
From FPGAs to Obfuscated eASICs: Design and Security
Trade-offs

Zain Ul Abideen, Tiago Diadami Perez, Samuel Pagliarini
Centre for Hardware Security, Tallinn University of Technology (TalTech), Estonia

{zain.abideen, tiago.perez, samuel.pagliarini}@taltech.ee

Abstract—Threats associated with the untrusted fabrication of in-
tegrated circuits (ICs) are numerous: piracy, overproduction, reverse
engineering, hardware trojans, etc. The use of reconfigurable elements
(i.e., look-up tables as in FPGAs) is a known obfuscation technique.
In the extreme case, when the circuit is entirely implemented as an
FPGA, no information is revealed to the adversary but at a high cost in
area, power, and performance. In the opposite extreme, when the same
circuit is implemented as an ASIC, best-in-class performance is obtained
but security is compromised. This paper investigates an intermediate
solution between these two. Our results are supported by a custom CAD
tool that explores this FPGA-ASIC design space and enables a standard-
cell based physical synthesis flow that is flexible and compatible with
current design practices. Layouts are presented for obfuscated circuits
in a 65nm commercial technology, demonstrating the attained obfuscation
both graphically and quantitatively. Furthermore, our security analysis
revealed that for truly hiding the circuit’s intent (not only portions of its
structure), the obfuscated design also has to chiefly resemble an FPGA:
only some small amount of logic can be made static for an adversary to
remain unaware of what the circuit does.

Index Terms—Hardware Obfuscation, Secure ASIC Design, CAD,
Reconfigurable obfuscation, Reverse engineering

I. INTRODUCTION

Shipment of semiconductor devices is forecast to surpass one
trillion units in the year 2021, the third time this mark is surpassed
in a calendar year since 2018 [1]. The majority of those devices are
being manufactured by foundries that subscribe to the fab-for-hire
model. A rogue element within the foundry can mount fabrication-
time attacks, i.e., the foundry and its employees are considered
potential adversaries. Many potential threats regarding third-party
foundries have been studied in recent years, include tampering,
counterfeiting, reverse engineering, and overproduction [2]. On the
other hand, many techniques have been devised to mitigate threats
from untrusted fabrication. Countermeasure techniques to increase
the IC security against not only third-party foundries but also from
the end-user have been recently demonstrated. Notable examples
include IC Camouflaging [3]–[5], Logic Locking [6]–[8], and Split
Manufacturing [9], [10].

Generally speaking, all of the aforementioned countermeasures
attempt to “hide” the design from adversaries and can be classified
as obfuscation techniques. Unfortunately, none of these techniques is
currently adopted in large-scale production of ICs, for reasons that
include (lack of) practicality [9] and insufficient security guarantees
[11]. Another approach towards obfuscation is the use of an FPGA (or
FPGA-like) design, where the configuration bitstream serves as a key
to unlock the functionality of the circuit [12]. Our paper too explores
this possibility. The fabric in an FPGA contains reconfigurable
elements, but this flexibility incurs a limited performance. On the
other hand, ASIC requires one-time placement, it is static (non-
reconfigurable), but it provides best-in-class performance. As shown
in Fig. 1, performance increases if we move from right to left.
Contrarily, area, obfuscation, and flexibility increase if we move from

This work was partially supported by the EC through the European Social
Fund in the context of the project “ICT programme”. It was also partially
supported by the Estonian Research Council grant MOBERC35.

Fig. 1: The design obfuscation landscape, from ASICs to FPGAs.
The relative sizes are notional.

left to right. However, we argue that neither extremes of the spectrum
are a good design point for circuits that have stringent security and
performance constraints. An intermediate solution is a better trade-
off and this is precisely the motivation for our work. We term our
in-between solution an “embedded ASIC” (eASIC).

Design obfuscation concept: In this work, we propose to obfus-
cate a design by exploiting the best of both worlds. The generated
device is a hybrid which includes reconfigurable elements (analogous
to the FPGA) and also includes ASIC cells as static elements, i.e.,
gates with fixed functionality after fabrication. Previous research on
obfuscation by reconfigurable elements has focused on keeping the
reconfigurable portion as small as possible [13], [14], which is logical
if the goal is to keep overheads under control. However, we later
show that true hiding of the circuit’s intent requires a high degree of
obfuscation that is usually not explored in the state of the art. Thus,
our eASIC device is largely non-functional until it is programmed.
Our main contribution is a tool for automatically obfuscating a design
in the form of eASIC, where the obfuscation range can be from 0 to
100%. Furthermore, its physical synthesis flow is standard-cell based
that is compatible with current design and fabrication practices.

