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Abstract—The hardware security community has made significant
advances in detecting Hardware Trojan vulnerabilities using software
fuzzing-inspired automated analysis. However, the Electronic Design
Automation (EDA) code base itself remains under-examined by the same
techniques. Our experiments in fuzzing EDA tools demonstrate that,
indeed, they are prone to software bugs. As a consequence, this paper
unveils HeisenTrojan attacks, a new hardware attack that does not
generate harmful hardware, but rather, exploits software vulnerabilities
in the EDA tools themselves. A key feature of HeisenTrojan attacks is that
they are capable of deploying a malicious payload on the system hosting
the EDA tools without triggering verification tools because HeisenTrojan
attacks do not rely on superfluous or malicious hardware that would
otherwise be noticeable. The aim of a HeisenTrojan attack is to execute
arbitrary code on the system on which the vulnerable EDA tool is hosted,
thereby establishing a permanent presence and providing a beachhead
for intrusion into that system. Our analysis reveals 83% of the EDA tools
analyzed have exploitable bugs. In what follows, we demonstrate an end-
to-end attack and provide analysis on the existing capabilities of fuzzers
to find HeisenTrojan attacks in order to emphasize their practicality and
the need to secure EDA tools against them.

I. INTRODUCTION

Recently, significant effort in the hardware security community has
been paid to the automated analysis of Hardware Trojan vulnerability
detection [1], [2] by borrowing concepts from software fuzzing. Less
attention, however, has been paid in applying those same concepts
to the analysis of the EDA code base itself. EDA tools are complex
and sophisticated pieces of software comprising millions of lines of
code (MLoC) and heavily used in the community. Moreover, there is
a clear correlation between the number of lines of code, third-party
library reliance, and number of users for a tool on the one hand and
the number of errors and reported vulnerabilities on the other [3],
[4]. This insight is, in part, what led us to ask if we can we expect
that the EDA tool itself is bug free.

Our results indicate that, similar to other existing complex code
bases, EDA tools contain buggy code. We evaluate a representative
set of common EDA tools and found an exploitable bug in 83% of
tools analyzed, other instances of bugs that may be exploitable given a
motivated attacker with enough time, and still other instances of bugs
that, while not fully exploitable for a full system compromise, can
be used as means of rendering the tool unusable (Denial of Service).

In this paper we present a new class of hardware attacks called
HeisenTrojans. To begin, we consider these hardware attacks be-
cause the malicious input is embedded in hardware-related compo-
nents such as a hardware descrption language (HDL), simulation
test vectors, and waveforms. As such, we are using “hardware”
in the broad sense to include anything typically involved in the
EDA toolchain and hardware manufacturing life cycle. While we say
throughout the paper that, for instance, the HDL in a HeisenTrojan
is malicious, it is not inherently so as it does not generate any

Fig. 1: Borrowing from the famous double slit experiment, a Heisen-
Trojan projected onto an EDA tool exhibits benign properties if the
EDA tool is safe, but is malicious if the EDA tool is vulnerable.

malicious or superfluous hardware. Instead, as shown in Figure 1,
a HeisenTrojan aims to exploit vulnerabilities only on buggy EDA
tools to deploy a malicious payload in the system running the tool
in order to compromise it. This duality property is the inspiration
behind the name.

The goal of a HeisenTrojan attack is to gain arbitrary code
execution on the machine hosting the vulnerable EDA tool. This,
in itself, typically the first step for an attacker who wishes to obtain
persistence as in a supply-chain attack [5]. For ethical considerations,
in this work we do not show the precise steps to achieve a full
system compromise. We do, however, use this as justification to show
how a HeisenTrojan can be a significant threat to organizations and
companies by presenting how a full HeisenTrojan-based attack can
be developed. Further, we consider HeisenTrojans relevant for two
additional reasons.

First, HeisenTrojan attacks represent a new attack vector to the
hardware security community. We do not claim that triggering soft-
ware vulnerabilities to gain arbitrary code execution is new, but rather,
that targeting software vulnerabilities in EDA tools via maliciously
crafted inputs is new. Concern in the hardware security community is
typically focused on preventing and/or detecting maliciously crafted
HDL that attempts to embed a traditional Hardware Trojan. Little
attention, if any, has been paid to the EDA tools themselves1. We
show that this should be a concern. Further, it is an unexplored attack
surface by virtue of its newness. To the best of our knowledge, this is
the first paper to report an end-to-end attack targeting an EDA tool.

