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Code Design for Non-Coherent Detection of Frame
Headers in Precoded Satellite Systems

Farbod Kayhan and Guido Montorsi

Abstract

In this paper we propose a simple method for generating short-length rate-compatible codes over ZM that are robust to non-
coherent detection for M -PSK constellations. First, a greedy algorithm is used to construct a family of rotationally invariant codes
for a given constellation. Then, by properly modifying such codes we obtain codes that are robust to non-coherent detection. We
briefly discuss the optimality of the constructed codes for special cases of BPSK and QPSK constellations. Our method provides
an upper bound for the length of optimal codes with a given desired non-coherent distance. We also derive a simple asymptotic
upper bound on the frame error rate (FER) of such codes and provide the simulation results for a selected set of proposed codes.
Finally, we briefly discuss the problem of designing binary codes that are robust to non-coherent detection for QPSK constellation.

Index Terms
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I. INTRODUCTION

In this paper we address the problem of short-length rate-compatible (RC) code design for non-coherent channels. In order
to motivate the subject, we describe a specific system scenario, namely signaling in a precoded satellite system, where short
codes robust to non-coherent detection are required by the system model for physical layer header (PLH). As we will see, in
such systems, the phases of the received symbols are changed by an unknown random value which remains constant during
the transmission of each codeword. Such a scenario can be considered as a special case of a more general model where the
phases are changed at the symbol level following a stochastic process with given parameters. Both coding and modulation
design for non-coherent channels have been addressed since very first days of communication theory (see for example [1] and
references therein) and hence the literature on the subject is quite rich, addressing varieties of system models and strategies.

Two main approaches are presented in the literature following essentially two different strategies. The first approach is based
on pairing a capacity achieving code (LDPC, Turbo, ...) with an optimized constellation space for non-coherent channel. In
this approach, the main goal is to find the capacity achieving (optimal) distribution of the signal space for the given channel
model. For details on some of the results obtained in this direction we refer the readers to [2]–[4]. It is important to notice
that in all these works the constellation is considered to be infinite and the system performance is studied asymptotically. For
finite constellation sets, the problem of finding the optimal constellation is in general an open problem. The second strategy is
to fix the constellation shape and then trying to design the codebook (and possibly the constellation labeling) for non-coherent
detection. This is also the strategy that we pursue in this paper. The main idea in this case is to maximize the so called
non-coherent equivalent distance of the code1. The coding design problem for specific cases of M-PSK, APSK, and QAM
constellations has been investigated by several authors, see for example [5]–[10] and references within. In the following, we
briefly review some of the above works that are directly related to the problem we are considering and mention their differences
compared to our approach.

In [5] the authors study the coding design problem for the non-coherent AWGN channel assuming a M -ary phase shift keying
(PSK) modulation scheme. In particular, a coding design over ZM based on exclusion of unwanted codewords is proposed and
codes up to length N = 15 and information vector size K = 10 over Z4 and Z8 are constructed. In this method there exist an
isomorphism between the ring over which the code is defined and the modulation scheme. This isomorphism also implies the
constellation labeling. The results in [5] are mainly based on numerical approaches. F-W. Sun and H. Leib in [6] extend these
results by providing a analytical framework. This is done by showing the relation between the non-coherent distance and those
of Euclidean and Lee distances. In a series of papers, the authors in [7]–[9] study the block-coded modulation for MPSK,
QAM and APSK constellations. In particular, the minimum non-coherent distance is obtained separately for each constellation
and a given labeling.

