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Abstract—Spectrum Sensing (SS) and Power Control (PC) have
been two important concepts of Cognitive Radio (CR). In this
paper, a mechanism combining these two topics is proposed to
allow a cognitive user, also called Secondary User (SU), to access
the frequency band of a Primary User (PU) operating based on an
Adaptive Coding and Modulation (ACM) protocol. The suggested
SS technique considers Higher Order Statistical (HOS) features
of the signal and an efficient Machine Learning (ML) detector, the
Support Vector Machine (SVM), in order to constantly monitor
the modulation scheme of the PU. Once the Automatic Modulation
Classification (AMC) is ensured, the SU can attempt to access
the frequency band of the PU and increase its transmitting
power until it causes a change of the PU’s modulation scheme
due to interference. When the SU detects the change of the
PU’s modulation scheme, then it reduces its transmitting power
to a lower level so as to regulate the induced interference.
This Adaptive Power Control (APC) algorithm converges to the
aforementioned interference limit and guarantees preservation of
the PU link QoS.

Keywords—Cognitive Radio, Spectrum Sensing, Automatic Mod-
ulation Classification, Higher Order Statistics, Support Vector
Machine, Adaptive Power Control, Adaptive Coding and Modulation

I. INTRODUCTION

Over the past years, wireless communications have faced a
steadily growing demand of services. Given also the policy of
assigned bands, a saturation of the available spectrum has been
reached. A solution to this problem is the Dynamic Spectrum
Access (DSA) concept, which suggests that some services may
coexist in specific frequency bands [1]. DSA can be achieved
with the development of Cognitive Radios (CR) which sense,
understand, adapt and interact with their surroundings based
on the user’s demands and the environment’s limitations [2].

The main enabler of the CRs is the sensing part. SS has
thus become an important aspect of this idea in order to give
“eyes” and ears” to the “body” of this intelligent radio. One
way of making the CR aware of its environment is signal
detection. This new radio must be able to identify all kinds
of signals and a simple approach can be the recognition
of their modulation schemes. This SS technique concerning
the modulation detection is termed Automatic Modulation
Classification (AMC) and has been realized by extracting
features of the signal and classifying it based on them.

The simplest and most common feature is the energy of the
signal. A lot of research in signal classification has been per-

formed depending only on the energy, but it is not considered a
distinctive characteristic for low SNR environments [3-6]. Its
most successful application [5] has accomplished error free
detection at SNR = —10dB but in the expense of complexity
of the classifying method. Moreover, it was merely able to
discriminate the noise only case and the noisy BPSK signal
case. Other features exploited in AMC are the cumulants of
2nd, 3rd, 4th, 6th and 8th order [7-11], which have distinctive
theoretical values among different modulation schemes and
even though they demand a great amount of samples, they
are easy to calculate. Using more sophisticated techniques,
like the FFT algorithm, we can obtain the maximum value
of the spectral power density of the normalized instantaneous
amplitude, the standard deviation of the absolute value of the
normalized centered instantaneous amplitude or even statistical
metrics of the normalized Power Spectrum Density (PSD) of
the received signal [8], [10], [12], [13].

Finally, the hardest to extract characteristics are the cy-
clostationary (CS), coherent and time-frequency ones. These
are derived respectively from spectral correlation or coherence
functions, coherent processing and Time-Frequency (TF) dis-
tributions (short time Fourier transform, Wigner-Ville distri-
bution etc.) [10-12], [14-21]. As far as these characteristics
are concerned, the FFT algorithm is again the main tool for
estimating them. One of these very interesting features is the
a-domain profile which is derived from the CS processing
of the signal and was first established by Gardner [22]. The
use of cyclic spectral analysis has been very efficient in
signal classification, especially when combined with robust
detection tools. In [19], the set of BPSK, QPSK, FSK, MSK
and AM signals was categorized with probability of detection
Ppr =100% at SNR = —7dB.

