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Abstract—The frequency and the extent of damages caused 

by network attacks have been actually increasing greatly in 

recent years, although many approaches to avoiding and de-

tecting attacks have been proposed in the community of net-

work security. Thus, how to fast detect actual or potential at-

tacks has become an urgent issue. Among the detection strate-

gies, behavior-based ones, which use normal access patterns 

learned from reference data (e.g., history traffic) to detect new 

attacks, have attracted attention from many researchers. In 

each of all such strategies, a learning algorithm is necessary 

and plays a key role. Obviously, whether the learning algo-

rithm can extract the normal behavior modes properly or not 

directly influence the detection result. However, some pa-

rameters have to determine in advance in the existing learning 

algorithms, which is not easy, even not feasible, in many actu-

al applications. For example, even in the newest learning algo-

rithm, which called FHST learning algorithm in this study, 

two parameters are used and they are difficult to be deter-

mined in advance. In this study, we propose a parameterless 

learning algorithm for the first time, in which no parameters 

are used. The efficiency of our proposal is verified by experi-

ment. Although the proposed learning algorithm in this study 

is designed for detecting port scans, it is obviously able to be 

used to other behavior-based detections. 

Keywords— attack detection, behavior-based detection, learn-

ing algorithm, port scan, network security 

I. INTRODUCTION  

Many users of the Internet have realized the importance of 
preventing their computers from being attacked. According to 

the Ministry of Internal Affairs and Communications of Japan, 
about 79.5 % of the population of Japan were using the internet 
in 2012, of which 72.2% are anxious for  preventing  their 
computers from network attacks. Such users include many 
companies, universities, governments and other 
organizations[1]. Although many approaches to avoiding and 
detecting internet attacks have been and are being proposed in 
the community of network security, the frequency and the ex-
tent of damages caused by network attacks have been actually 
increasing greatly in recent years. Thus, how to fast and effi-
ciently detect actual and potential keep-changing attacks is still 
a big challenge. 
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Fig. 1. Example of behavior-based method. 

 



 

Behavior-based methods have been discussed first in the 
work [8]. Fig. 1 shows an example of behavior-based methods. 
In this example, the horizontal axis represents the time while 
the vertical axis denotes, for example, the number of accessed 
ports in each time unit. h can be regarded as the normal range 
of the number of ports accessed in a single time unit. However, 
the traffic in the red circle is seemingly an anomaly. If we can 
know the normal range h (called normal behavior mode in this 
study) from the history traffic data over a relatively long time 
period, then detection of anomalies becomes easy with the help 
of this normal behavior mode. Normal behavior modes (the 
range h in Fig. 1) can be obtained if we have sufficient clean 
learning data. However, this is often not feasible for many real 
situations. Thus, a learning algorithm is necessary that can 
extract the normal behavior mode from a training dataset 
possibly containing anomaly data. The learning algorithm 
plays a core role in behavior-based detection methods. This is 
because that, after a proper normal mode has been extracted,  
the anomaly detection means only a comparison between the 
count result in the current time unit and the normal behavior 
mode. According to our investigations, the work [9] proposed 
the newest learning algorithm which is called FHST learning 
algorithm in this study. That algorithm will be introduced 
briefly in Section III.  

Behavior-based methods have many advantages including 
the extracted normal behavior modes can reflect the actual 
features of the specific networks and the normal behavior 
modes can be upgraded automatically and repeatedly to follow 
the real situations. In addition, multiple normal modes can be 
extracted even for the same network, responding to different 
situations (e.g., weekdays and weekends). 

Because of these advantages, behavior-based detection 
methods have attracted attention from many researchers [9]. In 
each of all such strategies, a learning algorithm that extracts the 
normal behavior modes from reference data is necessary and 
plays a key role. However, some parameters have to be deter-
mined in advance in the existing learning algorithms, which is 
not easy, even not feasible, in many actual applications. Even 
in the newest learning algorithm proposed in the work [9], 
which is called FHST algorithm in this study, the two parame-
ters are difficult to be determined in advance.  

