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Abstract—We address the use of linear random fountain
code caching schemes in a heterogeneous satellite network. We
consider a system composed of multiple hubs and a geostationary
Earth orbit satellite. Coded content is memorized in hubs’ caches
in order to serve immediately the user requests and reduce the
usage of the satellite backhaul link. We derive the analytical
expression of the average backhaul rate, as well as a tight
upper bound to it with a simple expression. Furthermore, we
derive the optimal caching strategy which minimizes the average
backhaul rate and compare the performance of the linear random
fountain code scheme to that of a scheme using maximum
distance separable codes. Our simulation results indicate that
the performance obtained using fountain codes is similar to that
of maximum distance separable codes.

I. INTRODUCTION

Cache-aided delivery protocols represent a promising so-
lution to counteract the dramatic increase in demand for
multimedia content in wireless networks. Caching techniques
have been widely studied in literature with the aim of reducing
the backhaul congestion, the energy consumption and the
latency. In cache-enabled networks content is pre-fetched close
to the user during network off-peak periods in order to directly
serve the users when the network is congested. In [1] Maddah-
Ali et al. aim at reducing the transmission rate in a network
where each user has an individual cache memory. In that work,
the idea of coded caching is introduced, so that the cache
memory not only provides direct local access to the content but
also generates coded multicasting opportunities among users
requesting different files.

In [2] and [3], maximum distance separable (MDS) codes
are proposed for minimizing the use of the backhaul link
during the delivery phase in networks with caches at the
transmitter side only. In [4] a delayed offloading scheme based
on MDS codes is proposed to spare backhaul link resources
in a network with mobile users. Caching schemes leveraging
on MDS codes have also been proposed for device to device
communication in order to reduce the latency [5].

MDS codes, such as Reed-Solomon codes, are optimal in
the sense that they achieve the Singleton bound. The drawback
of such codes is their limited flexibility in the choice of the
code parameters (e.g. the block length) once the finite field is
fixed, and the fact that the rate of the code is set before the
encoding takes place. Unlike MDS codes, fountain codes [6]
are rateless, i.e., their rate can be adapted on-the-fly. This has
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the advantage of adding flexibility to the network, allowing a
dynamic resource management.

Extensive studies regarding caching for terrestrial applica-
tions can be found in literature while limited work is available
in the context of heterogeneous satellite networks [7]–[10].
In [10] a off-line caching approach over a hybrid satellite-
terrestrial network is proposed for reducing the traffic of
terrestrial network. However, spare backhaul resources is of
particular importance not only for terrestrial networks but also
in satellite systems.

To the best of the authors knowledge, the application of
linear random fountain codes (LRFCs) for caching content in
satellite networks has not been proposed yet. In this paper
we study and optimize the performance of fountain codes for
caching-enabled networks with satellite backhauling. We de-
rive the average backhaul rate 1 for such system and optimize
the cache placement. Our results show that the performance of
the caching system using LRFCs is close to that of a system
based on MDS codes already for a field size q = 4.

The rest of the paper is organized as follows. Section II
introduces the system model while in Section III some pre-
liminaries on LRFC are presented. The achievable backhaul
rate is presented in Section IV while the optimization of the
number of coded symbol to be memorized at each cache is
presented in Section V. In Section VI the numerical results
are presented. Finally, Section VII contains the conclusions.

II. SYSTEM MODEL

We consider a heterogeneous network composed of a single
geostationary Earth orbit (GEO) satellite and a number of
hubs (e.g. terrestrial repeaters or high altitude platform station
(HAPS)) with cache capabilities, as shown in Fig. 1. Each
hub is connected to the GEO satellite through a backhaul link.
Users are assumed to be fixed and to have a limited antenna
gain so that a direct connection to the GEO satellite is not
possible. Depending on their location users may be connected
to one or multiple hubs. We denote by γh the probability that
a user is connected to h hubs.

The GEO has access to a library of n equally long files
F = {f1 . . . , fn}. We assume that users request files from the
library independently at random. Furthermore, we assume that
the probability of file fj being requested, θj , follows a Zipf
distribution with parameter α leading to

θj =
1/jα∑
i 1/iα

∀j = 1, ..., n.

1we define the average backhaul rate as the average number of coded
packets (output symbols) that the GEO needs to send through the bakchaul
link during the delivery phase to serve the request of a user.
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Fig. 1. System model

The assumption is made that all files are fragmented into k
input symbols (packets). The GEO satellite encodes each file
independently, using a fountain code. Each hub has storage
capability for M files, i.e., for kM packets.