1Recent work explored attacks stemming from malicious EDA tools but
focused on their ability, in such a scenario, to surreptitiously embed hardware
Trojans [6]. More will be said regarding this, and other, related works in
Section III.
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Second, HeisenTrojans can be practically exploited in a variety
of relevant scenarios. We will present the details of an end-to-end
attack in Section IV-B. As shown in Figure 2, at a high-level, we
reason that an attacker can leverage the HDL design, development,
and integration process. The first relies on the complexity of HDL
designs. For instance, we found we can hide the offending input in a
large design, with MLoC, that will unlikely be analyzed line-by-line.
Furthermore, by their nature, HeisenTrojans do not generate mali-
cious or superfluous hardware and thus go undetected by verification
tools. The second scenario makes use of the need to guard intellectual
property (IP) by releasing it to third-party vendors [7]. In such a
scenario, it is trivial to embed a maliciously crafted input which
can exploit vulnerabilities in EDA tools. The third scenario exploits
shared computing environments. FPGA resources are currently scant
and expensive. It is not uncommon to turn to cloud providers who
offer/lease relatively cheap FPGA resources to users in a hosted
environment as an alternative. This allows the attack to arbitrarily
upload2 malicious input to a cloud-hosted EDA tool.

A. Motivation

We aim to address several motivating points in introducing Heisen-
Trojan attacks that we hope will further aid its understanding:

How did we discover HeisenTrojan attacks? We were inspired
by recent efforts that have demonstrated significant results from
the automated analysis of HDL using software fuzzing techniques.
However, it is not our aim to improve those results, but rather, to
query the EDA tools themselves by treating them purely as pieces
of software. For instance, an EDA tool accepts HDL as input for
synthesis and a combination of HDL and test vector input during
simulation. In each case, we are interested in finding vulnerabilities
in the way the EDA tool handles those inputs when guided by a
mutational fuzzer.

Why do we target synthesis, simulation, and scripting? Generally,
EDA tools take an HDL design and perform synthesis and place-
and-route to generate a bitstream that can then be used to configure
an FPGA, or alternatively target a technology library to generate an
ASIC design. Simulation is performed prior to place-and-route and
uses a testbench as a wrapper to handle the flow of input and output
to/from the design under test. These two cases allow us to mutate
input either in the form of synthesizable HDL or as a test vector input.
We also target traditional EDA tool scripting languages because they
often act as a front-end to automate the design flow from synthesis
to place-and-route, or other types of analysis.

B. Contributions

To summarize, our contributions include:

• We present HeisenTrojan attacks, a unique hardware attack that
is benign if the EDA tool is bug-free but malicious if it is not.

• We highlight the practicality of HeisenTrojan attacks by present-
ing an end-to-end exploit for an EDA tool.

• We present analysis of the effectiveness of fuzzing EDA tools
in the discovery of HeisenTrojan attacks.

In what follows, we will first introduce relevant background in
Section II before discussing related works in Section III. We then
present an end-to-end HeisenTrojan in Section IV. Analysis of the
use of fuzzing to find HeisenTrojans is presented in Section V prior
to a discussion of future work and conclusions in Section VI.

2Within reason and as prescribed by the cloud vendors rules [8].

II. BACKGROUND

A. EDA Tools

We evaluate 6 EDA tools in total including two synthesis tools
(yosys [9], abc [10]), three simulation tools (iverilog [11],
verilator [12], and gtkwave [13]), and a formal analysis tool
(z3 [14]). It is assumed that the readers are familiar with these
tools, so we forego a detailed explanation of their functionality and
internals. Instead, we provide a high-level overview of them in Table
I and refer the reader to their source for further information.

TABLE I: Open-source EDA tools analyzed in this work.

EDA Tool Description

iverilog A verilog HDL compiler for the IEEE-1364 standard
gtkwave A GTK+ based wave viewer
yosys Open source synthesis suite for Verilog
abc A synthesis and verification suite
z3 An SMT solver developed by Microsoft
verilator A verilog HDL simulator

We focus our evaluation on open source EDA tools because they
are easily obtained at no cost and are supportive of bug reporting. We
have reported our results to the tool maintainers. However, they are
still in the patching process so, in this paper, we limit our discussion
to number of bugs found and type. We remove all details of the
EDA tool, insofar as possible, in the end-to-end exploit to abide with
responsible disclosure procedures.