As far as the classification methods used in the literature
are concerned, there has been significant progress using ML
to identify correctly the type of the signal. So, the function of
these learning machines is to collect some of the aforemen-
tioned features, process them and classify a group of samples
as noise or any other kind of signal. One very plain structure
to achieve this is the polynomial classifier [23]. A very easy
to implement learning machine, with simple calculations, but
without strong mathematical foundation. Another very popular
option has been the Neural Networks (NNs) [6], [10], [11],
[13], [18], [19], [24]. The kinds of NNs used are feedforward
networks with multiple layers and back propagation networks



with multiple layers. A powerful classification tool that previ-
ous researchers used are the SVMs [3-5], [8], [9], [12], [15],
[16]. They have been helpful in many categorization problems
and they are the most frequent tool of previous work in this
field achieving Ppg = 100% at SNR = —12dB [15]. Other
techniques are the Self-Organizing Map (SOM) [5] and the
Chinese Restaurant Process clustering [14], [20], [21] which
have been proven efficient in grouping data. In the end, for
determining patterns there are classifiers based on Hidden
Markov Models (HMMs) [11], [17] or k-Nearest Neighbor
algorithm (k-NN) [3], [9].

Another aspect of the DSA concept that has to be examined
is the PC strategy under which the SU is accessing the
frequency band of the PU. Previous work in this field has
considered a great variety of assumptions and protocols. There
has been extensive research work which is usually assuming
though the knowledge of the PU’s channel or the interference
channel, the exact SIR of the PU or other SU’s, the SIR
thresholds of all the users or the existence of a control
channel between the PU and the SU or among the SU’s. That
knowledge has helped the research community form and solve
different kinds of PC problems, but in reality most of the times
this information must be estimated.

An interesting approach in this topic, suitable for a network
of CRs without any collaboration, is the distributed and non-
cooperative one. In this case, no information is exchanged
among any SU and there is no common strategy. Most studies
in this field have employed iterative methods such as pricing
models, Iterative Water-filling or one bit control channel and
usually they provide a game theoretic framework to prove their
convergence to an equilibrium [25-28].

In this paper, an integrated application is demonstrated
which concerns an SU and focuses on both AMC and PC.
The examined scenario considers a terrestrial microwave link
changing its modulation scheme based on an ACM protocol
and operating in its assigned band together with a satellite
link entering this band [29-32]. In this work, it is proposed
the cognitive satellite user to apply SS techniques in order
to control its interference to the PU. The interference control
is achieved by having the coexisting cognitive SU constantly
sensing the modulation scheme of the PU, which changes dy-
namically itself based on the ACM protocol. The transmitting
power is adapted whenever it degrades the modulation scheme
of the PU.

The chosen SS technique extracts HOS cumulants of the
signal and classifies them with a reliable and sophisticated
ML detector, the SVM. Although a plethora of features exists,
only HOS cumulants can be used to discriminate the PSK and
QAM modulation schemes of an ACM protocol and are easily
computed. The proposed DSA application concerns only the
SU’s side without adding any complexity in the infrastructure
or a control channel between the two links in order to exchange
information. So the system model is distributed and non
cooperative and the used APC mechanism is a simple power
scaling with a variable step.

The remainder of this paper is structured as follows: Section
IT provides the system and signal model. Section III introduces
the HOS features exploited and presents the SVM, as well

as its configuration. Section IV analyzes the APC technique.
Section V shows the results obtained by the combination of
the above. Finally, Section VI gives the concluding remarks
and future work in this topic.

II. SYSTEM AND SIGNAL MODEL

The cognitive scenario examined in this paper consists of a
terrestrial microwave PU link and a satellite SU link as shown
in Fig. 1. Furthermore, the propagation of the signal from the
PU link is received by the cognitive user using a secondary
omnidirectional antenna only for sensing and assuming an
AWGN channel. As far as the interference to the PU link is
concerned, this is caused by the terrestrial part of the satellite
SU link to the receiver of the microwave PU link. Considering
a LOS interference link, this may have a severe effect on the
modulation scheme chosen by the PU link. In this scenario, the
interference is analyzed and it contributes to the formulation
of the APC problem.