II. A CAD FLOW FOR EASIC

Our CAD flow is centered around a tool named Tuneable Design
Obfuscation Technique using eASIC, or TOTe for short. This section
explains the CAD flow of eASIC and TOTe’s main features. TOTe
generates a hybrid design with static and reconfigurable elements,
which we refer to as eASIC. For the reconfigurable elements, we
implement the logic utilizing the notion of programmable LUTs
(Look Up Tables) - same as in FPGAs. The complete TOTe design
flow for generating an eASIC is shown in Fig. 2 and it consists of
three phases.

In the first phase of our flow, the design under obfuscation,
described in register-transfer level (RTL) form, is synthesized using
a commercial FPGA synthesis tool. As a result, the netlist contains
all typical FPGA primitives, i.e., FFs, MUXs, and LUTs. The input

ar
X

iv
:2

11
0.

05
33

5v
3

 [
cs

.C
R

]
 1

3
O

ct
 2

02
1

+

D
es

ig
n

sy
nt

he
si

s
ph

as
e

(F
PG

A
)

RTL

FPGA synthesis tool

A
SI

C
flo

w
Timing constraint

x
: R

em
ov

al
 o

f a
 L

U
T

fr
om

 F
PG

A
 b

as
ed

 n
et

lis
t

eASIC

01010?O
bf

us
ca

ti
on

 u
si

ng
 T

O
Te

(C
us

to
m

 to
ol

)

Standard
cell library

Parser

text

textReconfig.
Logic

Static
Logic

x

Repeat

Timing reports
from FPGA

Synthesized
Verilog Netlist

Hybrid design Obfuscation engine

Obfuscated hybrid Verilog file

Bitstream

Timing engine

Synthesis Place & Route

Fabrication

Tape-out

Fig. 2: The CAD flow for eASIC, combining FPGA and ASIC
synthesis.

design requires no special annotations, synthesis pragmas, or any
other change in its representation.

Next, in the second phase, TOTe requires the ASIC standard cell
library of choice. As highlighted in the center of Fig. 2, the core
idea of TOTe is to replace reconfigurable logic for static logic.
For TOTe, only the LUTs are treated as reconfigurable logic, and,
any other primitives from the FPGA synthesis are automatically
transformed into static logic. For this phase, the designer provides
an obfuscation target in terms of percentage, which determines the
portion of logic that will remain reconfigurable as LUTs. TOTe builds
a tree representation of the circuit where primitive types are annotated
for every instance. For LUTs, in particular, the tool also annotates
their masking patterns (i.e., the portion of the bitstream associated
with an individual LUT). By using truth tables populated by the
masking patterns, TOTe builds combinational logic that is equivalent
to the LUT’s intended usage. This equivalent logic is what we refer to
as the static logic that is used for replacing the reconfigurable logic.
Notice that the equivalent logic is not a hardwired configurable LUT.

TOTe utilizes its own obfuscation and timing engines. These
engines drive the security vs. performance trade-offs of the tool.
Algorithm 1 highlights the main loop of the tool and its different
operations. Here, L is a list of LUTs, P is a list of timed paths, and
obfc is the obfuscation target criterion. The variables LST and LRE

are lists of LUTs in static and reconfigurable form, respectively. The
obfuscation engine is executed until the desired number (determined
by the obfuscation target) of LUTs has been transformed into static
logic (line 3), where the SIZE OF function returns the size of a
list. Inside the obfuscation inner loop, the critical path is identified
(line 4) using the FIND CRITICAL function, then the slowest LUT
on that path is identified using the FIND SLOWEST function (line
5). If the identified LUT is a reconfigurable LUT (line 6), the lists
of LUTs are updated (lines 7-8) and the timing engine recalculates
the timing of affected paths (line 9). If the identified LUT is not a
reconfigurable LUT (line 10), the path is removed (line 11) and the
loop continues (line 3). The INSERT and REMOVE functions update
the lists as hinted by their names. The function GEN CASE 0 1

generates the constraints to force the values of the LUTs inputs for
the timing and power analysis during physical synthesis, otherwise,
each LUT would be timed for its worst timing arc instead of the real
implemented timing arc when the LUT is programmed. The algorithm
merges LST and LRE to generate eASIC and returns. Finally, TOTe
exports an obfuscated hybrid Verilog file (eASIC), timing report, and
area report. A designer can repeat this procedure until he achieves
his obfuscation and performance targets.