The design strategies introduced in previously mentioned works do not perfectly match with the system scenario that we
are interested in this paper. Indeed, to the best of our knowledge, no study on the optimal code lengths as a function of K
and minimum distance have been presented in the literature. In this paper, we first discuss in some details the system model
that we are interested in and motivate the reasons for which short-length codes with non-coherent detection are needed in such
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1Notice that the non-coherent distance has been defined in several ways in the literature. In this paper we adopt the definition which is in line with that of
[21].
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systems. Then, we propose a method to obtain such codes by modifying the generator matrix of rotationally invariant codes.
A greedy algorithm is used to optimize the minimum distance of rotationally invariant codes with codeword lengths up to
N = 256 and information vector lengths up to K = 15. The results are reported only for BPSK and QPSK constellations.
However, the method can be extended for any M -PSK constellation. These results provide a lower bound on the minimum
distance of rotationally invariant codes for a given pair [N,K]. Finally, we derive a simple asymptotic upper bound on the
frame error rate (FER) of the designed codes. This will help us to choose a code from the table with desired FER for the PLH
of the system.

The rest of this paper is organized as follows. In Section II, we describe our system model and define the problem we
intend to solve. In Section III, we present the proposed design for the rotationally invariant codes and provide the tables for the
optimized codes for information lengths up to K = 14. In Section IV we derive a simple upper bound of the error probability
as a function of SNR and the minimum non-coherent equivalent distance of a code. We also explain the strategy to build such
a codes using the rotationally invariant codes. This upper bound is then used to select the desired codes to design the PLH in
Section V, where we also present the simulation results for a selected set of codes. Finally, we conclude the paper in Section
VI and discuss some possible future research directions.

II. SYSTEM MODEL AND PROBLEM DEFINITION

Non-coherent detection is an attractive technique in several communication scenarios. Two examples are systems without
carrier phase tracking and AWGN channels with flat fading channels when the effects of the phase rotation is considered
independently of the amplitude variation. In this paper, we consider a precoded satellite system and explain the reasons for
which non-coherent detection of PLH is needed in such system scenarios.

In order to describe our system model we confine ourselves to the specifics of the digital video broadcasting standard
(DVB-S2X) [11]. However, our assumptions are valid for a wide range of satellite communication systems (not broadcasting)
where adaptive coding and modulation (ACM) is employed. In ACM schemes the forward error correction (FEC) rate and
the modulation schemes are selected from a list depending on the channel state information (CSI) in order to maximize the
throughput of the channel [12]. At the receiver side, before detecting/decoding the FEC frame, one needs the knowledge about
the coding rate and the modulation scheme. These information, referred to as physical layer header (PLH), are encoded and
sent before each FEC frame. The PLH headers in DVB-S2X and DVB-T have constant length, however, as it has been shown
in [13]–[15] considerable gains on average code lengths may be obtained by employing variable length coding technique for
PLH.

In DVB-S2X, in order to track the carrier phase, usually a sequence of pilot symbols are transmitted in between of blocks of
data sequences. The pilot symbols are chosen from the QPSK constellation and are known to the receiver. By using techniques
such as phase-locked loop (PLL) one can estimate the carrier phase for all data sequences. The residual phase noise after the
PLL is usually modeled as white noise and can be further handled by, for example, optimizing the constellation space [16].

Recently, it has been shown that precoding can provide significant gains in multi-beam satellite systems with interference
[17], [18]. In this paper, we consider the effect of precoding on the detection of PLH and FEC frame. The main problem is
that the precoder matrix, used to reduce interference, is known at transmitter but not at the receiver. The effect is that received
signal in the precoded section may be affected by a constant but unknown changes of the phase (and the amplitude) of the
received signal. In such cases, the common pilots, not precoded, cannot be used to estimate the phase in the precoded parts.
One way to solve this problem is to design the PLH code such that non-coherent detection is possible. In this way, after PLH
detection, we can derive an estimation of the phase change due to the precoding matrix for the following FEC block of data.
The PLH codes are usually short, having lengths up to few hundreds of symbols (90 symbols for normal MODCODs and
900 symbols for VL-SNR MODCODs in DVB-S2). One of the characteristics of such a system, that distinguish it from the
previous system models, is the fact that not all PLH in a super frame may be precoded with the same precoder. Therefore, the
phase estimation may be independent from one PLH to another. Our main problem is then to design short finite-block length
codes for PLH that are robust to non-coherent detection. In the next section we provide a simple way to construct such family
of codes.