In this study, we propose a parameterless learning algo-
rithm for the first time. The explanation and experiment result 
indicate that our proposal can extract a reasonable normal be-
havior mode from the reference traffic data (history data in this 
study), although it does not use any parameters. We want to 
note that, although the proposed learning algorithm is designed 
for port scan detection in this study, obviously, it is also able to 
be used to other behavior-based detections. In other words, in 
this study, port scan attacks are detected as an example using 
the proposed learning algorithm. For detection of a different 
kind of attacks, the input of this algorithm (a frequency distri-
bution histogram) may be built in a different way.  

A port scan can be defined as an action that sends client 
requests to a range of server port that addresses on a host or 
multiple hosts, with the goal of finding an active port and 
exploiting a known vulnerability of that service [9]. That is, 
attackers usually conduct port scans to collect vulnerabilities of  

Table 1. Behavior-based Detection of Port Scan. 

1. Collecting the training data 

2. Counting the number of accessed ports in each 

time unit (see Fig. 1). 

3. Drawing the frequency distribution of the number 

of accessed different ports 

4. Extracting  the normal behavior mode from the 

frequency distribution obtained in Step 3, using a 

learning algorithm 

5. Anomaly detection 

 

the targets before starting an actual attacks. By scanning the 
ports on the target, attackers can determine the type of OS and 
the application software running on the targets, and examining 
whether vulnerable ports exist or not. If a security hole is found, 
actual attacks will be conducted. Thus it is very important for 
system administrators and other network defenders to detect 
port scans as possible preliminaries to a more serious attack [3, 
4, 5, 6].  

Generally, there are the following four types of port scans 
[9]. 1) Vertical Scan: To scan one or multiple ports of a host 
from a single source IP address. 2) Horizontal Scan: To scan 
one vulnerable port of multiple hosts from a single source IP 
address. 3)  Distributed Vertical Scan: To scan one or multiple 
ports from multiple source IP addresses. 4)  Distributed 
Horizontal Scan: To scan one port of multiple hosts from 
multiple source IP addresses. 

The last two kinds of scan attacks are related to 
collaborative attacks, which is referred to as next generation 
cyber-attacks [5]. In order to introduce our novel learning 
algorithm, the 3rd kind of port scan is taken as example in this 
study. Thus, henceforth in this study, the term port scan refers 
to the distributed vertical port scan. 

There have been many researches on how to detect port 
scans [3, 4, 5, 6]. Almost all of them uses  threshold values to 
decide abnormalities. That is, it will be treated as a port scan 
and an alarm will be generated if the number of ports accessed 
in a time unit exceeds the given threshold. However, the 
thresholds are often difficult to determine in advance in real 
applications and the proper thresholds may change in different 
situations even for the same network. In the work [9], a 
learning algorithm is proposed to extract a threshold 
automatically from history traffic data. The problem is that, in 
that learning algorithm, two parameters are used and they are 
not easy to determine. In this study, a parameterless learning 
algorithm is proposed, which can extract a proper normal  
behavior mode without using any parameters. The normal  
behavior mode can be used as a threshold to detect actual 
attacks. 

This paper is organized as follows. After explaining how to 
realize behavior-based detection of port scans in Section II, the 
FHST learning algorithm proposed in the work [9] is briefly 
introduced in Section III. Section IV is our main contribution - 
a parameterless learning algorithm. Then, in Section V we 
present our experimental results. Finally, we state our 
conclusion in Section VI. 



 

II. BEHAVIOR-BASED DETECTION OF PORT SCAN  

The proposed process in this paper for behavior-based 
detection of port scan is shown in Table 1. After training data 
has been collected in Step 1, the number of accessed ports in 
each time unit is counted. Then, a frequency distribution of the 
different accessed ports is built in Step 3. In Step 4, using a 
learning algorithm, the normal behavior mode is extracted from 
the frequency distribution built in Step 3. At last, as mentioned 
above, anomaly detection can be easily conducted after the 
normal behavior mode has been exacted properly in Step 4. 

Since Steps 1,2 are straightforward and step 5 is also simple 
as mentioned above and Step 4 will be explained in details in 

Section Ⅳ as our main contribution. Thus, only Steps 3 is 

explained here. 

