
A Unifying Tensor View for Lightweight CNNs
Jason Chun Lok Li*, Rui Lin*, Jiajun Zhou, Edmund Yin Mun Lam, and Ngai Wong

Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong

Abstract—Despite the decomposition of convolutional kernels
for lightweight CNNs being well studied, existing works that rely
on tensor network diagrams or hyperdimensional abstraction
lack geometry intuition. This work devises a new perspective
by linking a 3D-reshaped kernel tensor to its various slice-
wise and rank-1 decompositions, permitting a straightforward
connection between various tensor approximations and efficient
CNN modules. Specifically, it is discovered that a pointwise-
depthwise-pointwise (PDP) configuration constitutes a viable
construct for lightweight CNNs. Moreover, a novel link to the
latest ShiftNet is established, inspiring a first-ever shift layer
pruning strategy which allows nearly 50% compression with
< 1% drop in accuracy for ShiftResNet.

Index Terms—Convolutional Neural Network, Tensor Decom-
position, Shift Layer, Pruning

I. INTRODUCTION

Lightweight deep neural networks (DNNs) are essential
for edge artificial intelligence (AI), where DNNs operate on
resource-limited hardware. This necessitates careful consid-
eration of design constraints such as computation, storage,
throughput and power consumption. Consequently, numerous
efficient convolutional neural network (CNN) architectures
have been developed, including prominent examples like Mo-
bileNet [1], EfficientNet [2], and ShiftNet [3]. Depthwise
separable (DS) convolution [1], [2], [4], which replaces regular
convolutional (CONV) kernels, has emerged as an effective
solution, as it significantly reduces storage and computation
requirements with little or no loss in output accuracy. This
paper systematically and analytically demonstrates that these
benefits arise from the underlying decomposition and approx-
imation schemes of the reshaped CNN kernel tensor.

Matrix or tensor decomposition is a popular and powerful
approach for compressing CNNs [5], [6], [7]. Ref. [5] is
among the first to propose utilizing the canonical polyadic
decomposition (CPD) for compressing a regular CONV layer
whose nature is a 4D kernel tensor. Specifically, the 4D kernel
tensor is broken down into two depthwise (DW) layers and two
pointwise (PW) layers using CPD. Ref. [7] also employs CPD
but treats the CONV layer as a reshaped 3D tensor, leading
to a further reduction in the number of parameters. However,
it only tests this method with the older-generation AlexNet
with few CONV layers, using an ad hoc and non-scalable
progressive layer-wise decomposition and fine-tuning scheme.
Tucker decomposition is used in [6], which decomposes a
CONV layer into two PW layers and a regular CONV layer
with smaller input and output channels. Notably, all these

*JL, and RL contributed equally to this work.

works are related to efficient CNNs [1], [2] containing DS or
bottleneck layers. Ref. [8] enumerates various CNN decom-
positions using tensor network diagrams. However, the high-
dimensional and abstract notations obscure the geometry and
visual intuition associated with different DS variants. Although
previous works have employed tensor network diagrams to
represent higher-dimensional tensors and their decompositions
into low-rank factors [5], [6], [9], the geometric view is lost,
and the underlying arithmetic intuition becomes abstract at
4D and beyond. To address this issue, we demonstrate that it
is possible to retain a 3D view and provide highly intuitive
interpretations for various tensorized convolutions.

On another front of compacting CNNs, shift operations [3]
offer an ideal solution for edge devices due to their zero
parameters and FLOPs. We accommodate shift layers in the
CPD framework as one-hot kernels, leading to a novel channel
pruning scheme for shift layers. In fact, while tensors and
various efficient CNN implementations are not new, it is the
first time they are brought under a highly visualizable, unifying
tensor umbrella to provide an intuitive illustration of their
origin of success. The arithmetic under various decompositions
further inspires effective ways to compress the model. The
main contributions of this work include (i) A reshaped kernel
tensor view that unifies different approximation schemes and
naturally spins off various efficient CNN architectures; (ii) The
first to link CPD to hardware-efficient shift layers, leading to
a first-of-its-kind channel pruning scheme for shift layers.