B. Fuzzing

Fuzzing is one of the most successfully employed techniques for
software bug discovery [15] and currently an active area of research
in both the hardware and software communities. Fuzzers are usually
categorized as black-box, white-box, or grey-box depending on the
amount of information they have of the underlying program. A black-
box fuzzer knows nothing about the internal structure of the program,
whereas a white-box fuzzer knows everything about the program’s
internal structure. A grey-box fuzzer sits in-between the two in that
it has limited knowledge of the internals of the program behavior
via coverage-guided feedback provided by some form of program
instrumentation.

In this paper, we rely heavily on coverage-guided fuzzing. Briefly,
the fundamental steps taken in coverage guided fuzzing include:

1) Instrumentation: The program being fuzzed is augmented with
code to record its control-flow during execution.

2) Seed pool Generation: The fuzzer generates candidate inputs
for the program, which can either be user supplied or randomly
generated. The correct generation of an initial seed pool is an
active area of research [16].

3) Input mutation: After each round, selected inputs that exhibit
unique code coverage are mutated (e.g. addition, deletion of
bytes or flipping, rotating bits among several others).

4) Coverage-guided feedback: Code coverage information is
recorded as the seed inputs are executed. This information is
binned, ordered, and then selected (e.g. best/new code coverage)
to generate the new input corpus for the next fuzzing round.

Using open-source tools allows us to use gray-box fuzzers with
little effort. Closed-source EDA tools require the use of black-box
fuzzers which are slow and unreliable. Since our objective is to
demonstrate the dangers of HeisenTrojans we believe this is a fair
compromise.
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Fig. 2: The HeisenTrojan makes use of standard HDL workflows in the industry. Malicious HDL is packed as part of an IP core. This
HDL does not aim to generate malicious hardware. Instead, it triggers and exploits bugs in an HDL synthesis or simulation tool in order to
comprome the system where the tool runs. If fabricated, ICs including HeisenTrojan affected IP cores do not exhibit malicious behavior.

III. RELATED WORKS

We are unaware of any existing effort to fuzz EDA tools and craft
HeisenTrojan attacks. Project F4PGA [17], [18] aims to reverse engi-
neer bitstreams for Lattice and Xilinx FPGAs using what amounts to
fuzzing, but has a completely different goal than our work. However,
we are not claiming complete ingenuity. Analysis of software using
a fuzzer is common-place and likely performed in-house by EDA
tool vendors, or at the very least during the development process for
reporting and fixing bugs prior to release. With that said, we are only
aware of one bug report [19], but there are probably many that go
unreported publicly.

Recent research [20] investigates logic synthesis tools for the
correctness of their output via equivalence checking. The research
is constructed around a tool, Verismith, that generates semantically
correct and deterministic Verilog allowing for comparison between
the generated design and its synthesized netlist. If they differ, then
a bug is registered. A similar analysis is performed for high-level
synthesis tools [21]. Our work, however, is not interested in the
correctness of output for a given logic synthesis tool, but rather,
whether a given EDA tool contains bugs that can triggered via
specially crafted input to gain control of the system. We show that
many such bugs can indeed be found for a variety of commonly used
tools (synthesis, simulation, verification) and present an end-to-end
exploit to demonstrate their impact.

An orthogonal line of research was proposed in [6], [22] that
investigates the attack surface of malicious EDA tools. The authors
demonstrate the potential for attacks by, for instance, making mi-
nor modifications to the intermediate files generated by the EDA
toolchain. This research highlights and provides insight into the
vulnerabilities that can be exploited by attackers if the EDA toolchain
is compromised. An interesting approach may be to combine Heisen-
Trojan attacks with this line of research to first gain control of the
EDA tool in order to then embed a traditional Hardware Trojan.

IV. BUILDING A HEISENTROJAN

In what follows, we first introduce our adversarial model. We then
discuss the steps taken to build a full end-to-end HeisenTrojan attack
chain on an EDA tool. Due to page limitations, we are limited to
discussing a single attack against a given EDA tool. However, we
found 12 exploitable bugs in total, see Table II, in which we are able
to craft end-to-end exploits across the tools outlined.