 For extracting the normal behavior mode, a frequency 
distribution of the number of accessed different ports in one 
time unit (see Fig. 2 for an example) is created as follows. The  
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Fig. 2．Frequency Distribution of the number of different 

accessed ports in one time unit. 
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Fig.3.The frequency distribution and the behavior mode in 
work [9]. 

total range of the number of accessed ports is divided into bins 
(the bin-width is a parameter), which is shown in the x-axis. 
Note that, as an example, the right-most bin in Fig. 2  
corresponds to “>170”. Then, the number of time units are 
counted for each bin and shown as the vertical axis. For 
example, if  the vertical axis value is 49 corresponding to the 
bin whose range is from 40 to 50 at the horizontal axis, then it 
means that, during the whole learning time period, there are 49 
time units in each of which the number of accessed different 
ports is located in between 40 and 50. 

III. THE FHST LEARNING ALGORITHM 

As mentioned above, the work [9] proposed the newest 
learning algorithm, which is called by FHST learning 
algorithm in this study, for extracting the normal behavior 
mode from a frequency distribution (an example is shown in 
Fig.3) of the number of source IPs that connected the 
monitored port is shown in Fig. 3. Note that, the work [9] is for 
detecting different attacks from this study. Thus, Fig. 3 is built  

Table 2: The FHST Learning Algorithm (From [9]). 

Input:   Frequency Distribution of the number of sources that ac-
cessed one port in one time unit 

Output:  Normal behavior mode 

Steps Descriptions 

1  The bins are checked one by one starting  from the 
rightmost bin in the frequency distribution 
 (see Fig. 3).  

 The checked bins are placed in  

 Let dn be the distance from the bin that  was just 
checked, to the next bin.  

If there is no next bin, use the distance from the current 
bin to the y-axis as dn 

2 Check the next bin if it exists.  

If ((dn > 1))) and (the area2)) in  is less  than %3) of the 
total area)) then  

the bins in  are regarded as outliers  and are discarded  

go to step 1  // to find other outliers \\ 

Else            

 put the current bin in  

 go to step 2  //  not finished  

1) Here  is a threshold.  

2) The area denotes the number of time units. 

3)  is another threshold, used to avoid the case where most of 
the bins are regarded as outliers. 

Note that: dn is large enough (e.g., larger  than 2) then  is 
ignored,  which means that if a bin cluster is far enough from 
the y-axis, it will be regarded as  an anomaly even if this 
cluster has a large enough area. 

 



 

in a different way from Fig.2. The difference is in the 
definition of the horizontal axis. In Fig. 3,  the meaning of the 
horizontal axis is “the number of sources that contact the goal 
in one time unit (see Fig. 3), however in Fig. 2 the horizontal 
axis means “the number of different ports accessed in one time 
unit”. Anyway, the purpose of the learning algorithm in the 
work [9] is the same as that in this study in the meaning that 
they both try to find the normal range from a frequency 
distribution.  

The learning algorithm in the work [9] is as follows. In the 
example shown in Fig. 3, the small bins located at the right far 
from the largest group tend to be  regarded as outliers, which 
obviously should be discarded. After all the outliers have been 
removed, the range of the remaining bins on the x-axis is 
regarded as the normal range of the number of sources in one 
time unit. That is, the learning algorithm can obtain the normal 
mode from the frequency distribution (built from history traffic 
data) of the number of different sources that contact the 
monitored port in one time unit. During the detection, if the 
number of sources in the current time unit exceeds this normal 
mode, an alert is given. The learning algorithm proposed in 
work [9] is shown in Table 2.  

From Table 2, we know that this learning algorithm checks 
all the bin from right to left and  the two parameters 

(thresholds)  and  are used to determine if a bin or bin-group 

is outlier.  is a threshold on the area (total value of a bin-

group) and  is a threshold on distance from the current bin to 
its left-neighboring bin. That is, if the current bin or bin-group 
has small enough area and big enough distance from its left 
neighbor bin, then the current bin or bin-group will be regarded 
as outlier. Obviously, these two thresholds are very important 
since they decide the result of learning phase. 

However, how to properly determine these two parameters 
is obviously a difficult issue in many actual applications. In 
this study, we propose a parameterless learning algorithm, in 
which no parameters are used.  