Algorithm 1: Tuneable Obfuscation Technique using eASIC
Input: L (list of LUTs), P (list of paths), obfc

(obfuscation criterion)

Output: eASIC ← f(input)
1 LST ← φ

2 LRE ← L

3 while SIZE OF (LST) ≤ obfc do
4 path ← FIND CRITICAL(P)
5 lut ← FIND SLOWEST(path)
6 if lut ∈ LRE then
7 INSERT(lut, LST)
8 REMOVE(lut, LRE)
9 UPDATE TIMING(lut, P)

10 else
11 REMOVE(path, P)

12 for each lut ∈ LRE do
13 GEN CASE 0 1(lut)

14 eASIC ← LST ∪ LRE

In the third and final phase, the obfuscated netlist from TOTe is
synthesized using any commercial ASIC CAD tool and implemented
using an also commercial physical synthesis tool where traditional
P&R, CTS, DRC, LVS, etc. steps are executed. Finally, the tapeout
database is sent to the foundry for fabrication. Once the fabricated
parts are delivered, they have to be programmed (i.e., using a
bitstream as in FGPAs) for the eASIC design to be completed and
functional.

III. EXPERIMENTAL RESULTS USING TOTE

This section reports the analysis of security versus performance,
security versus area for selected designs and reports the results for
numerous designs after obfuscation. For all experimental results that
follow, FPGA synthesis was executed in Vivado and the targeted
device is Kintex-7 XC7K325T-2FFG900C, which contains only 6-
input LUTs. For the ASIC flow, the implementations are done
using a commercial 65nm PDK with three standard cell flavors
(LVT/SVT/HVT) and tools from Cadence suite (i.e., Genus and
Innovus). However, we emphasize that TOTe is agnostic with respect
to PDKs, libraries, and tools. In the experiments that follow, we
prevent the FGPA synthesis from inferring any BRAM or instantiating
any DSP cells. This choice makes for very clear trade-offs when
obfuscating the logic. Nevertheless, if a given design requires memory
cells, TOTe has the capability to translate the inferred BRAMs into
compiled SRAMs for the specific ASIC technology utilized.

A. Custom standard-cell based LUTs

The premise of eASIC is to have reconfigurable and static elements
that can be integrated transparently. For this reason, we have designed
our own custom LUTs (LUT1, LUT2,..., LUT6) by following VPR’s
template [15]. Different from FPGAs that generally implement only
one LUT size, for eASIC we have the flexibility to implement more
than one size because our design intent will not change. By doing

Fig. 3: The layout of macros for LUT4, LUT5 and LUT6. Implemen-
tation was executed in Cadence Innovus.

this, we preserve area and potentially increase the performance of
eASIC. The layouts for LUT4, LUT5, and LUT6 macros are shown
in Fig. 3. These blocks are highly compact since the main design
goal for them was area/density. Each LUT has its own registers for
storing the configuration, a functionality that is enabled by including
three extra configuration pins (serial in, serial out, and enable).
The LUTs are connected to one another in a daisy chain that is
analogous to a scan chain. We chose a flip-flop based implementation
to make our framework easily portable between technologies, and
also, make the floorplan and placement almost effortless. Using
SRAM for storing those bits, on the other hand, can save area and
power but requires extra effort during implementation since memories
need special power routing and have to be strategically placed to
achieve the best performance.

B. Design Space Exploration in TOTe

For our first experiment, we selected a small but representative
design which covers all possible FPGA primitives: a schoolbook
multiplier (SBM), which is a bit-serial polynomial multiplication
circuit. For a SBM design that is synthesized targeting a very high
frequency, the CP and sumCP become, as calculated by TOTe’s
timing engine, 0.490 ns and 16088.69 ns, respectively. These values
correspond to a design obfuscated at 100%, i.e., the design has only
reconfigurable logic. The absolute accuracy of these values is not
relevant since final timing analysis is performed using a commercial
physical synthesis engine later.

