bin, are checked and compared with each oth-
er. That is, the smaller its area is and the farther it is from its
left-neighboring bin, the more the bin-group tends to be re-
garded as outliers and be skipped.

The movement condition of the Left_Pointer is

“Area_right/Total_area  Dist_right/Span” (see Step 3 of this
algorithm), which means that, when we try to decide whether
or not the right-neighboring bin-group of the Left_Pointer
should be included in the normal mode, the ratio of the area of
this group to the total bins, which means how heavy it is, and
the ratio of the distance of this bin-group from its right-
neighboring bin-group to the whole span, which means how far
it separates from its right-neighboring bin, are checked and
compared with each other. That is, the bigger its area is and the
nearer it is from its right-neighboring bin-group, the more it
tends to be included in the normal mode (normal range).

4.4 Finish or Repeat

As mentioned above, the movements of the two pointers
are repeated until they cannot move further. At that time, if the
two pointers points at the same place, that place is reported as
the final learning result. If there still exist some bins between
the two pointers, the final result has not been decided yet. In
that case, the two left-neighboring bin-groups of the
Right_Pointer are combined into a new bigger bin group. Then,
the whole process will repeated again. The convergence of this
algorithm can be guaranteed, which will be discussed later.

4.5 Convergence

As mentioned in Step 4, the algorithm is possibly repeated.
Thus, the convergence of this algorithm should be guaranteed.
If the final result couldn’t be obtained at the current round, the
bin groups will be merged as mentioned in Step 4. In each
round, two bin groups are merged. Thus, as the worst case,
there are only one bin-group left between the two pointers as
the merge operation is conducted continuously. In that case, the
Dist_left=the Dist_right and Area_left = Area_right. Thus,
either of the Right_Pointer and the Left_Pointer must move
further. This is because that one of the two movement
conditions must be met. After that movement, the two pointers
will point at the same location, where will be the final learning
result.

V. EXPERIMENT

5.1 Parameters for Building Frequency Distribution

 Two parameters, time unit and bin-width, are necessary
when building the frequency distribution. The former one can
be determined according to the scale of the real traffic and how
quickly we want to find the attacks. The bin-width can be
decided according to how accurately we want to learn the
normal mode, which actually has not large influence on the
final detection result, according to our investigation, if the
number of accessed different ports in one time unit changes a
lot during attacks. Note that, these two parameters do not
belong to the learning algorithm because the frequency
distribution has to be built before the learning algorithm is used.
That is, the frequency distribution built using the above two
parameters is the input of the learning algorithm.

Our experiment is conducted with the time units of 10, 30
and 60 minutes, respectively, and with the bin-widths of 250,
500, 750, 1000, 2000, 3000. However, only the results with the
bin-width of 500, 1000 are presented here because we found
that the bin-width does not influence much the learning result
according to our many investigations our many experiment
results.

5.2 Experiment data

The data used in this study are collected from a darknet in

June, 2011, provided by National Institute of Information and

Communications Technology (NICT), Japan. The traffic data

in June are used as training data. That is, all the frequency

distributions of the number of accessed different ports are built

using the traffic data of June, 2011.

It is well-known that a common difficulty in network

security researches is the fact that real traffic data in many

companies or other organizations are often not available for

researchers. Fortunately, it has been confirmed by many

studies [12,13,14,15,16] that global trends of network threats

can be observed by monitoring darknets. A darknet is a set of

unused IP addresses [17]. Obviously, there are no actual

services (web, mail, etc.) in darknets since these addresses have

not been distributed to any legal users. Thus, except

missconfigures in the sources, all the traffics coming to

darknets are regarded as anomalies [13].