IV. OUR PARAMETERLESS  LEARNING ALGORITHM 

4.1 Algorithm 

As mentioned above, the purpose of the learning algorithm 
is in this study to extract the normal behavior mode from the 
frequency distribution of the number of accessed different 
ports, an example is shown in Fig. 2. In this example, the right-
most three bins tend to be removed as outliers. After that the 
normal range can be found. Our proposed parameterless 
learning algorithm is shown in Table 3. 

Note that, in the algorithm shown in Table 3, we assume 
that all bins in the frequency distribution are divided into some 
groups by zero-bins. If only one bin-group exists then the end 
position of this bin group is reported as learning result (see 
Step 1), which means no bins can be removed. Area of a bin-
group in this study means the summation of the values (y-axis) 
of all the bins in this bin-group. 

 

 

Table 3. Our Proposed Learning algorithm 

Input:   Frequency Distribution of the number of accessed dif-
ferent ports in one time unit 

Output:  Normal behavior mode 

Steps Descriptions 

Initializing 

Left_Pointer:   

pointing to endpoint of the left-most 1st bin-
group 

Right_Pointer:   

pointing to the end point of the  right-most  
bin-group 

Span:  

the difference between the right-most and 
the left-most bins 

Total_area:   summation of all bins 

Dist_right:  

the distance between the Left_Pointer and its 
right-neighboring bin-group 

Dist_left:  

the distance between Right_Pointer and its 
left-neighboring  bin-group  

Area_right:  

the area of the Left_Pointer’s right-
neighboring bin-group 

Area_left:   

the area of Right_Pointer’s left-neighboring 
bin-group  

Step 1 

Special case 

If the frequency distribution contains only one bin 
group then, the end position of this bin group is 
reported as learning result 

Step 2 

Move 
Right_Pointer 
to left 

While (Dist_left/Span > Area_left/Total_area) 

 Move Right_Pointer to the end of the left- 
neighboring bin-group 

Step 3 

Move 
Left_Pointer 
to right 

While (Area_right/Total_area  Dist_right/Span) 

Move Left_Pointer to the start of the next 
right- hand zero-bin-group 

Step 4 

Finish or cir-
culate 

If (Left_Pointer=Right_point) 

learning result=Left_Pointer  

Else   

1) Combine the left-neighboring and the right-
neighboring bin-groups of Right_Pointer 

2) Let Right_Pointer point to the end of the 
new bin-group 

 3) Go to Step 1. 

 



 

4.2 Rough Idea 

In this algorithm, two pointers of the Right_Pointer and the 
Left_Pointer are used, which initially point, respectively, at the 
end positions of the right-most bin-group and the left-most bin-
group  of the frequency distribution (see Fig. 2 for an example). 
The Left_Pointer moves to right by one step (jump one bin-
group) if a certain condition is satisfied. The Right_Pointer 
moves to left by one step (jump one bin group) if a certain 
Condition is satisfied. The bins jumped by the Left_Pointer are 
regarded as normal ones. And the bins jumped by the 
Right_Pointer are regarded as abnormal ones. The movement 
conditions of the Left_Pointer and the Right_Pointer will be 
discussed later. 

The above movement of the two pointers are repeated. 
When the two pointers meets each other,  the position of the 
two pointers is  reported as the final result. If both of the two 
pointers cannot move further and there are still some bins 
between them, then the two left-neighboring bin-groups of the 
Right_Pointer are merged into a new bin-group. After that, the 
algorithm will be repeated again. The convergence of this 
algorithm can be guaranteed, which will be discussed later. 

Note that, if the frequency distribution contains only one 
bin group then, the end position of this bin group is reported as 
learning result. This means that no outliers exist if all the bins 
are distributed continuously. See Step 1 in this algorithm. 

In this algorithm, bin-group is the minimum unit by which 
the Left_Pointer and the Right_Pointer are moved. In other 
words, the Left_Pointer may only point at the end point of 
some bin-group when it moves from left to right. And the 
Right_Pointer also only point at the end point of some bin-
group when it moves from right to left. 