II. KERNEL TENSOR AND ITS APPROXIMATION

To begin with, we instantiate the original 4-way kernel
tensor of size [|ci|, |co|, |k|, |k|] and reshape it into a 3-way
format of size

[
|ci|, |co|, |k2|

]
(cf. the center of Fig. 1), where

ci, co denote the indices of input and output channels, and k
represents the width/height of the kernel window, while | ◦ |
denotes the dimension/cardinality. Next, we enumerate various
decompositions from different viewpoints on the 3-way kernel,
which in turn generates different efficient CNN architectures.
To our knowledge, such unifying visual interpretation in Fig. 1
is presented only for the first time in the literature.

A. Frontal Slices

We assume
[
|ci|, |co|, |k2|

]
= [3, 6, 9] for illustrative pur-

pose. In Fig. 1.I(a), each slice or matrix can be decomposed
into a sum of multiple rank-1 terms with decreasing domi-
nance, e.g., by singular value decomposition (SVD). Fig. 1.I(b)
depicts a rank-1 approximation to each frontal slice. Here we
draw the spatial axis vectors of length |k2| with rectangular

ar
X

iv
:2

31
2.

09
92

2v
1

 [
cs

.C
V

]
 1

5
D

ec
 2

02
3

I (b) II (b)

IV (b)

III (b) III (a) IV (a)

II (a)I (a)

Fig. 1: The reshaped kernel tensor and its different views: I(a) frontal slices; II(a) horizontal slices; III(a) lateral slices; IV(a)
CPD. We slightly abuse notations and use co, ci and k2 for both axis and index labels. Assume

[
|ci|, |co|, |k|2

]
= [3, 6, 9]. I(b)

Approximating frontal slices with rank-1 terms translates into the standard DS convolution (viz. DW + PW, abbr. DP). II(b)
Approximating horizontal slices with rank-1 terms translates into an “inverted” depthwise separable convolution (viz. PW +
DW, abbr. PD). III(b) Lateral slices positioned with one-hot kernel filters translate into a shift layer (viz. PW + Shift + PW)
convolution. IV(b) Approximating the kernel tensor with multiple rank-1 CPD terms (CPD rank rcp = 2 here) translates into
a linear bottleneck (viz. PW + DW + PW, abbr. PDP).

bars to differentiate them from other axes (using balls) to
highlight their window sliding nature along the input channels
they act on. In Fig. 1.I(b), we fix a particular output channel,
e.g., |co| := 6, for illustration. It can be seen that there
is one kernel filter along each ci index, corresponding to
a DW convolution along each input channel. Once the DW
convolution is performed, the 3 convolved output slices are
produced which are then contracted by the 3 colored balls
along the ci axis, namely, a PW operation to obtain the
|co| := 6 channel. Such sequence of operations cannot be
scrambled as the DW kernels are tied with each ci index,
and need to be applied on each input channel first. The
number of CNN weight parameters involved is (|co|+ |k2|)|ci|
which equals 45 in this example. We abbreviate this CNN
replacement by DP (viz. DW+PW) which coincides with the
standard DS scheme.

B. Horizontal Slices

Similarly, we study Fig. 1.II(a) with its corresponding rank-
1 slices shown in Fig. 1.II(b). As before, we set |co| := 6, then
it can be seen that there are 6 kernels along each co index,
each corresponding to a DW convolution operating on the PW
(1×1)-contracted slices along the ci axis by the colored balls.
Again, such sequence of operations cannot be swapped, since
the 6 DW kernels are tied with each co index, and need to
be applied for producing each output channel. The number
of weight parameters in this setting is (|ci| + |k2|)|co| which
equals 72 in our example. We call this PW+DW operation the

PD scheme in this work, which can be seen as an “inverted”
DS convolution.

C. Canonical Polyadic Decomposition

We detour to the CPD view in Fig. 1.IV(a) before returning
to the lateral slices, which makes a more natural order of illus-
tration. Referring to Fig. 1.IV(b) and borrowing from previous
sections, we can segregate the contraction/convolution into
three stages, namely: 1) PW along ci to generate a number of
slices equal to the CPD rank rcp (i.e., number of CPD terms),
2) DW along these slices, and 3) PW along the desired co.
This view corresponds to the celebrated bottleneck layer [1],
whose residual variant is depicted in the upper part of Fig. 2.
Whether it is a standard or inverted bottleneck is determined
by rcp, which decides the center DW block being wider or
thinner than its “entrance” and “exit” PW layers. We name this
PW+DW+PW combination PDP. In this example, the number
of weight parameters is (|ci| + |co| + |k2|)rcp which equals
36. Apparently, this number depends heavily on rcp which
we can tune for different tradeoffs between complexity and
representation capacity.