5.3 Experiment result

Fig. 4 is the frequency distribution of the number of ac-
cessed different ports, where the time unit is 10 minutes and
the bin-width is 500. In this case, the learning result of our pro-
posed learning algorithm is 44. Thus, the normal mode is

44*500 = 22000．

Fig. 5 is the frequency distribution, where the time unit is
10 minutes and the bin-width is 1000. In this case, the learning
result of our proposed learning algorithm is 22. Thus, the nor-

mal mode is 22*1000 = 22000．

 Fig. 6 is the frequency distribution, where the time unit is
30 minutes and the bin-width is 500. In this case, the learning
result of our proposed learning algorithm is 81. Thus, the nor-

mal mode is 81*500 =40500．

Fig. 7 is the frequency distribution, where the time unit is
30 minutes and the bin-width is 1000. In this case, the learning
result of our proposed learning algorithm is 45. Thus, the nor-

mal mode is 45*1000 =45000．

Time unit: 10

Width of bin: 500

Number of different accessed ports

N
u

m
b

er
 o

f
ti

m
e

u
n

it
s

Learning result

Fig. 4．Frequency distribution: time unites=10 minutes, width

of bin=500.

Time unit: 10

Width of bin: 1000

Number of different accessed ports

N
u

m
b

er
 o

f
ti

m
e

u
n

it
s

Learning result

Fig.5．Frequency distribution: time unites=10 minutes, bin

width of bin=1000.

Time unit: 30

Width of bin: 500

Number of different accessed ports

N
u
m

b
er

 o
f

ti
m

e
u
n

it
s

Learning result

Fig. 6．Frequency distribution: time unites=30 minutes,

width of bin=500.

Time unit: 30

Width of bin: 1000

Number of different accessed ports

N
u

m
b

er
 o

f
ti

m
e

u
n

it
s

Learning result

Fig. 7．Frequency distribution: time unites=30 minutes, width

of bin=1000.

Time unit: 60

Width of bin: 500

Number of different accessed ports

N
u
m

b
er

 o
f

ti
m

e
u
n

it
s

Learning result

Fig. 8．Frequency distribution: time unites=60 minutes,

width of bin=500.

Time unit: 60

Width of bin: 1000

Number of different accessed ports

N
u
m

b
er

 o
f

ti
m

e
u
n

it
s

Learning result

Fig. 9．Frequency distribution: time unites=60 minutes,

width of bin=1000.

Fig. 8 is the frequency distribution, where the time unit is
60 minutes and the bin-width is 500. In this case, the learning
result of our proposed learning algorithm is 112. Thus, the

normal mode is 112*500 =56000．

Fig. 9 is the frequency distribution, where the time unit is

60 minutes and the bin-width is 1000. In this case, the learning

result of our proposed learning algorithm is 81. Thus, the nor-

mal mode is 56*1000 =56000．

5.4 Observations

 From the above experiment results shown in Figs 4~9, we
can observe that

1) As the time unit increases, the normal mode learned by the
learning algorithm also becomes bigger, which is easy to
understand. The reason for this is that, the number of ac-
cessed different ports in one time unit certainly increases
as the time unit increases.

2) For a fixed time unit, the learned normal modes possibly
vary a little for different bin-widths. See the learning re-
sults in Figs 6 and 7 as examples, although the normal
mode does not vary as the bin-widths changes in the other
experiments. This is because of the fact that a bigger bin-
width may mean a smaller number of zero-bins in the fre-
quency distribution, which will influence the final learn-
ing result. Anyway, according to our investigations, the
difference is not big, which will not influence the result of
detection. This is because that the number of accessed dif-
ferent ports will increase much for real port scan attacks.

3) From the learning results corresponding to Figs 4~9, we
can observe that the learning results are reasonable. That
is, even determined by ourselves (not by algorithm), these
results are also perhaps selected. Again, it does not influ-
ence detection result even the learning result actually in-
fluences a little.

VI. CONCLUSION AND FUTURE WORK

This paper pointed out that learning algorithm extracting

normal behavior modes plays a key role in behavior-based

detection methods and the parameters is difficult to determine

in advance in the existing learning algorithms. In this study, we

proposed a novel learning algorithm, which does not need any

parameters. The experiment result shows that our algorithm

works well. Although the proposed learning algorithm in this

study is explained based on detection of distributed vertical

port scans, it is obviously able to be used to other behavior-

based detections, for example, the detection in the work [9].

The only difference is the way of building the frequency distri-

bution. That is, the definition of the axes may varies for differ-

ent applications.In the future, we will verify the performance of

this parameterless learning algorithm in situations of other

kinds of attacks, including other kinds of port scans. And

evaluate our method with other learning algorithm which need

parameters.