The received signal can be written as yk = ske
jθk+nk where sk is the transmitted symbol, nk is the additive white Gaussian

noise and θk is modeled as a random process with first order statistic uniform in [0, 2π]. Different code design approaches stem
from the difference of the coherence time Tθ of the phase process θk and the codeword length N . Given the above discussion,
in our case, we assume Tθ � N so that we can drop the subscript k from θ and write yk = ske

jθ + nk.

III. RATE COMPATIBLE ROTATIONALLY INVARIANT CODES

We start the section by presenting a simple and general greedy algorithm for constructing families of RC codes with small
dimension K over Z2. We then extend the procedure to construct codes over arbitrary groups ZM and show how to particularize
it to construct rotationally invariant codes for M -PSK. We also show that the designed code families are competitive with the
optimal codes that are known in some cases.
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Algorithm 1 Greedy Approach to Construct the Generating Matrix of a small dimension K RC Compatible Code
1: Input: target minimum distance dtmin, K
2: Initialize: Set codeword length n = 0, d0min = 0 and G(0) = ().
3: For all increasing n starting from 0:
4: Construct the list of input words U generating the minimum distance codewords (nearest neighbors):

U =
{
u = argmin

(
w2(u

TG
(n)

)
)}
.

5: Find a new column vector g(n+1), to be appended to G(n), that reduces as much as possible the number of nearest
neighbors

g(n+1) ∈ argmax
g

∑
u∈U

gT · u , (1)

where “·” denotes the scalar product (over Z2). If there is more than one vector satisfying (1), pick a random one.
6: Optionally one may also enforce that the new vector g(n+1) is different from all the columns of G(n).
7: Append the column g(n+1) to G(n):

G(n+1) =
(
G(n)|g(n+1)

)
,

8: n = n+ 1 and goto 4 if dtmin is not achieved.

A. Construction of rate-compatible linear binary codes

In this part we provide a simple approach based on greedy algorithm to construct the generating matrices G(n) of a family
of good rate-compatible codes over Z2 with small dimension K. The step by step description of the algorithm is provided in
Algorithm 1. In step 2, we initialize the generator matrix as G(0) to the empty matrix. In step 4, w2() denotes the Hamming
weight of a binary vector. The algorithm adds, at each step, a new column to the generator matrix such that the number of
nearest neighbor codewords is reduced as much as possible, and hence possibly increase the minimum distance. The algorithm
stops when a target desired minimum distance, dtmin, or a maximum codeword size is achieved. The optional condition in
step 6 guarantees that when n = 2K − 1, the optimal maximum length codes (all possible columns in generating matrix) are
obtained. Complexity of the algorithm is exponential with K (step 4 and 5) but linear with the code length n.

Despite its simplicity, this algorithm provides families of RC codes with performances close to those of optimal codes. Such
a comparison is done in Table I. In this table we report the required length needed to satisfy a target minimum distance for
given K. The columns labeled B correspond to the optimal codes. The optimal minimum distances are known for all values
of K = 2, . . . , 15 and N = 2, . . . , 250. Routines to construct optimal codes can be found in [19]. The results for the codes
obtained using the greedy algorithm 1 are presented under the column labeled 2.

It is important to notice that for K = 2 the Cordaro-Wagner codes are optimal and the greedy approach indeed results in the
same codes. Also for K = 3 the solution obtained by our approach is always optimal independently from the value of dmin.
By increasing K we diverge from the optimal codes, however, for K ≤ 7 the results are still surprisingly close to the optimal
codes. This observation, encourages us to use the same algorithm to design also rotationally invariant codes as explained in
the next sections. As a final note, it is important to notice that the results in Table I provide us with a family of rate compatible
codes, as a good code of length N is obtained by adding a column to the generator matrix of a good code with length N − 1.