We shall assume that the coded caching scheme is split
into two phases. During the placement phase the GEO sends
a number wj of output symbols from file fj to each hub, which
are cached by each hub. Note that for the same file each hub
caches the same number of output symbols (encoded packets),
however, the sets of output symbols cached at different hubs
are different. The placement phase is assumed to be carried
out offline. During the delivery phase, a user requests a file fj
at random. In a first stage, the user downloads output symbols
of fj cached in the h hubs he is connected to. If the number of
symbols is not enough for decoding fj successfully, then the
GEO satellite generates additional output symbols. The GEO
sends the additional output symbols to the user via one of the
h hubs he is connected to. For simplicity we assume that all
transmissions are error-free.

III. LINEAR RANDOM FOUNTAIN CODES

In this work we consider the use of LRFCs for the delivery
of the different files in the library. Each file is fragmented into
k input symbols, (u1, u2, . . . , uk). For simplicity, we assume
in the following ui ∈ Fq . The case of ui ∈ Fmq , i.e. the
case in which packets are m symbols long, can be addressed
as a straightforward extension. The LRFC encoder generates
a sequence of output symbols c = (c1, c2, . . . , c`), where
the number of outputs symbols ` can grow indefinitely. In
particular, the i-th output symbols is generated as

ci =

k∑
a=1

ga,i ua,

where the coefficients ga,i are picked independently at random
with uniform probability in Fq . For fixed `, LRFC encoding
can be expressed as a vector matrix multiplication

c = uG

where u is the vector of input symbols and G is a k×` matrix,
whose elements ga,i are selected independently and uniformly
at random in Fq .

In order to download a file, a user must collect a set of
m ≥ k output symbols y = (y1, y2, . . . , ym). If we denote by
I = (i1, i2, . . . , im) the set of indices corresponding to the m
output symbols collected by the receiver we have

yr = cir .

The user attempts decoding by solving the system of equations

y = uG̃

where G̃ is a matrix corresponding to the m columns of G
associated to the collected output symbols i.e., the columns
of G with indexes in I. If the system of equations admits a
unique solution (i.e., if G̃ is full rank), decoding is declared
successful after recovering u, for example by means of Gaus-
sian elimination. If G̃ is rank deficient, a decoding failure is
declared. In the latter case the receiver reattempts decoding
after collecting one or more additional output symbols.

Let us define δ as the receiver overhead δ = m− k, that is,
the number of output symbols in excess to k that the receiver
has collected. Given k, δ and q, the probability of decoding
failure of an LRFC is given by

Pf (k, δ, q) = 1−
k∏
i=1

(
1− qi−1

qk+δ

)
and can be tightly lower and upper bounded as [11]

l(δ, q) ≤ Pf (k, δ, q) < u(δ, q) (1)

where

l(δ, q) := q−δ−1

and

u(δ, q) :=
1

q − 1
q−δ.

Note that the bounds are independent from the number of input
symbols k and become tighter for increasing q.

For notational convenience, in the remaining of the paper
we shall use the probability of decoding success rather than
the probability of decoding failure, which is simply defined as

Ps(k, δ, q) := 1− Pf (k, δ, q).

IV. AVERAGE BACKHAUL RATE

We define the average backhaul rate as the average number
output coded symbols that the GEO has to send during the
delivery phase in order to fulfill a user request.

In this section, we derive the overhead decoding probability
σδ , that is, the probability that a user needs exactly k+δ coded
symbols to successfully decode the requested file. Then, we
calculate the average backhaul transmission rate for a LRFC
coded caching scheme.



A. Overhead Decoding Probability

Let us denote Sδ the event that the matrix G̃ is full rank
when m = k + δ output symbols have been collected, where
Pr{Sδ} = Ps(k, δ, q). Let us denote the complementary event,
i.e. the rank of G̃ is smaller than k, with S̄δ . We are interested
in deriving

σδ := Pr{Sδ | S̄δ−1}.