D. Lateral Slices

Finally, we turn to Fig. 1.III(a) for the lateral slices. It
is clear we can view the original tensor as a slice-wise
aggregation by positioning them at the appropriate k2-axis
index via a one-hot kernel vector (cf. Fig. 1.III(b)). Likewise,
each slice can be decomposed into multiple rank-1 terms,

|co|×|ci|

co

ci

1x1
PW
Conv

1x1
PW
Conv

DW
Conv
or
Shift
Layer

ReLU
+BN

ReLU
+BN

ReLU
+BN

Fig. 2: (Upper) A generic PW+DW/Shift+PW block where
the dashed-line shortcuts and nonlinearity blocks are optional.
(Lower) Assuming a shift layer, one can collect co-ci mode
rank-1 terms of the same shift and sum them for the derivation
of principal components.

(a) (b)

Stage3/Layer1 Stage3/Layer2 Stage3/Layer3N
um

be
r o

f C
ha

nn
el

s

Stage1/Layer1 Stage1/Layer2 Stage1/Layer3

Stage2/Layer1 Stage2/Layer2 Stage2/Layer3

Stage3/Layer1 Stage3/Layer2 Stage3/Layer3

Stage1/Layer1 Stage1/Layer2 Stage1/Layer3

Stage2/Layer1 Stage2/Layer2 Stage2/Layer3

Fig. 3: Shift distribution of ShiftResNet-20 trained on CIFAR-
10 after uneven shift pruning with ϕ = 1/16. There are
three stages in ShiftResNet-20, each having three shift layers.
(a) The number of channels in each shift group; (b) The
relative importance of each shift in various layers based on
their singular values (which are summed at each position and
normalized within each layer).

all sharing the same one-hot kernel vector. For instance, the
leftmost term in Fig. 1.III(b) can spin off into three CPD
terms, resembling those in Fig. 1.IV(b). The one-hot nature
of the kernel vector effectively performs simple shifting, as
advocated in [3]. As such, we draw equivalence of lateral
slices to their ShiftNet counterparts. If we use rcp to denote the
total number of 3-way rank-1 terms selected, say, according
to their importance characterized by their singular values, then
the number of weights equals (|ci|+ |co|)rcp.

III. SHIFT LAYER PRUNING

Based on the novel view of Section II, if a pretrained
ShiftNet is available, then one way to do pruning of its shifted
channels is to collect rank-1 terms corresponding to the same
shift, and then add up the co-ci mode rank-1 terms into a
matrix (cf. lower part of Fig. 2). Then SVD is performed on
this |co|× |ci| matrix to decide the number of dominant terms
for retention and the number of terms to drop. To the best of
our knowledge, this is the first-ever shift layer pruning scheme.

Specifically, under the same shift, the co-ci rank-1 terms are
summed up into a |co| × |ci| matrix for principal component
analysis, e.g., via SVD. Then, the most dominant terms are
retained as the new PW filters on the ci and co modes.
As an illustrative example, suppose for two channels with
the same shift, the ci-mode 1 × 1 filters are v, v̂ ∈ R|ci|

whose corresponding co-mode 1 × 1 filters are u, û ∈ R|co|,

respectively. Then the summed matrix is
[
u û

] vT

v̂T

.