On the other hand, if one is not interested in the rate compatibility constraint, one may run multiple time the greedy algorithm
and pick the optimum designed codes for any desired pair (K, dmin). The random selection of the column in step 5 of the
algorithm guarantees that each run of the greedy algorithm yields different results. We show the best results for 100 runs in
Table II. The improvement compared to a single run is quite significant for K = 8, 9 and 10.

B. Construction of rate-compatible linear codes over ZM
The previous greedy algorithm for construction of good rate compatible linear binary codes can be generalized to construct

linear codes over ZM . In this section we consider codes over Z4 while extension to larger values of M is straightforward.
Any (K,N) linear code C over Z4 (sub-module) can be generated with a generator matrix of the form:

G =

(
A
2B

)
,

where A is a (k1 ×N/2) matrix with elements in Z4 and B is a (k2 ×N/2) matrix with elements in Z2. The code, which
has dimension K = 2k1 + k2, is generated by multiplying G by a vector uT = (u1,u2) with the first k1 components in Z4

and the last k2 components in Z2. Multiple choice of the pair k1, k2 for the same K originate different code types.
If the considered distance between group elements is such that it can be computed by applying a proper weight function

w4 to their Z4 sum
d(a, b) = w4(a+ b),
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TABLE I
CODE LENGTH FOR GIVEN K AND TARGET MINIMUM DISTANCE dmin . VALUES ARE REPORTED FOR BEST BINARY CODES (B) AND DESIGNED RC CODES
WITH GREEDY ALGORITHM: BINARY (2), BINARY AND RI FOR BPSK (2 RI2), BINARY AND ROBUST TO NC DETECTION FOR QPSK (2 NC4), OVER Z4

(4),OVER Z4 AND RI FOR QPSK (4 RI4). ALL CODES ARE OBTAINED WITH A SINGLE RUN OF THE GREEDY ALGORITHM.

B 2 2 RI2 2 NC4 4 4 RI4 B 2 2 RI2 2 NC4 4 4 RI4 B 2 2 RI2 2 NC4 4 4 RI4
K\dmin 2 4 10

2 3 3 4 4 4 4 6 6 8 8 6 8 15 15 20 20 16 20
3 4 4 4 4 6 4 7 7 8 8 8 8 18 18 20 20 20 20
4 5 5 6 6 6 6 8 9 9 8 10 8 20 20 22 22 22 22
5 6 6 6 7 8 8 10 10 10 11 10 12 21 22 22 23 24 24
6 7 7 8 8 8 8 11 11 12 12 14 14 23 23 24 24 26 24
7 8 8 8 8 10 10 12 12 14 14 16 14 24 25 26 26 28 28
8 9 9 10 10 10 10 13 14 14 14 16 16 26 27 28 28 30 30
9 10 10 10 11 12 12 14 15 16 16 18 16 27 28 28 30 32 32
10 11 11 12 12 12 12 15 16 18 16 18 18 28 30 30 31 34 34
11 12 12 12 12 14 14 16 17 18 18 20 18 30 31 32 32 38 36
12 13 13 14 14 14 14 18 18 18 19 20 20 31 33 34 34 36 36
13 14 14 14 15 16 16 19 19 20 20 22 22 32 35 36 36 38 38
14 15 15 16 16 16 16 20 20 21 20 24 24 34 35 36 36 42 40

B 2 2 RI2 2 NC4 4 4 RI4 B 2 2 RI2 2 NC4 4 4 RI4 B 2 2 RI2 2 NC4 4 4 RI4
K\dmin 20 30 50

2 30 30 40 40 30 40 45 45 60 60 46 60 75 75 100 100 76 100
3 35 35 40 40 36 40 53 53 60 60 54 60 88 88 100 100 88 100
4 38 39 40 40 40 40 57 57 62 62 60 62 95 95 102 102 96 102
5 40 41 42 43 42 44 59 61 62 63 62 64 99 100 102 103 104 104
6 42 43 44 44 46 46 60 63 66 64 68 64 101 103 104 104 110 106
7 43 45 46 47 48 50 62 66 66 64 70 70 102 107 106 108 112 110
8 45 49 50 48 52 52 65 69 71 68 76 72 105 110 110 110 118 112
9 47 50 50 52 54 54 67 71 72 72 74 72 107 112 114 115 118 116