While the SBM design is an interesting motivational example, it
showed that CP tends to saturate while the sumCP continues to
improve as the obfuscation is reduced. Next, we wanted to determine
if the same saturation trend appears for other designs and the results
are reported in Table I. From these experiments, it is possible
to conclude that the performance of numerous designs saturates
incredibly fast as we decrease the obfuscation level, even when
the obfuscation range is limited to 86-100%. Moreover, the results
for AES-128 [16], RISC-V, and SHAKE-256 have been depicted in
Fig. 4. Several other designs, including ISCAS’85 benchmarks and
known opencores, have been evaluated. The complete set of results
can be found in our git repository [17]. Concerning runtime, TOTe
requires only a few minutes for big designs. Then, commercial CAD
tools require a considerable amount of time for logic and physical
synthesis (same as conventional ASIC flow). In summary, TOTe does
not become a bottleneck in the design flow.

IV. SECURITY ANALYSIS

As compared to conventional logic locking, the LUTs introduced in
eASIC are the key-gate equivalents. In principle, a single LUTn ought
to be equivalent to 2n XOR/XNOR key-gates. In practice, the LUT
logic has similarities to a run of key-gates (see [7]) due to the n-to-1
multiplexing nature of it, which reduces the search space and may

TABLE I: Detailed results for selected designs using TOTe

Design Obf.
(%)

sumCP
(ns)

CP
(ns)

Area-RE
(µm2)

Area-ST
(µm2)

LUT
(RE)

LUT
(ST)

SBM

98 16088.690 0.490 13190.04 0 29 0
95 15895.826 0.484 12762.00 21.40 28 1
92 15877.962 0.464 12547.80 32.11 27 2
89 15458.506 0.461 12438.72 37.56 26 3
86 15370.682 0.459 12224.52 48.27 25 4

PID

98 2547.581 0.756 445590.0 2816.82 896 18
95 2466.254 0.642 432340.92 9441.36 869 45
92 2391.963 0.592 421365.95 14928.84 841 73
89 2348.613 0.568 407273.76 21974.94 814 100
86 2322.462 0.543 392345.64 29439.00 787 127

SHA-256

98 7425.731 0.962 1313150.76 10291.86 2195 44
95 7354.593 0.871 1275984.00 28875.24 2128 111
92 7322.155 0.871 1233448.56 50142.96 2060 179
89 7301.945 0.871 1179674.64 77029.92 1992 246
86 7164.025 0.871 1125799.56 103967.46 1925 313

FPU

98 2909.063 0.707 1031676.84 1250.028 2487 50
95 2734.008 0.650 1003225.68 2672.586 2412 126
92 2572.952 0.650 966715.20 4498.11 2336 202
89 2478.732 0.650 935060.04 6080.868 2259 279
86 2410.211 0.650 893005.56 8183.592 2183 355

Fig. 4: Obfuscation results for AES-128, RISC-V and SHAKE-256
using TOTe.

possibly make eASIC vulnerable to well-known oracle-based attacks
(e.g., SAT). However, notice that we are considering designs with
target obfuscation rates higher than 86%, which results in bitstreams
with thousands of bits. Even for a small and combinational design as
the ISCAS’85 c7552, 50% of obfuscation requires a bitstream with
approximately 11k bits. The SAT attack is not able to find the correct
key, even running for more than 60 hours. On the other hand, the same
circuit with 10% of obfuscation and a bitstream in the order of 1k
bits, the SAT attack was successful, requiring less than a minute to
retrieve the correct key. In general, the high obfuscation percentages
obtained in eASIC discourage an adversary from performing SAT
attacks. Similar findings were reported in [13], [14], [18]. However,
our proposed eASIC design potentially creates attack vectors that
other approaches do not since a portion of the design is exposed
(from an adversary point of view). We will focus on these attacks in
the text that follows.

A. Threat Model

In our considered threat model, the primary adversary is the
untrusted foundry. We make no distinction whether the adversary
is institutional or a rogue employee. Assuming the security of an
eASIC design is a function of its static logic (fully exposed) and
reconfigurable logic (protected by a bitstream that serves as a key),
we make the following assumptions:

• The main adversarial goal is to reverse engineer the design in
order to pirate its IPs, overproduce the IC, or even to insert

Fig. 5: The search space of LUT6 as it shrinks with different attacks.

sophisticated hardware trojans. For this goal, the adversary must
recreate the bistream.

• The adversary goal might also be to identify the circuit intent,
even in the presence of obfuscation. For this goal, the adversary
does not need to recreate the bistream.