Suppose the flattened input channel matrix is X and there
exists nonlinearity (say, ReLU) after the first PW layer. Then,
if v̂ ≈ v, whether in terms of cosine or Euclidean distance,
the mapped channel matrices ReLU(vTX) ≈ ReLU(v̂TX),
especially when the feature dimension is high. The same
argument also holds when û ≈ u which, together with v̂ ≈ v,
implies the above matrix would be close to rank-1 and its
principal ci and co filters can be obtained via SVD and further
fine-tuned through backpropagation. Subsequently, when the
entrance and exit PW layers have “close” PW filters, then they
can be consolidated into fewer principal filters. Note that our
pruning approach is different from [10], where shift operations
are sparsified through a loss regularizer, while holding the
size of the intermediate feature map unchanged. In contrast,
we treat the one-hot shift kernel vector as an on/off switch
carrying information of its associated ci-co rank-1 term. Once
pruned, the entire 3-way rank-1 term is dropped, so the feature
map size and representation capacity both reduce.

Here, we define a new hyperparameter dubbed pruning ratio
ϕ = ϵnew/ϵold, where the notion of expansion ratio ϵ is
borrowed from [3] which specifies the ratio of bottleneck’s
channel size to the output channel size of the exit PW.
Obviously, ϕ controls the degree of compression, allowing
for a tradeoff between accuracy and model size. There are
two strategies to select the principal filters. The first involves
comparing singular values within the same shift and pre-
serving the same amount of dominant terms in each group.
Concretely, suppose we have a 3 × 3 DW shift layer, then
there are 9 shift groups each corresponding to one direction
of shift (including zero shift). This method guarantees an equal
number of channels in each shift group. Another approach is
to compare singular values across all shift groups and retain
the most dominant terms. Fig. 3 shows the shift distribution
under “uneven” shift pruning, where missing bars in Fig. 3(a)
illustrate that the whole shift group is pruned.

IV. EXPERIMENTS

A. VGG-16

Here approximations with different tensor views discussed
in Section II are realized by replacing every CONV layer of
a VGG-16. A baseline VGG-16 is first trained on CIFAR-10
for 200 epochs. The pretrained CONV kernels are then de-
composed into various configurations followed by 300 epochs
of fine-tuning. Table I shows the results of using DP and PD
schemes to decompose the kernel tensors. The PD configu-
ration has a slightly better performance as compared to DP

TABLE I: VGG-16 with SVD vs randomly initialized DP/PD
kernels on CIFAR-10.

Method CR (%) #Params(M)
Acc (%)

Random/SVD

DP 88.53 1.69 92.81/92.70

PD 88.49 1.69 93.72/93.54

TABLE II: VGG-16 with CPD vs randomly initialized PDP
kernels on CIFAR-10.

Rank rcp CR (%) #Params(M)
Acc (%)

Random/CPD

4 99.65 0.05 51.31/62.48

8 99.44 0.08 61.63/72.27

16 99.00 0.15 65.06/86.09

32 98.12 0.28 75.19/89.73

with the same degree of compression. Here the compression
is measured by the model-wise compression rate (CR) which
will be used throughout. Surprisingly, random initialization
leads to a higher test accuracy in both cases as compared to
SVD initialization. We believe that the reason is approximation
using a single rank-1 term for each tensor slice is insufficient.
Table II, on the other hand, highlights the significance of
CPD initialization when every CONV layer in the VGG-
16 is turned into a PDP configuration comprising rcp DW
filters. VGG-16 with CPD-initialized kernels outperforms its
random-initialized counterpart by a significant margin, ranging
from 11% to 14%. By gradually raising the CPD rank (rcp)
from 4 to 32, classification accuracy rises from 62.48% to
89.73% with only a slight decrease in compression ratio
(99.65% vs 98.12%). Indeed, such PDP slimming of a dense
network has a distinct advantage over DP and PD, which
achieves an additional ≈ 6× parametric reduction than the
latter two. Utilizing CPD initialization for PDP training, the
final accuracy is mostly restored.

B. Shift Layer Pruning

To validate the idea of shift layer pruning as described in
Section III, experiments are conducted on CIFAR datasets.

TABLE III: Shift Layer Pruning. Baseline accuracies are
93.37%@CIFAR-10, 71.47%@CIFAR-100.