A. Adversarial Model and Assumptions

HeisenTrojan introduces a new class of hardware attacks where an
adversary can ship an IP core written in any given HDL, a simulation
test vector, or script for tool management that contains a specially
crafted payload. However, unlike traditional Hardware Trojans the
bundle in question does not generate any malicious hardware. Instead,
the adversary’s goal is to compromise the computing system of the
licensee. This may be done with the purpose of spying, sabotaging
operations, or stealing data. The HeisenTrojan shipped as part of
the IP core exploits a vulnerability in the tooling utilized by the
victim to establish a permanent presence in their computing system.
When processed by a non-vulnerable tool, the HeisenTrojan is not
triggered nor does it generate extraneous or superfluous hardware,
thereby remaining hidden from detection.

B. Finding an Exploitable Bug

We examined the results of our fuzzing campaign on open-source
EDA tools until we found a crash that was the result of an error that
could be readily exploited. Suitability for exploitation was determined
by examining the crash and performing a two factor test:

• whether the behavior causing the crash is controllable in ways
that do not trigger a denial of service; and

• whether the behavior causing the crash allows for the corruption
of memory areas containing code pointers.

A suitable vulnerability was found in tool REDACTED 3. The
vulnerability allows us to perform a write anywhere in the program’s
stack, which is conducive to a type of attack under the umbrella of
code-reuse attacks called return-oriented programming (ROP) [23],
[24].

C. Preparing, Deploying, and Synthesizing the HDL

For purposes of deployment the HDL can be wrapped in IEEE
1735-2023 [25] but this is not strictly necessary. The goal is not
to hide a traditional Hardware Trojan which generates malicious
logic, but to deploy HDL which generates legitimate hardware. The
HeisenTrojan payload aims to exploit bugs on the EDA toolchain
being used to compromise the victim’s infrastructure. As such, for

3We have followed responsible disclosure procedures for all vulnerabilities
found and reported them to the respective maintainers. The tool name is
omitted to comply with procedures.



our purposes, the HDL can be sent in plain-text, as long as the portion
of the HDL which triggers the bug in the HDL tool is innocuous.

Listing 1: Simplified view of the vulnerability.
char buffer[1024], * p = buffer;
va_list ap;
/* ... */
p += vsnprintf(p, buffer+sizeof(buffer)-p, fmt, ap); /* ❶ */
p += snprintf(p, buffer+sizeof(buffer)-p, "\n"); /* ❷ */

We make use of a write anywhere vulnerability we found in
the implementation of the f_REDACTED_r() function of one of
the synthesis tools we tested. By crafting a specific payload and
exploiting this vulnerability we are able to overwrite a return address
in the program’s stack, thereby allowing us to perform a control-
flow attack. Through repeated usages of this vulnerability, we craft a
payload which results in a chain of gadgets that achieve our desired
result. In our case, we wish to print an innocent message in the
terminal to signify a successful attack.

When synthesized, the HDL in question makes use of one of the
vulnerabilities presented in Section V, Table II. A simplified version
of the bug is shown in Listing 1. The code in question attempts to
perform safe string concatenation through the use of the snprintf()
family of functions. The next available location in the buffer is found
by advacing the pointer p by the return of the vsnprintf() function
in the line labeled ❶. However, it is imperative to notice that these
functions do not return the value of characters added to the buffer,
but the number of characters that would have been added were there
enough room in the buffer. As such, on the call to vsnprintf()

in ❷ the pointer may point to an address outside the bounds of the
buffer. This gives us a spatial memory error which can be exploited
to perform a write to a location of memory.

The spatial memory error in question allows us to overwrite any
byte on memory to have a value of 0x00. Because the buffer in
question is allocated in the stack of a function automatic storage
variables and any code pointers stored in the stack, such as return
addresses, are prime targets. Since the vulnerability in question allows
us to freely move a pointer to any address in the stack area, we can
safely bypass commonly deployed defenses such as stack protection
[26] while constructing the desired ROP-chain. This allows us to gain
arbitrary code execution by chaining gadgets (e.g. small instruction
sequences) together from the existing code base.

D. A Word about Full System Compromise

We show how we can achieve arbitrary code execution by ex-
ploiting bugs in the synthesis environment. A system compromise
relies on a payload which can cause permanent changes to the OS
introducing malware. Achieving this goal further requires escalation
of privileges through a kernel vulnerability. The latter are common
[27], [28], [29], [30] and do not require our payload to directly exploit
them. Our payload can simply launch another application (such as
through the execve() family of functions) which can more readily
exploit such vulnerabilities.

V. ON FUZZING EDA TOOLS

In what follows, we present a discussion on how we found bugs
on each tool we examined as well as a description of the process and
tooling used. We summarize the bugs found in Table II as well as
present an analysis of coverage achieved.