• The adversary has access to the GDSII file of the eASIC design.
He or she is skilled in IC design and has no difficulty in
understanding this layout representation. The adversary enjoys
access to state-of-the-art CAD tools for this end.

• The attacker can recognize the standard cells, thus the gate-level
netlist of the obfuscated circuit can be easily recovered [19].

• We assume that the attacker can differentiate between design
inputs and reconfiguration pins [11], [20], thus being able to
effortlessly identify all LUTs and their programming order.

• We assume the adversary can group the standard cells present in
the static logic and convert them back into reconfigurable logic
(i.e., LUT representation)1.

In order to evaluate the security hardness of eASIC, we propose
two different attacks: one based on the structure of design and another
based on the composition of known different circuits. Being so,
we believe that the adversary can learn and extract information by
exploiting the static portion of the design, including: (1) the frequency
of masking patterns (2) the composition of different designs.

B. Structural Analysis Attack

Goal: by statistical analysis means, decrease the key search space
and attempt to recover the bitstream.

We recall again that the obfuscation engine of TOTe utilizes six
variants of LUTs (LUT1, LUT2, ..., LUT6) during the obfuscation
phase. However, the majority of the LUTs are LUT6 due to the
packing algorithm executed during FPGA implementation. Therefore,
let us assume without loss of generality, that any FPGA-synthesized
circuit contains only instances of LUT6s for our security analysis.

As we mentioned before, the key search space is 264 for a single
LUT6. But this assumption only holds if the FPGA synthesis is
actually capable of exercising the entire key search space, which
our results reveal that is far from possible. We have synthesized a
large number of representative designs (>30) and counted how many
unique LUT6 masking patterns appear in the corresponding netlists.
Designs of varied complexity, size, and functionality where added
until the combined number of unique masking patterns appears to
settle, forming a set of m = 3376 elements. This result alone, albeit
being empirical, reduces the global search space from L1 to L2 as
illustrated in Fig. 5.

1This is a very generous concession since the static logic is repeatedly
optimized during logic and physical synthesis. Nevertheless, we err on the
side of caution and assume the adversary can achieve a perfect reconstruction
of LUTs, which by itself is a reverse engineering problem.

Fig. 6: The structural analysis of MIPS and RISC-V.

In the next step, we targeted two processor designs in our statistical
analysis: MIPS and RISC-V. For each circuit, we utilize tuples
of 〈pattern, frequency〉 for tracking how often masking patterns
repeat. The tuples are referenced by integer identifiers and ordered
by frequency. Our analysis reveals that the MIPS netlist has 776
unique LUTs and that there are very few outliers that occur more
than 50 times. Similarly, for RISC-V, there are 628 unique LUTs
and only 3 occur more than 100 times. In practice, if the attacker
could know for a fact that the obfuscated circuits are indeed MIPS
and RISC-V, the search space would shrink further. The shrunk search
spaces are labeled L3 in Fig. 5. The question then becomes whether
the static portion of the circuit is large enough for the adversary to
be confident that the circuit under attack can be labelled as circuit
C1, C2, or Cn. We investigate this possibility by further analysing the
behaviour of the frequency of masking patterns, as depicted in Fig. 6.
For this, we utilized polynomial trendlines for a portion of identifier
of masking pattern, considering netlists generated by TOTe at 98%,
95%, 92%, 89%, and 86% obfuscation levels. It is noteworthy that
the trendlines become better frequency predictors as the obfuscation
level is decreased. For RISC-V, in particular, the adversary can guess
a small number outliers and the best guess (when obfuscation is 86%)
is far from the original frequencies (>100).

C. Composition Analysis Attack

Goal: identify the circuit by correlation to known circuits.
This attack also exploits the frequency of the LUT6, but here we

correlate entire designs (instead of pattern-frequency tuples) based
on their composition. We consider that the attack is successful if the
adversary is able to identify the circuit (see Threat model, 2nd bullet).
Breaking the key is not necessary for this attack.

In this experiment, we performed correlation analysis for the well-
known SHA-256 crypto core as shown in Fig. 7. The objective of this
experiment is to analyze the leaked information from the static part of
an obfuscated design against a database2 of circuits that are known to
the attacker. We have obfuscated SHA-256 in the 70-100% range and
then correlated the static portion of the design with the database of
known circuits. In Fig. 7, we show the results where the x-axis shows
the obfuscation percentage and the y-axis shows correlation (right)
and number of unique LUTs (left). For this circuit, three regions of

2We assume the adversary can obtain samples of open source cores from
repositories and execute FPGA synthesis on them with his tool of choice.