4.3 Movement Conditions of Right_Pointer and Left_Pointer 

 In Step 2, the movement condition of the Right_Pointer is 
“Dist_left/Span > Area_left/Total_area”, which means that, 
when we try to decide whether or not the left-neighboring bin-
group of the Right_Pointer  should be regarded as outliers, the 
ratio of the area of this bin-group to the total bins,  which 
means how heavy it is, and the ratio of the distance of this 
group from its left-neighboring bin-group to the whole 
span,which means how far this bin-group separates from its 
left-neighboring bin, are checked and compared with each oth-
er. That is, the smaller its area is and the farther it is from its 
left-neighboring bin, the more the bin-group tends to be re-
garded as outliers and be skipped. 

The movement condition of the Left_Pointer is 

“Area_right/Total_area  Dist_right/Span” (see Step 3 of this 
algorithm), which means that, when we try to decide whether 
or not the right-neighboring bin-group of the Left_Pointer  
should be included in the normal mode, the ratio of the area of 
this group to the total bins,  which means how heavy it is, and 
the ratio of the  distance of this bin-group from its right-
neighboring bin-group to the whole span, which means how far 
it separates from its right-neighboring bin, are checked and 
compared with each other. That is, the bigger its area is and the 
nearer it is from its right-neighboring bin-group, the more it 
tends to be included in the normal mode (normal range). 

4.4 Finish or Repeat 

As mentioned above, the movements of the two pointers 
are repeated until they cannot move further. At that time, if the 
two pointers points at the same place, that place is reported as 
the final learning result. If there still exist some bins between 
the two pointers, the final result has not been decided yet. In 
that case, the two left-neighboring bin-groups of the 
Right_Pointer are combined into a new bigger bin group. Then, 
the whole process will repeated again. The convergence of this 
algorithm can be guaranteed, which will be discussed later.  

4.5 Convergence 

As mentioned in Step 4, the algorithm is possibly repeated. 
Thus, the convergence of this algorithm should be guaranteed. 
If the final result couldn’t be obtained at the current round, the 
bin groups will be merged as mentioned in Step 4. In each 
round, two bin groups are merged. Thus, as the worst case, 
there are only one bin-group left between the two pointers as 
the merge operation is conducted continuously. In that case, the 
Dist_left=the Dist_right and Area_left = Area_right. Thus, 
either of the Right_Pointer and the Left_Pointer must move 
further. This is because that one of the two movement 
conditions must be met. After that movement, the two pointers 
will point at the same location, where will be the final learning 
result.  

V. EXPERIMENT 

5.1 Parameters for Building Frequency Distribution 

 Two parameters, time unit and bin-width, are necessary 
when building the frequency distribution. The former one can 
be determined according to the scale of the real traffic and how 
quickly we want to find the attacks. The bin-width can be 
decided according to how accurately we want to learn the 
normal mode, which actually has not large influence on the 
final detection result, according to our investigation, if the 
number of accessed different ports in one time unit changes a 
lot during attacks. Note that, these two parameters do not 
belong to the learning algorithm because the frequency 
distribution has to be built before the learning algorithm is used. 
That is, the frequency distribution built using the above two 
parameters is the  input of the learning algorithm. 

Our experiment is conducted with the time units of 10, 30 
and 60 minutes, respectively, and with the bin-widths of 250, 
500, 750, 1000, 2000, 3000. However, only the results with the 
bin-width of 500, 1000 are presented here because we found 
that the bin-width does not influence much the learning result 
according to our many investigations our many experiment 
results. 

5.2 Experiment data 

The data used in this study are collected from a darknet in 

June, 2011, provided by National Institute of Information and 

Communications Technology (NICT), Japan. The traffic data 

in June are used as training data. That is, all the frequency 

distributions of the number of accessed different ports are built 

using the traffic data of June, 2011.  



 

It is well-known that a common difficulty in network 

security researches is the fact that real traffic data in many 

companies or other organizations are often not available for 

researchers. Fortunately, it has been confirmed by many 

studies [12,13,14,15,16] that global trends of network threats 

can be observed by monitoring darknets. A darknet is a set of 

unused IP addresses [17]. Obviously, there are no actual 

services (web, mail, etc.) in darknets since these addresses have 

not been distributed to any legal users. Thus, except 

missconfigures in the sources, all the traffics coming to 

darknets are regarded as anomalies [13].  