ϕ
CIFAR-10 CIFAR-100

CR (%) Acc (Even/Uneven) (%) CR (%) Acc (Even/Ueven) (%)

1
2 49.18 92.81/92.88 48.17 70.48/70.58

1
4 73.78 91.41/91.50 72.25 67.16/67.62

1
8 86.07 89.09/89.11 84.30 62.21/63.13

1
16 92.22 85.57/85.84 90.32 57.25/56.83

ShiftResNets [3] with an expansion ratio ϵ = 9 are employed.
A shift module in the ShiftResNet consists of a 3×3 DW shift
layer surrounded by two PW layers, interleaved with BN and
nonlinearity. By varying ϵnew, we obtain a set of pruning ratios
ϕ ∈ { 1

2 ,
1
4 ,

1
8 ,

1
16}. ShiftResNet-20 is used as the backbone.

Baseline models are first obtained by training on target datasets
for 200 epochs, followed by another 200 epochs of fine-tuning.
As seen from Table III, shift layer pruning achieves nearly
50% compression with < 1% accuracy drop for both CIFAR-
10 (92.88% vs 93.37%) and CIFAR-100 (70.58% vs 71.47%).

V. CONCLUSION

In this paper, a novel 3D tensor exposition of various CNN
kernel approximations is presented (cf. Fig. 1), revealing their
close bonds to separable pointwise (PW) and depthwise (DW)
convolutions. This perspective further enables the development
of a first-ever channel pruning scheme for the zero-flop and
hardware-efficient shift layers. We believe such a unifying
tensor view can establish itself as a fundamental framework
for CNN approximation theory, and serve as an essential basis
for discovering new and efficient CNN architectures.

VI. ACKNOWLEDGMENT

This work was supported in part by the General Research
Fund (GRF) project 17209721, and in part by the Theme-
based Research Scheme (TRS) project T45-701/22-R of the
Research Grants Council (RGC), and partially by ACCESS –
AI Chip Center for Emerging Smart Systems, sponsored by
InnoHK funding, Hong Kong SAR.

REFERENCES

[1] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” pp. 4510–4520,
2018.

[2] M. Tan and Q. Le, “EfficientNet: Rethinking model scaling for con-
volutional neural networks,” in International Conference on Machine
Learning, vol. 97 of Proceedings of Machine Learning Research,
pp. 6105–6114, PMLR, 09–15 Jun 2019.

[3] B. Wu, A. Wan, X. Yue, P. H. Jin, S. Zhao, N. Golmant, A. Gholamine-
jad, J. E. Gonzalez, and K. Keutzer, “Shift: A zero flop, zero parameter
alternative to spatial convolutions,” pp. 9127–9135, 2018.

[4] F. Chollet, “Xception: Deep learning with depthwise separable convolu-
tions,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), July 2017.

[5] V. Lebedev, Y. Ganin, M. Rakhuba, I. V. Oseledets, and V. S. Lempit-
sky, “Speeding-up convolutional neural networks using fine-tuned cp-
decomposition,” in International Conference on Learning Representa-
tions, 2015.

[6] Y. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, “Compression
of deep convolutional neural networks for fast and low power mobile
applications,” in International Conference on Learning Representations,
2016.

[7] M. Astrid, S.-I. Lee, and B.-S. Seo, “Rank selection of CP-decomposed
convolutional layers with variational Bayesian matrix factorization,”
International Conference on Advanced Communication Technology
(ICACT), pp. 347–350, 2018.

[8] K. Hayashi, T. Yamaguchi, Y. Sugawara, and S. ichi Maeda, “Einconv:
Exploring unexplored tensor network decompositions for convolutional
neural networks,” in Advances in Neural Information Processing Sys-
tems, vol. 32, pp. 5552–5562, Curran Associates, Inc., 2019.

[9] J. Su, J. Li, B. Bhattacharjee, and F. Huang, “Tensorial neural networks:
Generalization of neural networks and application to model compres-
sion,” arXiv preprint arXiv:1805.10352, 2018.

[10] W. Chen, D. Xie, Y. Zhang, and S. Pu, “All you need is a few
shifts: Designing efficient convolutional neural networks for image
classification,” pp. 7234–7243, 2019.

	Introduction
	Kernel Tensor and its Approximation
	Frontal Slices
	Horizontal Slices
	Canonical Polyadic Decomposition
	Lateral Slices

	Shift Layer Pruning
	Experiments
	VGG-16
	Shift Layer Pruning

	Conclusion
	Acknowledgment
	References