TABLE II: Number, type, and exploitability of bugs per EDA tool.

EDA Tool Bugs† Types Vulnerable‡

Z3 1 null pointer dereference ✕

GTKWave 7 heap overflow ✔
null pointer dereference ✕

verilator 3 stack overflow ✔
null pointer dereference ✕

iverilog 11 stack overflow ✔
null pointer dereference ✕

ABC 9 null pointer dereference ✕

Yosys 6
heap overflow ✔
stack overflow ✔
null pointer dereference ✕

Total 37 12
† Number listed corresponds to unique bugs.
‡ Indicates if a bug creates a vulnerability which can be used to perform an

attack other than a Denial of Service.

A. Experimental Tools

We used honggfuzz [31] to fuzz each EDA tool due to its
comparative performance in recent literature [32], [33]. Honggfuzz
is a multi-threaded, grey-box coverage-guided fuzzer. It takes input
corpora, checks them for new coverage, and then feeds the files to
a simple in-memory corpus directory. It utilizes randomly chosen
inputs from this memory and mutates them to start fuzzing.

We used llvm-cov [34] to generate coverage information for
each EDA tool. The tools are instrumented to emit profile and
coverage information by compiling them with clang using the
-fprofile-instr-generate and -fcoverage-mapping
flags. Coverage information is generated by running the instrumented
EDA tool normally. A raw profile file is created that is then con-
verted using the llvm-profdata merge tool. Finally, a JSON-
formatted file is exported to collect the profiled edge coverage during
the measured interval.

We used a combination of AFLTriage [35] and afl-tmin
[36] to determine the uniqueness of the bugs found. AFLTriage is
first used to minimize the number of crashing inputs by performing
crash deduplication using a heuristic that selects between file and
line number and the address of the first interesting stack frame.
This approach is imperfect and may lead to missing unique crashes
(false negatives) but avoids labelling aliasing crashes as unique (false
positives). afl-tmin is then used to minimize a crashing input to
its bare minimum (in terms of bytes). This allows us to more easily
determine how to control the bug by modifying the minimized input.

B. Experiment Setup

We instrumented the source code for each EDA tool, used a
trivial input seed (e.g. an appropriate “hello, world” for the tool),
and applied flags where necessary to ensure proper functionality of
the tool with the fuzzer (e.g. disabling gtkwave’s GUI) while
fuzzing. Each EDA tools was evaluated 5 times for a 24 hour
period on a 24 core Intel i7-12850HX with 32 GiB of memory
running Ubuntu 22.04.2 LTS for a total of 20,000 compute hours
per recommendations [33].

C. Unique Crashes and Crash Types

Table II shows the number of unique crashes, crash types, and
exploitability of the crash for each EDA tool. In total, we found 37
unique crashes. Limited manual analysis was used to determine that
12 of these bugs were exploitable from userland. This does not mean



0 6 12 18 24
Time (hours)

0

500

1000

1500

2000

2500

3000

3500

4000

Co
ve

ra
ge

 (l
in

es
)

run 0
run 1
run 2
run 3
run 4
average

(a) ABC

0 6 12 18 24
Time (hours)

0

200

400

600

800

1000

1200

1400

1600

Co
ve

ra
ge

 (l
in

es
)

run 0
run 1
run 2
run 3
run 4
average

(b) GTKWave

0 6 12 18 24
Time (hours)

0

5000

10000

15000

20000

Co
ve

ra
ge

 (l
in

es
)

run 0
run 1
run 2
run 3
run 4
average

(c) z3

0 6 12 18 24
Time (hours)

0

1000

2000

3000

4000

5000

6000

7000

8000

Co
ve

ra
ge

 (l
in

es
)

run 0
run 1
run 2
run 3
run 4
average

(d) yosys

0 6 12 18 24
Time (hours)

0

1000

2000

3000

4000

5000

6000

Co
ve

ra
ge

 (l
in

es
)

run 0
run 1
run 2
run 3
run 4
average

(e) iverilog

0 6 12 18 24
Time (hours)

0

100

200

300

400

500

600

700

Co
ve

ra
ge

 (l
in

es
)

run 0
run 1
run 2
run 3
run 4
average

(f) verilator

Fig. 3: Coverage plots for evaluated EDA tools.
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that the remaining bugs are not exploitable, but rather they were
not immediately exploitable given our analysis. A motivated attacker
under the correct conditions could exploit the bugs.