ACKNOWLEDGMENT

This work was partially supported by Grants-in-Aid for

Scientific Research (C) (25330131), Japan Society for the

Promotion of Science (JSPS). And partially supported by Pro-

active Response Against Cyber-attacks Through International

Collaborative Exchange (PRACTICE), Ministry of Internal

Affairs and Communications, Japan.

REFERENCES

[1] http://www.soumu.go.jp/johotsusintokei/whitepaper/ja/h25/, Ministry of

Internal Affairs and Communications, Japan.

[2] RFC 2828 Internet Security Glossary

[3] M.H.Bhuyan, D.K.Bhattacharyya and J.K.kalita, “Surveying Port Scans

and Their Detection Methodologies,” The Computer Journal, 2011,

VOL 54, NO.10, pp. 1565-1581.

[4] Y. Chabchoub, C. Fricker, P. Robert, “Improving the detection of on-
line vertical port scan in IP traffic”, 7th International Conference on
Risks and Security of Internet and Systems, Vol. 10, No. 1-2 , pp.1–6,
2012.

[5] J. Gadge,J and A. A. Patil, “Port scan detection” 16th IEEE International

Conference on Networks (ICON), pp. 1-6, 2008.

[6] R Ensafi, JC Park, D Kapur, JR Crandall, “Idle Port Scanning and Non-
interference Analysis of Network Protocol Stacks Using Model
Checking”, USENIX Security'10 Proceedings of the 19th USENIX
conference on Security, pp. 17--33, 2010.

[7] S. Xu, “Collaborative Attack vs. Collaborative Defense”, 4th

International Conferenceon Collaborative Computing
(CollaborateCom2008), LNICST 10}, pp. 217—228, 2009.

[8] D. E. Denning, “An Intrusion-Detection Model”, IEEE Transactions on
Software Engineering - Special issue on computer security and privacy,

Vol. 13 No. 2, pp. 222-232, 1987.

[9] Y. Feng, Y. Hori, K. Sakurai, J. Takeuchi, “A Behavior-Based Method
for Detecting Distributed Scan Attacks in Darknets”, Journal of

Information Processing, Vol 21, No. 3, pp. 527-538, 2013.

[10] M.Dabbagh, A.Ghandour, K.Fawaz, W.EL.Hajj and H.Hajj, “Slow Port

Scanning Detection”, International Conference on Information

Assurance and Security (IAS), pp. 228-344, 7th, 2011.

[11] Joanne Treurniet, “A Network Activity Classification Schema and Its

Application to Scan Detection”, IEEE/ACM TON, VOL 19, NO.5, 2011,

pp. 1396-1404.

[12] S. Akimoto, Y. Hori, and K.Sakurai, “Collaborative Behavior

Visualization and its Detection by Observing Darknet Traffic”, Proc. the
4th International Symposium on Cyberspace Safety and Security (CSS),

LNCS 7672, pp. 212-226, 2012.

[13] M. Eto, D. Inoue, J. Song, K.Ohtaka, and K. Nakao, “Nicter: A Large-

Scale Network Incident Analysis System”, Proc. the First Workshop on

Building Analysis Datasets and Gathering Experience Returns for
Security (BADGERS), pp. 37-45, 2011.

[14] M. Bailey, E. Cooke, F. Jahanian, J. Nazario, and D. Watson, “The

Internet Motion Sensor: A distributed blackhole monitoring system”,
Proc. the 12th ISOC Symposium on Network and Distributed Systems

Security (NDSS), pp. 167–179, 2005.

[15] SANS Internet Storm Center. http://isc.sans.org/.

[16] F. Pouget, M. Dacier, and V.H. Pham, “Leurre.com: On the Advantages

of Deploying a Large Scale Distributed Honeypot Platform”, In E-Crime
and Computer Conference (ECCE), 2005.

[17] E. Cooke, M. Bailey, Z.M.Mao, D. Watson, F.Jahanian, and D.
McPherson, “Toward Understanding Distributed Blackhole Placement”,

Proc. ACM CCS workshop on Rapid Malcode, pp. 54-64, ACM Press,

2004.

Figure 10. training data(left) and test data(right)