Starting from

Pr{Sδ} = Pr{Sδ | Sδ−1}Pr{Sδ−1}
+ Pr{Sδ | S̄δ−1}Pr{S̄δ−1}
= Pr{Sδ−1}+ Pr{Sδ | S̄δ−1}Pr{S̄δ−1}

we have that

Pr{Sδ | S̄δ−1} =
Pr{Sδ} − Pr{Sδ−1}

Pr{S̄δ−1}

=
1− Pr{S̄δ} − (1− Pr{S̄δ−1})

Pr{S̄δ−1}

= 1− Pr{S̄δ}
Pr{S̄δ−1}

which can be rewritten as

σδ = 1− 1− Ps(k, δ, q)
1− Ps(k, δ − 1, q)

. (2)

The expression in (IV-A) holds for δ ≥ 0, whereas for δ < 0
we have σδ = 0.
Bounds on equation (IV-A) can be obtained from (III). In
particular, for δ ≥ 0 we can write

1− u(δ, q)

l(δ − 1, q)
< σδ < 1− l(δ, q)

u(δ − 1, q)

yielding

1− 1

q − 1
< σδ < 1− q − 1

q2
. (3)

Note that the bounds are independent of the overhead δ (for
non negative δ) and become tight as q grows. Note also that
for q = 2 the lower bound becomes 0 and, hence, it loses
significance.

B. Overhead Average

Let us denote as ∆ the random variable associated to the
average number of symbols in excess to k that a user needs
to recover the requested content and let us also denote as δ its
realization. We can calculate the average overhead as follows

E[∆] =

∞∑
δ=0

δ

[
δ−1∏
i=0

(1− σi)

]
σδ. (4)

By using (IV-A) in (IV-B), E[∆] can be upper bounded as

E[∆] <
q − 1

(q − 2)2

(
1− q − 1

q2

)
:= δu. (5)

C. Backhaul Rate

Let Z be the random variable associated to the number of
output symbols for a file requested by a user in the hubs he is
connected to, and let z be its realization. Let H be the random
variable associated to the number of hubs a user is connected
to, being h its realization. Finally, let J be the random variable
associated to the index of the file requested by a user, being
j its realization. We have

PZ|J,H(z|j, h) =

{
1 if z = wj h

0 otherwise

where we recall that wj stands for the number of coded
symbols from file j stored in every hub. The probability mass
function of Z is

PZ(z) =
∑
j

∑
h

PZ|J,H(z|j, h)PJ(j)PH(h)

=
∑
j

∑
h

θj γh PZ|J,H(z|j, h).

We are interested in deriving the distribution of the backhaul
rate, i.e, the number of output symbols which have to be sent
over the backhaul link to serve the request of a user, which
we denote by random variable T . If we condition T to Z, it
is easy to see how the probability of T = t corresponds to the
probability that decoding succeeds when the user has received
exactly t output symbols from the backhaul link in excess to
the z output symbols it received from the hubs through local
links, that is, when m = z + t.
In order to derive PT |Z(t|z) we shall distinguish two cases.
If z ≤ k, then

PT |Z(t|z) =


z−k+t−1∏

i=0

(1− σi)σz−k+t if t ≥ 0

0 otherwise.

If z > k, then

PT |Z(t|z) =



z−k∑
j=0

(
j−1∏
i=0

(1− σi)σj

)
if t = 0

z−k+t−1∏
i=0

(1− σi)σz−k+t if t > 0

0 otherwise.

We are after the expectation of T , which is obtained as

E[T ] =
∑
t

tP (t) (6)

=
∑
t

t

∞∑
z=0

PT |Z(t|z)PZ(z)

=
∑
t

t

(
k∑
z=0

PT |Z(t|z)PZ(z) +

∞∑
z=k+1

PT |Z(t|z)PZ(z)

)



where in the last equality we distinguished two different cases,
z ≤ k and z > k. Let us define T̄1 and T̄2 as

T̄1 : =
∑
t

t

k∑
z=0

PT |Z(t|z)PZ(z)

T̄2 : =
∑
t

t

∞∑
z=k+1

PT |Z(t|z)PZ(z)

so that

E[T ] = T̄1 + T̄2. (7)

If we introduce the variable change δ = z − k + t in the
expression of T̄1, we obtain

T̄1 =

k∑
z=0

PZ(z)

∞∑
δ=z−k

(δ − z + k)

δ−1∏
i=0

(1− σi)σδ

(a)
=

k∑
z=0

PZ(z)

∞∑
δ=0

(δ − z + k)

δ−1∏
i=0

(1− σi)σδ

=

k∑
z=0

PZ(z)

( ∞∑
δ=0

δ

δ−1∏
i=0

(1− σi)σδ

+ (k − z)
∞∑
δ=0

δ−1∏
i=0

(1− σi)σδ

)
(b)
=

k∑
z=0

PZ(z)(E[∆] + k − z)

= (E[∆] + k) Pr{Z ≤ k} −
k∑
z=0

zPZ(z) (8)

where equality (a) is due to σδ = 0 for δ < 0 and equality
(b) is due to

∞∑
δ=0

δ−1∏
i=0

(1− σi)σδ = 1.