TABLE II: Results for the implementation of SHA-256 for different obfuscation levels

CAD
Flow

Obfuscation Density Area (µm2) Freq.
(MHz)

Leakage
(mW)

Dynamic
Power (mW)

Total Power
(mW)

LUT # Buffer # Comb. # Inv. # Sequential

FPGA 100% – – 77 158 33 191 2238 – – – 1830
TOTe 100% 46% 1412227.08 166.7 17.01 257.23 274.24 2238 6234 82756 4686 105128
TOTe 90% 45% 1274690.16 178.6 15.34 246.87 262.21 2015 5411 83452 4188 94876
TOTe 85% 46% 1215328.32 200 14.62 263.20 277.82 1904 5249 79626 3972 90420
TOTe 80% 54% 1135752.20 200 13.93 248.84 262.77 1792 7699 74000 3755 83790
ASIC 0% 71% 43097.40 200 0.525 6.405 6.93 0 119 3165 128 1806
ASIC 0% 71% 60563.52 769 0.862 32.69 33.55 0 336 3165 128 1806

Fig. 7: The correlation of SHA-256 versus numerous other designs.

interest can be defined: 97-100% (no correlation), 86-96% (strong
correlation to another circuit), and 70-85% (correlation to itself).

This attack reveals that if the adversary goal is solely to identify
the circuit’s intent, eASIC can be as vulnerable as an ASIC design.
To mitigate this undesirable effect, obfuscation levels should remain
relatively high. Otherwise, if the obfuscation lies between 70 and
84%, the search space would shift from L3 to L4 as shown in Fig. 5.
This is a key finding of our manuscript and will guide our design
choices when implementing the physical synthesis of eASIC designs
in the section that follows.

V. PHYSICAL SYNTHESIS FOR EASIC

This section contains the physical implementation results for an
obfuscated SHA-256 core. We have selected SHA-256 as it is popular
and widely used in cryptography. The variants of the design with
different obfuscation levels are implemented with the aid of the LUTs
defined in Section III-A. The results obtained after implementation
are focused on performance vs. area trade-offs for the 80-100%
obfuscation range as determined by the security analysis of Fig.
7. Initially, we synthesized and implemented the SHA-256 core on
FPGA. This implementation achieves a frequency of only 77 MHz
(for reference, the Kintex-7 family is produced on a 28nm CMOS
technology). To start the analysis, we select 100% obfuscation as
a baseline design because it is fully reconfigurable and somewhat
analogous to an FPGA design.

The implementation results for 0%, 80%, 85%, 90%, and 100%
obfuscation are listed in Table II. These are obtained after physical
synthesis and are for the worst process corner (SS) and a nominal
temperature of 25◦C. It is noteworthy that the performance of the
design is increasing as we decrease the level of security. This
behaviour is clearly depicted in the fourth column of Table II and
matches the goal we set from the beginning: to trade performance for
security. Here we also show that performance saturates rather quickly,
as predicted by TOTe in Section III-B. The area of the design is

proportional to the obfuscation level which means that increasing the
security of design will cause area overhead. As we only exploit LUT
primitives for promoting obfuscation, the number of LUTs increases
with the obfuscation level. In the same manner, leakage and dynamic
power figures are proportional to security as reconfigurable logic is
less efficient than static logic. The results obtained from the physical
synthesis justify trade-offs and the last five columns of Table II show
the resource requirements.

The first three panels (a, b and c) of Fig. 8 illustrate the layouts
for 80%, 85% and 90% obfuscation levels. The dimensions of the
layouts are indicated on the bottom and left sides of each panel.
All the six variants of LUTs are highlighted with different colors
and the static logic part of eASIC is highlighted in red – notice
that, as expected, the design remains primarily a sea of LUTs - the
reconfigurable logic part. The majority of those LUTs are LUT6, thus
the layouts appear to be dominated by yellow boxes. The placement
of LUTs is done by the ASIC placement tool. For this, we modified
the LUT macros to behave as regular standard cells. Then, the placer
exploits its optimization strategies to place each LUT efficiently.
From a magnified view, the mixed structure of LUT macros and
standard cells clearly depicts the placement pattern, and that spaces
between macros are usually filled with standard cells (static logic
part). Notice how the LUT macros align with the standard cell rows,
allowing for the entire design to have a uniform power rail and power
stripe configuration.