10 48 52 54 54 56 56 68 74 76 76 80 78 109 116 118 118 122 120
11 50 55 54 56 62 56 70 77 78 78 84 80 113 120 120 120 128 126
12 52 56 56 58 64 60 72 78 80 80 86 84 116 122 124 124 130 128
13 53 58 60 60 62 64 74 80 82 84 88 86 118 124 126 127 134 130
14 54 60 60 60 62 64 76 82 84 84 88 88 119 128 128 128 134 130

TABLE II
CODE LENGTH FOR GIVEN K AND TARGET MINIMUM DISTANCE dmin . VALUES ARE REPORTED FOR BEST BINARY CODES (B) AND SEVERAL DESIGNED
RC CODES: BINARY (2), BINARY AND RI FOR BPSK (2 RI2), BINARY AND ROBUST TO NC DETECTION FOR QPSK (2 NC4), OVER Z4 (4),OVER Z4

AND RI FOR QPSK (4 RI4). THE VALUES OF BEST CODES WITH 100 RUNS OF THE GREEDY ALGORITHM ARE REPORTED.

B 2 2 RI2 2 NC4 4 4 RI4 B 2 2 RI2 2 RI4 4 4 RI4 Best 2 2 RI2 2 RI4 4 4 RI4
K\dmin 2 4 10

2 3 3 4 4 4 4 6 6 8 8 6 8 15 15 20 20 16 20
3 4 4 4 4 4 4 7 7 8 8 8 8 18 18 20 20 18 20
4 5 5 6 6 6 6 8 9 8 8 10 8 20 20 22 22 22 22
5 6 6 6 7 6 8 10 10 10 11 10 12 21 21 22 23 22 24
6 7 7 8 8 8 8 11 11 12 12 12 12 23 23 24 24 24 24
7 8 8 8 8 8 8 12 12 13 13 12 14 24 25 26 26 26 26
8 9 9 10 10 10 10 13 14 14 14 14 16 26 26 28 28 28 28
9 10 10 10 11 10 12 14 15 15 15 14 16 27 28 28 28 30 28

10 11 11 12 12 12 12 15 16 16 16 18 16 28 29 30 30 32 30
B 2 2 RI2 2 NC4 4 4 RI4 B 2 2 RI2 2 RI4 4 4 RI4 B 2 2 RI2 2 RI4 4 4 RI4

K\dmin 20 30 50
2 30 30 40 40 30 40 45 45 60 60 46 60 75 75 100 100 76 100
3 35 35 40 40 36 40 53 53 60 60 54 60 88 88 100 100 88 100
4 38 38 40 40 38 40 57 57 62 62 58 62 95 95 102 102 96 102
5 40 40 42 43 42 44 59 59 62 62 60 62 99 99 102 103 100 104
6 42 42 44 44 44 44 60 62 62 62 64 62 101 102 104 104 104 104
7 43 45 44 46 46 46 62 65 64 64 68 62 102 105 106 106 108 106
8 45 47 48 48 50 48 65 68 68 68 70 68 105 109 108 108 114 110
9 47 49 50 51 52 52 67 70 72 72 74 72 107 112 114 114 116 114

10 48 51 52 52 54 52 68 73 74 74 78 76 109 115 116 116 120 118

linearity of code (∀a,b ∈ C → a + b ∈ C) implies that distance spectrum from any codeword coincides with the weight
spectrum of the code. Considering these generalizations, step 4 of the greedy algorithm 1 should be substituted to
• Construct the list of input words U ∈ Zk14 × Zk22 generating the minimum weight codewords (nearest neighbors):