Introducing the same variable change in the expresion of T̄2
we have

T̄2 =

∞∑
z=k+1

PZ(z)

∞∑
δ=z−k

(δ − z + k)

δ−1∏
i=0

(1− σi)σδ

=

∞∑
z=k+1

PZ(z)

( ∞∑
δ=z−k

δ

δ−1∏
i=0

(1− σi)σδ

+

∞∑
δ=z−k

(k − z)
δ−1∏
i=0

(1− σi)σδ

)

≤
∞∑

z=k+1

PZ(z)E[∆] = E[∆] Pr{Z > k} (9)

where the inequality is due to
∞∑

δ=z−k

δ

δ−1∏
i=0

(1− σi)σδ ≤ E[∆]

and to
∞∑

δ=z−k

(k − z)
δ−1∏
i=0

(1− σi)σδ ≤ 0

since z > k.
The expression of the average backhaul rate given by

E[T ] = (E[∆] + k) Pr{Z ≤ k} −
k∑
z=0

zPZ(z)

+

∞∑
z=k+1

PZ(z)

( ∞∑
δ=z−k

δ

δ−1∏
i=0

(1− σi)σδ

+

∞∑
δ=z−k

(k − z)
δ−1∏
i=0

(1− σi)σδ

)
.

Finally, we can upper bound the average backhaul rate by
use of (IV-B), (IV-C) and (IV-C) in (IV-C) as

E[T ] ≤ δu + kPr{Z ≤ k} −
k∑
z=0

zPZ(z). (10)

V. LRFC PLACEMENT OPTIMIZATION

The LRFC placement problem calls for minimizing the
average backhaul rate during the delivery phase. To this end,
we want to optimize the number of coded symbols per file that
each hub has to cache. We present in this section the placement
optimization problem adapted to a LRFC cached scheme based
on the optimization problem proposed for MDS codes in [2].

The optimization problem can be written as

min
w1,...,wn

E[T ] (11)

s.t.
n∑
j=1

wj = Mk, wj ∈ N0.

The first constraint specifies that the total number of stored
coded symbols should be equal to the size cache. The second
constraints accounts for the discrete nature of the optimization
variable.

Solving exactly the optimization problem requires evaluat-
ing (IV-C), which can be computationally complex when k
and z are large. Hence, as an alternative to minimizing the
average backhaul rate, we propose minimizing its upper bound
in (IV-C), which leads to the following optimization problem

min
w1,...,wn

[
δu + kPr{Z ≤ k} −

k∑
z=0

zPZ(z)

]

s.t.
n∑
j=1

wj = Mk wj ∈ N0. (12)

Since the upper bound on E[T ] in (IV-C) relies on the upper
and lower bounds in (III), which are tight, we expect the result
of the optimization problem in (V) to be close to the result of
the optimization problem in (V).

VI. RESULTS

In this section, we numerically evaluate the normalized
average backhaul rate, which we define as E[T ]/k.

In all the setups, we consider that users are uniformly
distributed within the coverage area of the satellite and border
effects are neglected. We consider that each hub covers a circu-
lar area of radius r centered around the hub. For simplicity, we
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Fig. 2. Normalized average backhaul rate as a function of memory size M
for MDS and LRFC codes over Fq for q = 2, 4, 128 given n = 100, k = 10,
α = 0 and γ1 = 1. Solid curves represent LRFC schemes while the dashed
curve represents the MDS scheme.

TABLE I
AVERAGE OVERHEAD REQUIRED FOR SUCCESSFUL DECODING FOR A

LRFC WITH k = 10

q E[∆] upper bound (IV-B)
2 1.1981 -
4 0.3490 0.6094
8 0.1447 0.1792
16 0.0669 0.0720
32 0.0323 0.0334
64 0.0159 0.0161
128 0.0079 0.0079

assume that the hubs are arranged according to a uniform two
dimensional grid, with spacing d. Unless otherwise specified,
we assume r = 60 km and d = 45 km. Thus, the coverage
areas of different hubs partially overlap, as it can be observed
in Fig. 1. After some simple geometrical calculations we
obtain that the following connectivity distribution

γ1 = 0.2907, γ2 = 0.6591, (13)
γ3 = 0.0430, γ4 = 0.0072.