We categorized the bugs broadly as either null-pointer deref-
erences, heap, or stack overflows. With respect to the latter two
classes, we made no distinction between a out-of-bounds access or an
overflow for clarity. We found, however, that the heap overflows were
typically write-anywhere vulnerabilities that crashed while accessing
invalid memory. Of these, we found that 62% were controllable - we
could read/write to an arbitrary location in mapped memory.

D. Evaluation of Coverage

Coverage plots for each EDA tool are provided in Figure 3. It is
apparent from these plots that, in the majority of cases, the fuzzing
campaign shows diminishing returns as it progresses in time. This
can be explained, in part, as a side-effect of the method of logging
coverage information. After each logging interval, the saved corpora
in the default directory used by the fuzzer are removed and saved
in an accumulated directory of corpora from prior intervals. This

was done to avoid analyzing prior corpora for coverage information
and, thereby, save time. However, we also reason that the fall-off in
coverage over time is due to the highly structured input requirements
for EDA tools. The initial seed, while trivially constructed for our
evaluation, represents a valid starting point for the fuzzer. This can be
seen by the immediate increase in line coverage. However, as time
elapses, that input becomes less structured under mutation by the
fuzzer. We observed that those programs which show diminishing
returns experience a concomitant increase in number of timeouts.
This effectively prevents the fuzzer from making forward progress
during each interval of coverage evaluation.

Only one tool, abc, shows steady growth. Others show almost
no growth after initialization. The z3 SMT solver performs worst
in that it shows diminishing returns after only 12 hours of fuzzing.
This makes sense considering its strict input requirements. We plot
the number of timeouts over time for z3 as a topical explanation for
these results in Figure 4. Notice that the number of timeout increases
at 12 hours. We observed a similar trend for the other EDA tools too.

TABLE III: Percent line coverage achieved while fuzzing compared
to total line coverage.

EDA Tool 12h (%) 24h (%)

iverilog 21 17
GTKWave 15 13
Yosys 11 9
ABC 15 23
Z3 13 9
verilator 8 5

We also show the achieved line coverage compared to total line
coverage as a percentage in Table III. In most cases, our results indi-
cate that the fuzzer was only capable of shallow analysis. Improving
the seed corpus would perhaps improve these results per discussions
in related work [16]. However, a more obvious, yet more complicated,
solution would be to develop a custom interface capable of handling



highly-structured input for the fuzzer.

VI. FUTURE WORK AND CONCLUSIONS

There is a clear trend between a tool’s code base and complexity
of its user ecosystem, and the number of reported memory vulnera-
bilities for that tool [3], [4]. HeisenTrojan attacks exploit this trend to
launch end-to-end attacks against common EDA tools. Therefore, in
order to defend against them, an EDA tool vendor could eliminate all
memory vulnerabilities in its code base. Research, however, suggests
that its unlikely memory corruption can be completely eliminated
from runtime efficient languages without paying a severe performance
loss [37] or switching entirely to a memory safe language [38]. The
latter is unlikely, though gaining traction, and the former untenable.
Another mitigation strategy against HeisenTrojan attacks includes
code-reuse mitigations. However, these too are often imperfect or
negatively impact performance [39].

Another promising strategy would be to incorporate fuzzing into
the EDA tooling ecosystem. As Section V demonstrated, current
fuzzing infrastructure is ill-suited to handle the highly structured
input requirements for the common EDA tools. An interesting area of
research, partially explored in [20], includes the creation of domain-
specific front-ends capable of outputting correctly formatted data.
This would provide a sane mutational block with which the fuzzer can
work. This would not only resolve the diminishing returns observed
during our experimentation, but also allow deeper exploration of the
code base with respect to coverage.

To conclude, in this paper we introduced a new class of Hardware
Trojan which we call HeisenTrojans. Unlike traditional hardware at-
tacks, HeisenTrojans do not generate spurious or malicious hardware
but aim to exploit vulnerabilities in EDA tools to infect and establish
a presence on computer systems. We caution that HeisenTrojans can
be used as vectors to enable spying, sabotaging, or stealing data of
a potential rival or organization by attacking their computing infras-
tructure. We further showcase how, with some effort, HeisenTrojans
can be developed to target a wide array of EDA tools. Although in
this work we focus on open-source tools, commercial closed-source
tools are likely not bug-free and vulnerable to the same types of
attack. We hope that this work raises awareness of this attack vector
and jolts the industry into better securing their tools.
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