U =
{
u = argmin

(
w4(u

TG
(n)

)
)}

and step 5 with
• Find a new column vector g(n+1), to be appended to G(n), that reduces as much as possible the number of nearest

neighbors:
g(n+1) ∈ argmin

g

∑
u∈U

I(0 = w4(g
T · u)) , (2)

where I() is the indicator function, returning 1 if its argument is true.
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With the natural M -PSK mapping m↔ 1√
2
ej2πm/M the induced weight correspondent to the Euclidean distance is w4(0, 1, 2, 3) =

(0, 1, 2, 1) so that eq. (2) is not equivalent to eq. (1). When multiple columns exist satisfying eq. (2) one additional requirement
may be that of minimizing the number of scalar products with weight 1.

The results for constructed codes over Z4 are presented in tables I and II under the column label 4. For each value of K we
report the results for the code type with the largest value of k1, i.e. k1 = bK/2c. Results for differents type are not reported
as they do not provide significant differences.

Notice that the length in bits N of codes over Z4 is always an even number. For small values of K the codes Z4 have the
same length as their binary counterparts (with exception of 1 bit due to the even length constraint). On the other hand, for
large K a small increase can be seen.

C. Construction of rotationally invariant codes

A codebook S for M -PSK constellation is rotationally invariant when all the rotated versions of any codeword belong to
the codebook.

For M -PSK constellation and linear codes over ZM generating group, this condition is equivalent to impose that the all-one
codeword (denoted by 1) belong to the codebook C. This property can be enforced constraining the first row of the generating
matrix G to 1. This additional constraint in turn can be easily incorporated into the greedy Algorithm 1 to generate families
of good rate compatible and rotational invariant codes.

The results for rotationally invariant codes over Z2 and Z4 are presented in tables I and II with column labels 2 RI2 and 4
RI4 respectively. In principle the length of rotational invariant codes for a given minimum distance and information bit must
be larger or equal to those codes without any constraints. In our tables in few cases when K ≤ 7 the rotational invariant
codes have smaller length compared to optimized codes. This is due to two facts. First, the greedy algorithm does not always
provides the optimal solution and second, the search space is smaller for rotationally invariant codes (for any given K) and
therefore the greedy algorithm performs slightly better.

In Figure 1 we report the minimum distance growth as a function of K and N of the generated codes for BPSK and QPSK
constellations with 100 runs of the greedy algorithm. The main observation is that as K increases, both the optimized codes
and rotationally invariant codes show the same minimum distance growth as a function of code length.

Generator matrices of a good rate compatible family corresponding to the row K = 8 of table I are reported in the appendix.

IV. FROM ROTATIONALLY INVARIANT CODES TO CODES FOR NON-COHERENT DETECTION

In this section we describe how to construct codes robust to non-coherent detection starting from RI codes. First we present
a simple upper bound on the FER of the RI codes which motivates our construction of the codes for non-coherent detection

A. Union bound for non-coherent detection

Simple upper bounds (UBs) to frame error probability of codes, PE , can be obtained by applying the union bound based
on the pairwise error probability (PEP) P (s→ s′):

PE ≤
1

2K

∑
s

∑
s′ 6=s

P (s→ s′). (3)

For coherent detection and AWGN channel PEP is upper bounded by

P (s→ s′) ≤ exp

(
−||s− s′||2

4N0

)
,

where s, s′ are the constellation sequences in the codebook.
When codebook is constructed by applying a proper mapping s(c) to codewords c of linear code C over a generating group

of the considered constellation the PEP can be simplified as

P (s(c)→ s(c′)) = P (s(0)→ s(c′ − c)).