Fig. 1. Cognitive Satellite Link and Terrestrial Microwave Link

In addition, assuming that the CR achieves symbol synchro-
nization in sensing the PU signal, the received symbol samples
can be written as:

rsuli] = hs * spuli] + nsuli] (D

where hg is the sensing channel gain, spy[i] is the trans-
mitted symbol from the PU and ngy ~ N (0, Ngy) is the
Additive White Gaussian Noise (AWGN). According to the
ACM protocol of most commercial microwave link products,
the transmitted symbol s[i] can be of QPSK, 8PSK, 16QAM,
32QAM, 64QAM or 128QAM modulation scheme. On the PU
side, the received symbol samples can be written as:

rpulil = hpu * spuli] + hi * ssuli] + npuli] 2

where hpy is the PU channel gain, h; is the interference
channel gain, sgy[i] is the transmitted symbol from the SU
and npy ~ N (0, Npy) is the AWGN. It has to be remarked
that the channels used in this paper are flat and their gains are



not varying. Additionally, the transmitting powers of the PU
and the SU are expressed as:

Ppy = E{spuspy} 3)
Psy = E{ssussy} “4)
and the SIN R of the PU is defined as:

®

hpo % P
SINRpUzlolog( PU X TPU )

hr * Psy + Npy

III. AUTOMATIC MODULATION CLASSIFICATION

Communication signals contain many statistical characteris-
tics that give us information about their nature. Assuming the
signal model described in (1), we can obtain the 2nd, 4th, 6th
and 8th order mixed cumulants of the rpy complex received
signal C5 o, C5 1, Ci o, Cf 15 Ch 9, Cg 0, Cg 15 O 95 Cg 30 C s
Ci,. Chy Chy. Cky.

Cumulants are best expressed in terms of raw moments.
A generic formula for the joint cumulants of several random
variables X1, ..., X, is

Cxyox, = 3 (7| = D=1 T E {HX} (6)

T Ber 1ET

where 7 runs through the list of all partitions of 1,...,n, B
runs through the list of all blocks of the partition 7 and |x| is
the number of parts in the partition. For example,

Cx,, X5, X5 :E{X1X2X3} — E{Xng}E{Xg,}
— B{X1 X5} B{ Xz} — E{Xo X3} E{X1} (7)
+ 2E{ X1} E{ X2} E{X;}.

Consequently, the pth-order mixed cumulant C, . of the com-
plex received signal can de derived from the joint cumulant
formula in (6) as:
P :Cr,...,r,r*,...,r* ®)

—— ——

(p-q) times (q) times
where r* is the the complex conjugate signal. Because of
the symmetry of the considered signal constellations pth-order
mixed cumulant for p odd are equal to zero and also it can be
easily proven that for p even C) = C} ..

The estimates of the previous statistical characteristics are
going to be the features fed into a pattern recognition structure
which will decide the modulation scheme the signal belongs
to. A powerful and new classification tool that previous re-
searchers used is the SVM. Its mathematical foundation is
statistical learning theory and it has been developed by Vapnik
[33]. A major drawback of the SVMs is that initially they
require a lot of computations to train themselves offline but
they can become very accurate. At this point, it must be noted
that in the AMC literature the SMO algorithm and the Online
Bayes Point Machines have not been examined in order to
reduce this computational complexity and to investigate the
efficiency and the adaptivity of the online training of the SVM
respectively.

The SVMs operate by finding a hyperplane in a high
dimensional space which divides the training samples in two
classes. This hyperplane is chosen so that the distance from it
to the nearest data points on each side is maximized as shown
in Fig. 2. This is called the maximum-margin hyperplane. But
the most interesting contribution of the SVMs is in the non-
linear separation of data. This machinery with some small
adaptations and using the so-called kernel trick can be used to
map indirectly input feature vectors into a high dimensional
space in which they become linearly separable. The impressive
part of this high dimensional approach is that it happens
without any extra computational effort.
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Fig. 2. Maximum-margin separating hyperplane

The reason this non-linear mapping © does not add any
extra computational burden lies on the way the SVM operates.
For a simple linear separation in the initial feature space, the
SVM training has to solve a Quadratic Programming (QP)
problem which considers only the dot products of the training
feature vectors. Extending this idea to a high dimensional
space, the SVM again needs only to know the dot products
of the dimensional expansions of the training feature vectors.
This enables us to surpass the obstacle of knowing this non-
linear mapping © and just calculate the dot products of the
training feature vector mappings.