VI. COMPARISON AND DISCUSSION

From the many results, we conclude that obfuscation levels should
be relatively high to achieve a considerable security, thus the majority
of the eASIC logic should be reconfigurable logic (i.e., LUTs).
Having a large portion of reconfigurable logic provides an opportunity
to correct the issues/bugs that could be easily fixed during the
reconfiguration phase. Naturally, there are limitations since a portion
of the system consists of static logic and cannot be modified. This
limitation could be eased if the eASIC layout were to include spare
LUTs. These same spare LUTs could serve as decoy LUTs for
preventing the composition attack described in Section IV-C, but at
a cost in area, power, and likely timing as well. To some degree,
those spare LUTs could also be used to make side-channel attacks
less successful. These possibilities are not studied in this manuscript
but remain promising concepts for future work.

Our eASIC device presents a largely regular structure upon visual
inspection. This effect can be modulated if it proves to be effective
against a reverse engineering adversary. For instance, we could have
mapped LUTs of all sizes to LUT6, which would increase the layout
regularity (i.e., making it only red and yellow). Similarly, LUTs
could have been laid out in a perfect grid fashion. These two design
choices are relatively simple to implement in physical synthesis but
carry overheads that we deemed not advantageous, even if they make
perfect sense for an FPGA device.

1450 µm

14
50

 µ
m

1600 µm

16
0

0
 µ

m

1675 µm

1
6

75
 µ

m

(a) SHA-256 with 80% obfuscation (b) SHA-256 with 85% obfuscation (c) SHA-256 with 90% obfuscation
 SHA-256 with 80% obfuscation

(Magnified view)

LUT1 LUT2 LUT3

LUT4 LUT5 LUT6

Standard cells

Fig. 8: Implementation results for SHA-256 with different obfuscation levels.

A recent trend in obfuscation research is the use of embedded
FPGA (eFPGA) [21], [22]. A very similar approach is also found
in [23], where authors perform obfuscation with transistor-level
granularity. While there are advantages to this practice, it has been
used selectively to only protect key portions of a design and therefore
keep the performance penalty as low as possible. The challenge is in
determining which portions of the circuit merit protection and which
ones do not. Our eASIC approach bypasses this question almost
completely by only revealing (portions of) critical paths when they are
selected to become static logic, which we consider an advantage if the
ASIC-equivalent performance can be sacrificed. In [24], the authors
present a top-down methodology to implement ASICs with eFPGAs.
Their designs share many of the advantages of our eASIC solution
while presenting more regularity than our designs (they make use of
logic tiles as in commercial FPGAs). Our tile-free design trades this
regularity for performance as evidenced by the layout in Fig. 8.

VII. CONCLUSIONS

In this paper, we have developed a custom tool (TOTe) that
obfuscates a design and transforms it into an eASIC device. Our
eASIC solution contrasts with the current practice of eFPGA for
obfuscation and this is not by coincidence: our experimental results
show that obfuscation rates have to be high to protect not only
the bitstream but also the design’s intent. This is a key finding of
our research which we hope can help to steer current obfuscation
practices in the literature. Our findings are also validated in a
commercial physical synthesis tool with industry-strength timing and
power analysis, from which we confirm that TOTe’s trade-off analysis
is sufficiently accurate. Our future research will focus on the ideas
put forward in our discussion, where we argue that eASIC has many
benefits beyond obfuscation.

REFERENCES

[1] IC Insights, “Semiconductor units forecast to exceed
1 trillion devices in 2021,” [Online]. Available at:
https://www.icinsights.com/news/bulletins/Semiconductor-Units-
Forecast-To-Exceed-1-Trillion-Devices-Again-In-2021/.

[2] S. M. Ben, “Security challenges and requirements for industrial
control systems in the semiconductor manufacturing sector,” 2012.
[Online]. Available: https://csrc.nist.gov/CSRC/media/Presentations/
Security-Challenges-and-Requirements-for-Control-S/images-media/
presentation-3 salem.pdf

[3] M. Yasin et al., “Removal attacks on logic locking and camouflaging
techniques,” IEEE Transactions on Emerging Topics in Computing,
vol. 8, no. 2, pp. 517–532, 2020.

[4] R. P. Cocchi et al., “Circuit camouflage integration for hardware ip
protection,” in DAC, 2014, pp. 1–5.