In this case outer sum in (3) can be eliminated (geometrical uniform codes) and UB can be written as:

P cE(C) ≤
∑

c∈C6=0

P (s(0)→ s(c)). (4)

When using non-coherent detection on M -PSK, it can be demonstrated (see for example [22]) that the PEP is asymptotically
upper bounded (for large code lengths) by

P (s→ s′)≤̃ exp

(
−
d2eq(s, s

′)

4N0

)
, (5)
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(a) Optimized code over Z2 (2)
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(b) Optimized code over Z2, RI for BPSK constellation (2RI2)
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(c) Optimized code over Z4 (4)
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(d) Optimized code over Z4, RI for QPSK constellation (4RI4)

Fig. 1. Minimum distance growth as a function of code length for best codes obtained by greedy algorithm (100 runs). Several values of K are reported.

where
d2eq(s, s

′) = min
i=0,...,M−1

||s− ej 2πi
M s′||2,

and ≤̃ indicates the asymptotic inequality as N →∞. Equation (5) in turn can be further upper bounded as follows

P (s→ s′)≤̃
M−1∑
i=0

exp

(
−||s− e

j2πi/Ms′||2

4N0

)
.

The union bound for non-coherent detection takes then the following approximate form:

PncE ≤̃ 1

2K

∑
s

∑
s′ 6=s

M−1∑
i=0

exp

(
−||s− e

j2πi/Ms′||2

4N0

)
. (6)

Now consider a (N,K −m) code C constructed from a linear (N,K) RI code C′′ over ZM by eliminating the all-one row
of its generating matrix. Its union bound reads:

PncE (C) ≤̃ 1

2K−m

∑
c

∑
c′ 6=c

M−1∑
i=0

exp

(
−||s(c)− e

j2πi/Ms(c′)||2

4N0

)

=
1

2K−m

∑
c

∑
c′ 6=c

M−1∑
i=0

exp

(
−||s(c)− s(c′ + i)||2

4N0

)
. (7)
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The second identity stems from the fact that rotating the constellation sequence by 2πi/M corresponds to adding the all-i
sequence (i) to the codeword. The two inner sums in (7) enumerate all the codewords of C′′ not equal to a rotated version of
s(c), so that:

PncE (C) ≤̃ 1

2K−m

∑
c

∑
c′′∈C′′,c′′ 6=c+i

exp

(
−||s(c)− s(c′′)||2

4N0

)
. (8)

Now we can exploit the geometrical uniformity of C to simplify the UB (8) removing the outer sum:

PncE (C) ≤̃
∑

c′′∈C′′ 6=i

exp

(
−||s(0)− s(c′′)||2

4N0

)
≤ P cE(C′′) (9)

An approximation of the upper bound to FER with non-coherent detection for the (N,K−m) code C is then upper bounded
by the upper bound to FER with coherent detection of the correspondent RI code C′′. The difference being that all M rotated
sequences i are excluded from the sum (9) instead of just the all zero sequence as in (4).

The generating matrix of a good (K − m,N) code for non-coherent detection of 2m-PSK can then be obtained starting
with a good K ×N generating matrix of a rotationally invariant code constructed as described in section III-C by eliminating
the first all-one row. The new codebook is such that the distance from any codeword to any other codeword and all its rotated
versions is large.

B. Codes on Z2 for non-coherent detection of QPSK constellations

Even though linear codes built over ZM can be represented in binary, they are not binary linear codes. Focusing on QPSK
constellation, our previous construction results in a linear code over Z4. If a linear binary code is desired one can use the
alternative construction presented in [21]. In this case one construct a binary K × N generator matrix where the two first
rows are fixed to be 10 and 01 codewords using the above mentioned greedy approach. This forces the binary codebook to
have 1, 10 and 01 as codewords. However, since Z4 and Z2

2 are not isomorphic, no direct mapping can be found between
the rotations of QPSK constellation and the codebook algebra. Therefore, contrary to what has been reported previously in
[21], these codes are not rotationally invariant. Nevertheless, code suitable for non-coherent detection can still be obtained by
this construction after eliminating the first two rows. Our simulations indicate that such codes perform quite well with the
non-coherent detector. The results based on this construction are reported in Tables I and II under the column name 2 NC4.