This is the point where the kernel trick is used. Given two
vectors from the training feature space « and y, the dot product
of their mappings in some high dimensional feature space is:

K(z,y) = O6(z) - O(y) )

where K (x,vy) denotes the kernel function. In most classi-
fication applications, the polynomial function (10) and the
Gaussian radial basis function (GRBF) (11) are used as kernels.

K(z,y)=(1+z-y)? (10)
a2
K(,y) = exp(~ 12210 an

In previous work, the most commonly used kernel is the
GRBF which is actually a polynomial kernel of infinite degree.



Because of its already tested practical use and accuracy, in
this paper the GRBF is used as well. As far as ¢ in (11)
is concerned, it is a free operational parameter whose value
affects the SVM’s performance and can only be found by trial
and error. Also, the multi-class classification of a test signal
into one of the 6 available modulation schemes of the ACM,
the classes, is implemented by combining 4—; binary classifiers
to find to which class it most likely belongs compared to every
other one. Following this one-against-one approach, the most
usual strategy for labelling a test signal is to cast a vote to
the resulting class of each binary classifier. After repeating the
process for every pair of classes, the test signal is assigned to
the class with the maximum number of votes.

IV. ADAPTIVE POWER CONTROL

The purpose of the AMC technique is to act as a feedback
to a closed-loop PC algorithm, which will guide the SU
how to regulate its transmitting power and thus the induced
interference to the PU. Based on this PC scheme, the cognitive
user does not need to communicate with the PU and obtain
any direct knowledge of the induced interference. The simplest
blind method for achieving the interference cancellation is the
SU to adapt its power with adjustable steps and monitor the
reaction of the PU. Similar PC schemes exist in literature
[26] with proven convergence to the optimum solution. In
this paper, a comparable algorithm is proposed considering
an AWGN interference channel.

In the considered scenario, the SU transmitting power Py
must converge to an unknown threshold P,,,, over which it
causes the PU to change its modulation scheme. The suggested
iterative APC algorithm, presented in Algo. 1 is a heuristic
method for solving this PC problem with a minimal number
of P,,q, violations. Initially, a description of its parameters
must be given. Mod(n) is the sensed modulation scheme of
the time instant n, P,,;, is the minimum power the SU can
transmit, Npry is the number of P,,,, violations from the
beginning of time, N, 4, is the maximum permissible number
of the Py, violations, A(n) is the adjustable transmitting
power step and T}, is the period after a P,,,, violation during
which the Pgy is set to a power level below P, ;-

According to this APC method, the SU starts transmitting
the minimum Psy and then gradually boosts it until a P4,
violation occurs with increasing step A(n), which depends on
its previous value A(n — 1). After every Pp,q, violation, the
SU sets Pgy to the precedent level not altering the modulation
scheme of the PU, reposes for a period of time 7}, and after that
starts increasing it again. The purpose of the algorithm is the
more P,,,, violations happen the more reluctant the SU should
become to increase Psy. This is achieved by determining 75,
as an ascending function of Npry and A(n) as a descending
function of Npry . Eventually, Psyy converges to a value below
P, Without breaching this power limit many times.

V. RESULTS

In this section, the performance of the AMC method and
the progress of the Pg; and throughputs vs time are presented.
First, it must be mentioned that the received PU signal through

Algorithm 1 Adaptive Power Control algorithm

Sense Mod(0)
Transmit Psy = Ppuin
Sense Mod(1)
if Mod(1) # Mod(0) then
Do not transmit at all
else
Increase Psy by step A(1)
end if
repeat
Sense Mod(n)
if Mod(n) # Mod(n — 1) then
Set Psyr to previous level and repose for time T,
else
Increase Psy by step A(n)
end if
until Nppy > Npe. or Psy converges

the sensing link, as shown in Fig. 1, can be of 6 types, QPSK,
8PSK, 16QAM, 32QAM, 64QAM and 128QAM, and of lower
SN R level than the one in the receiver of the PU link. Also,
2 numbers of symbol samples are tested in the simulations,
Ns; = 2048 and Nss = 65536 and the performance of the
SVM binary classifier network is examined in the SN R ranges
of [—5,10] and [—11, 5] respectively. Moreover, for each case
of Ns and SNR, the training and testing procedures were
performed using number of the signals N¢.q;, = 10000 and
Niest = 1000 from each modulation scheme. The metric used
to measure the detection performance of the AMC method for
a class j is the probability of correct classification (P..), which
is defined as:

N,
P.= =~ 12
e = N (12)
where N.. is the number of correctly classified by the SVM
signals of class j.