We first evaluate the tightness of the upper bound (IV-B) on
average overhead. Table I shows E[∆] for different values of q
are shown. The values in the second column were numerically
derived from equation (IV-B) while values in the third column
were derived from the bound in equation (IV-B). We can see
that the bound becomes tighter for increasing q.

In the first scenario, we study how the cache size M impacts
in the average backhaul rate. In this setup, we assume all user
are connected to exactly one hub, i.e. γ1 = 1, furthermore,
we consider that file popularity is uniformly distributed (i.e
Zipf distributed with parameter α = 0). Moreover, we assume
a library size n = 100 and we assume that each file is
fragmented into k = 10 input symbols. We optimized the
number of LRFC coded symbols wj cached at each hub by
solving the problem (V) for q = 2, q = 4 and q = 128 and
we calculated the average backhaul rate the fountain coding
caching scheme. As a benchmark we used the MDS caching
scheme from [2].
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Fig. 3. Normalized average backhaul rate as a function of memory size M
for MDS and LRFC codesover Fq for q = 2, 4, 128 given n = 100, k = 10,
α = 0.8 and γ1 = 0.2907, γ2 = 0.6591, γ3 = 0.0430, γ4 = 0.0072.

In Fig. 2 the normalized average backhaul rate is shown as
a function of the memory size M . We can observe how the
penalty on the average rate for using LRFC with respect to a
MDS code becomes smaller for increasing q and already for
q = 128 is almost negligible. We remark that for M = 100 the
cache size coincides with the library size, hence, the backhaul
rate for the MDS scheme becomes zero, whereas for the LRFC
schemes the average backhaul rate coincides with the average
overhead.

In our second setup, we assume that users can be connected
to multiple hubs. We consider the connectivity distribution
given in (VI) and file popularity distribution with parameter
α = 0.8. The library size is set to n = 100 and the number of
input symbols is k = 10, the same as in the previous scenario.
The optimal cache placing is computed for each LRFC scheme
as well as for the MDS.

In Fig. 3 we show the impact of memory size M on the
normalized average backhaul rate for different code caching
schemes when users can be connected to multiple hubs. Simi-
larly to the previous scenario, we see that for sufficiently large
q the performance of the LRFC caching scheme approaches
that of the MDS code. Note that since a MDS code achieves
the best possible performance, this result shows implicitly that
solving the optimization problem in (V) yields a solution that
is close to that of solving the optimizaiton problem in (V). We
further observe that LRFC caching with storage capabilities
equal to 10% of the library size can reduce the average
backhaul rate for at least 40% with respect to a system with
no caching (M = 0).

For the same connectivity distribution, a fixed memory size
M = 10 and library size n = 100, we investigate how the file
distribution impacts on the average backhaul rate. In Fig. 4 the
normalized average backhaul rate is shown as a function of the
file parameter distribution α. As expected, when α increases
caching schemes become more efficient since the majority of
the requests is concentrated in a small number of files. Looking
at the figure we can observe how for α = 0.2, a LRFC in F2

requires roughly 12% more transmissions over backhaul link
than a LRFC in F128. For α = 1.5 the LRFC of order q = 2
requires only 4.7% more than in q = 128.
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Fig. 5. Normalized average backhaul rate as a function of the library size n
for MDS and LRFC codes over Fq for q = 2, 4, 128 given α = 0.8, k = 10,
M = 10 and γ1 = 0.2907, γ2 = 0.6591, γ3 = 0.0430, γ4 = 0.0072.

In our last setup we consider α = 0.8, M = 10, k = 10
and the distribution given in (VI). We evaluate the average
backhaul rate for different cardinalities of the library. In Fig. 5
the nomalized average backhaul rate is shown as a function
of the library size. For a fixed memory size the average
backhaul rate increases as the library size increases. As it can
be observed, also in this case the proposed LRFC caching
scheme performs similarly to a MDS scheme.

VII. CONCLUSIONS

In this work we analyzed fountain code schemes for caching
content at the edge. We considered a heterogeneous satellite
network, composed of a GEO satellite and a number of hubs
which can cache content. We focus on reducing the average
rate in the backhaul link which connects the GEO to the
hubs. For this setting, we derived the analytical expression
of the average backhaul rate as well as an upper bound
of it. Making use of this upper bound, we formulated the
cache placement optimization problem for a fountain coding
caching scheme using linear random fountain codes (LRFCs).
Finally, we presented simulation results where we compared
the performance of the LRFC scheme with a MDS scheme.
Our simulation results indicate that the performance of the
LRFC caching scheme built over a finite field moderate order
approaches that of the MDS caching scheme.
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