[5] M. Li et al., “Provably secure camouflaging strategy for ic protection,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 38, no. 8, pp. 1399–1412, 2019.

[6] K. Zamiri Azar et al., “Threats on logic locking: A decade later,” in
GLSVLSI ’19, 2019, p. 471–476.

[7] M. Yasin et al., “On improving the security of logic locking,” IEEE
TCAD, vol. 35, no. 9, pp. 1411–1424, 2016.

[8] J. Sweeney et al., “Latch-based logic locking,” in 2020 IEEE HOST,
2020, pp. 132–141.

[9] T. D. Perez et al., “A survey on split manufacturing: Attacks, defenses,
and challenges,” IEEE Access, vol. 8, pp. 184 013–184 035, 2020.

[10] J. Rajendran et al., “Is split manufacturing secure?” in 2013 DATE, 2013,
pp. 1259–1264.

[11] P. Subramanyan et al., “Evaluating the security of logic encryption
algorithms,” in 2015 IEEE HOST, 2015, pp. 137–143.

[12] B. Liu et al., “Embedded reconfigurable logic for asic design obfuscation
against supply chain attacks,” in 2014 DATE, 2014, pp. 1–6.

[13] H. Mardani Kamali et al., “Lut-lock: A novel lut-based logic obfuscation
for fpga-bitstream and asic-hardware protection,” in 2018 IEEE ISVLSI,
2018, pp. 405–410.

[14] S. D. Chowdhury et al., “Enhancing sat-attack resiliency and cost-
effectiveness of reconfigurable-logic-based circuit obfuscation,” in 2021
IEEE ISCAS, 2021, pp. 1–5.

[15] K. E. Murray et al., “Vtr 8: High-performance cad and customizable
fpga architecture modelling,” ACM Transactions on Reconfigurable
Technology and Systems, vol. 13, no. 2, 2020.

[16] H. Hsing, “Aes-128,” 2013. [Online]. Available: https://opencores.org/
projects/tiny aes

[17] Z. U. Abideen et al., “TOTe (Tuneable Design Obfus-
cation Technique using eASIC),” 2021. [Online]. Available:
https://github.com/Centre-for-Hardware-Security/eASIC

[18] G. Kolhe et al., “Security and complexity analysis of lut-based obfus-
cation: From blueprint to reality,” in 2019 IEEE ICCAD, 2019, pp. 1–8.

[19] R. Torrance et al., “The state-of-the-art in ic reverse engineering,” in
CHES 2009, C. Clavier et al., Eds., 2009, pp. 363–381.

[20] M. Yasin et al., “Provably-secure logic locking: From theory to practice,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, p. 1601–1618.

[21] B. Hu et al., “Functional obfuscation of hardware accelerators through
selective partial design extraction onto an embedded fpga,” in GLSVLSI
’19, 2019, p. 171–176.

[22] J. Chen et al., “DECOY: DEflection-Driven HLS-Based Computation
Partitioning for Obfuscating Intellectual PropertY,” in 2020 IEEE DAC,
ser. DAC ’20. IEEE Press, 2020.

[23] M. M. Shihab et al., “Design obfuscation through selective post-
fabrication transistor-level programming,” in 2019 DATE, 2019, pp. 528–
533.

[24] P. Mohan et al., “Top-down physical design of soft embedded fpga
fabrics,” in The 2021 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 2021, p. 1–10.

https://csrc.nist.gov/CSRC/media/Presentations/Security-Challenges-and-Requirements-for-Control-S/images-media/presentation-3_salem.pdf
https://csrc.nist.gov/CSRC/media/Presentations/Security-Challenges-and-Requirements-for-Control-S/images-media/presentation-3_salem.pdf
https://csrc.nist.gov/CSRC/media/Presentations/Security-Challenges-and-Requirements-for-Control-S/images-media/presentation-3_salem.pdf
https://opencores.org/projects/tiny_aes
https://opencores.org/projects/tiny_aes
https://github.com/Centre-for-Hardware-Security/eASIC

	I Introduction
	II A CAD flow for eASIC
	III Experimental results using TOTe
	III-A Custom standard-cell based LUTs
	III-B Design Space Exploration in TOTe

	IV Security Analysis
	IV-A Threat Model
	IV-B Structural Analysis Attack
	IV-C Composition Analysis Attack

	V Physical Synthesis for eASIC
	VI Comparison and discussion
	VII Conclusions
	References