In Fig. 2 and 4, the P, of the simulations is shown. Initially,
an obvious remark is that the higher the SINR of the test
signal, the higher the P... Furthermore, for a specific SN R the
P.. is higher, if the number of symbol samples is increased.
Additionally, one can notice that the lower the order of the
constellation to be classified, the easier it is for the SVM to
recognize it. Another interesting result derived from Fig. 2 and
4, is that the P.. vs SN R curves form 3 groups. This indicates
that some classes have similar P.. behaviour, because some
modulation schemes have the same constellation pattern. The
3 groups formed are the QPSK-8PSK, the 16QAM-64QAM
and the 32QAM-128QAM. Apparently, the SVM classifier
has similar performance for modulation schemes of almost
identical pattern, such as the rectangular one for the 16QAM-
64QAM pair and the cross-like one for the 32QAM-128QAM
pair. One more conclusion which has to be noted is that
for P.,. = 1 in all classes, the minimum required SN R for
Ns; = 2048 and Nsy = 65536 is 10dB and 4dB respectively.

Following, the progress of the Ps; and throughputs vs time
are presented based on the APC algorithm described in the
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previous section. The examined scenario considers a DVB-
RCS SU, that recognizes perfectly the modulation scheme of
an ACM microwave PU link. The sensing of the PU signal
is implemented with an omnidirectional secondary antenna
of low gain. In Fig. 5, the Psy vs time diagram can be
seen, where the initial Pg;; and the unknown threshold P,
are considered to be 0dW and 10dBW respectively and the
transmitting power update happens every 100ms.

The main principles of the APC algorithm can be observed
in the Pgy diagram. At the beginning, Psy increases aggres-
sively, until a P,,,, violation occurs. After each violation, it
can be seen that the SU rests to a non violating value of Psyr
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Fig. 5. Psy vs time

for a period proportional to the total number of violations.
Also, the more violations the SU performs, the more reluctant
it becomes to increase its power and finally it converges to
the acceptable Pp,.; = 10dBW. Using a particular set of
parameters, only 3 times the SU exceeds the unknown power
limit and it requires 45 power adjustments to achieve that.
Another aspect of the APC algorithm is presented in Fig. 6
and 7. Here, the throughput of the SU, the PU and the total one
can be viewed in time. They are depending on the instant value
of Pgyy and what has to be marked is the distinct throughput
drops of the PU and in total whenever a P,,,, violation occurs
and the convergence of the last one to a maximum value. This
proves that a considerable total throughput gain is achieved
using Algo. 1 while preserving the PU throughput level.

VI. CONCLUSIONS

In this paper, an integrated solution for interference man-
agement in a CR context is proposed using a powerful AMC
technique as feedback for a closed-loop PC algorithm. The
AMC technique exploits HOS features of the PU signal and a
robust classifier, the SVM, in order to detect even in low SN R
level when the PU modulation scheme changes and thus adjust
Psyp to innocuous values. The proposed APC method performs
a power scaling with flexible steps, so that the induced to the
PU interference is mitigated. Through simulations, it is shown
that the performance of the suggested system is excellent with
controllable characteristics which affect convergence speed and
number of P,,,, Vviolations.

Future work will attempt to alleviate a number of ideal as-
sumptions of the described system model. Encountering them,
can lead this work to a more complete form in the future. The
first assumption is the synchronized received symbol samples.
In reality, a sampling rate without any synchronization and
other important parts of telecommunications system, such as
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pulse-shaping and filtering in the sides of the transmitter and
the receiver, have to be considered. Furthermore, realistic
channel modelling can be taken into account, like fading.

Another practical concept which can lead to future work is
the introduction of channel prediction in order to use it in a
PC algorithm. Also, further studies can focus on the behaviour
of the PC scheme, like its convergence considering a large
number of SUs or P.. < 1. Finally, other PC algorithms can
be examined which are based on pricing and tested using a
variety of utility and price functions.
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