5.3 Experiment result 

Fig. 4 is the frequency distribution of the number of ac-
cessed different ports, where the time unit is 10 minutes and 
the bin-width is 500. In this case, the learning result of our pro-
posed learning algorithm is 44.  Thus, the normal mode is 

44*500 = 22000． 

Fig. 5 is the frequency distribution, where the time unit is 
10 minutes and the bin-width is 1000. In this case, the learning 
result of our proposed learning algorithm is 22.  Thus, the nor-

mal mode is 22*1000 = 22000．  

 Fig. 6 is the frequency distribution, where the time unit is 
30 minutes and the bin-width is 500. In this case, the learning 
result of our proposed learning algorithm is 81.  Thus, the nor-

mal mode is 81*500 =40500． 

Fig. 7 is the frequency distribution, where the time unit is 
30 minutes and the bin-width is 1000. In this case, the learning 
result of our proposed learning algorithm is 45.  Thus, the nor-

mal mode is 45*1000 =45000．  
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Fig. 4．Frequency distribution: time unites=10 minutes, width 

of bin=500. 
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Fig.5．Frequency distribution: time unites=10 minutes, bin 

width of bin=1000. 
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Fig. 6．Frequency distribution: time unites=30 minutes, 

width of bin=500. 
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Fig. 7．Frequency distribution: time unites=30 minutes, width 

of bin=1000. 
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Fig. 8．Frequency distribution: time unites=60 minutes, 

width of bin=500. 
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Fig. 9．Frequency distribution: time unites=60 minutes, 

width of bin=1000. 

Fig. 8 is the frequency distribution, where the time unit is 
60 minutes and the bin-width is 500. In this case, the learning 
result of our proposed learning algorithm is 112.  Thus, the 

normal mode is 112*500 =56000． 

Fig. 9 is the frequency distribution, where the time unit is 

60 minutes and the bin-width is 1000. In this case, the learning 

result of our proposed learning algorithm is 81.  Thus, the nor-

mal mode is 56*1000 =56000． 

5.4 Observations 

      From the above experiment results shown in Figs 4~9, we 
can observe that 

1)   As the time unit increases, the normal mode learned by the 
learning algorithm also becomes bigger, which is easy to 
understand. The reason for this is that, the number of ac-
cessed different ports in one time unit certainly increases 
as the time unit increases. 

2)   For a fixed time unit, the learned normal modes possibly 
vary a little for different bin-widths. See the learning re-
sults in Figs 6 and 7 as examples, although the normal 
mode does not vary as the bin-widths changes in the other 
experiments. This is because of the fact that a bigger bin-
width may mean a smaller number of zero-bins in the fre-
quency distribution, which will influence the final learn-
ing result. Anyway, according to our investigations, the 
difference is not big, which will not influence the result of 
detection. This is because that the number of accessed dif-
ferent ports will increase much for real port scan attacks. 

3)   From the learning results corresponding to Figs 4~9, we 
can observe that the learning results are reasonable. That 
is, even determined by ourselves (not by algorithm), these 
results are also perhaps selected. Again, it does not influ-
ence detection result even the learning result actually in-
fluences a little. 

VI. CONCLUSION AND FUTURE WORK 

This paper pointed out that learning algorithm extracting 

normal  behavior modes plays a key role in behavior-based 

detection methods and the parameters is difficult to determine 

in advance in the existing learning algorithms. In this study, we 

proposed a novel learning algorithm,  which does not need any 

parameters. The experiment result shows that our algorithm 

works well. Although the proposed learning algorithm in this 

study is explained based on detection of distributed vertical 

port scans, it is obviously able to be used to other behavior-

based detections, for example, the detection in the work [9]. 

The only difference is the way of building the frequency distri-

bution. That is, the definition of the axes may varies for differ-

ent applications.In the future, we will verify the performance of 

this parameterless learning algorithm in situations of other 

kinds of attacks, including other kinds of port scans. And 

evaluate our method with other learning algorithm which need 

parameters. 
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Figure 10. training data(left) and test data(right) 