V. EXAMPLE OF PLH CODE CONSTRUCTION FOR BPSK AND QPSK CONSTELLATIONS

In this section we report an example of PLH code construction for K = 8 and target FER=10−8 for SNR=0, 5 and 10 dB.
The first step is that of establishing the required minimum distance of codes for achieving the desired FER at the target

SNR. In order to do so we use the following conservative upper bound to FER

FER ≤ (2K − 1)
1

2
erfc

(√
Admin

Es
N0

)
. (10)

with A = 1 for BPSK and A = 1/2 for QPSK. This simple bound provides a conservative value for the minimum distance
using BPSK and QPSK. The required values are reported in 2nd and 5th column of table III.

The required generating matrices are then selected depending on the type of detection. When using coherent detection (CD)
one has to pick the generating matrix of a (N, 8) code with minimal length N achieving the required minimum distance.
When using non-coherent detection (NCD) one has to pick the generating matrix of a (N, 8 + m) RI code over Z2m with
minimal length and remove the first row. The required lengths (in symbols) using the rate-compatible code families constructed
as described in section III are reported in table III. One can see that, as expected, the additional requirement of robustness to
non-coherent detection has a marginal impact on the required code lengths. One can also observe that using QPSK gives a
small advantage in terms of required PLH length in symbols.

TABLE III
REQUIRED CODE LENGTHS (SYMBOLS) FOR PLH ACHIEVING FER=10−8 AT 0, 5 AND 10 DB. CD: COHERENT DETECTION. NCD: NON-COHERENT

DETECTION.

BPSK QPSK
SNR dmin CD NCD dmin CD NCD

0 22 51 54 43 50 52
5 7 21 22 14 19 20

10 3 13 14 5 9 10

We simulated the FER performance of codes constructed in this way when using coherent ML detection and noncoherent
ML detection. In Figures 2 to 5 we report the performances of designed codes and comparison with bounds (4) or (9) (dashed
lines) or the simpler bound (10) (solid lines).
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Fig. 2. Comparison of simulation results and bounds for codes designed for BPSK with coherent detection (2). Target SNR at FER=10−8 is 0, 5 and 10 dB,
corresponding to required dmin of 22,7, and 3.

To obtain the performance results we used the ML detection rules:

yk = sk + nk ccML = argmaxĉ<(y · s∗(ĉ)) Coherent

yk = ske
jθ + nk cncML = argmaxĉ|y · s∗(ĉ)| Non− Coherent

Notice that bound (9), is valid only for large values of code length, a situation far from true for the considered short length
codes. This fact is responsible of the mismatch between bounds and simulations observed in Figures 5 and 3.

VI. CONCLUSIONS AND FURTHER RESEARCH

In this paper we presented a strategy to design short-length rate-compatible codes robust to non-coherent detection. We
discussed in some details a system scenario, i.e., the coding for PLH in precoded satellite broadcast systems, where such codes
are necessary to correctly detect the PLH. A greedy algorithm has been proposed and used to construct the desired codes. Our
method provides an upper bound of the code length needed to assure a given non-coherent distance between the codewords.
The research can be extended in several ways. For example, it will be interesting to provide some theoretical upper and lower
bounds for the finite-block length coding design with a desired non-coherent distance. Another possible study, is to change the
constellation space instead of using non-coherent detectable codes. As an example, by adopting a 1-3-APSK constellation one
may be able to design shorter codes due to the fact that the non-coherent detectability as defined earlier may not be needed any
more. In general, designing the constellation space by optimizing an opportunistic objective function (using for example the
techniques proposed in [16] and [23]) to reduce the code length is an interesting research topic. Some works in this direction
are undergoing.

APPENDIX

In tables IV and V we report the generator matrices for the rate-compatible code obtained using the greedy algorithm. The
maximum code length is N = 256 and the code size is K = 8. Each rows of the table reports one line of the generating
matrix in hexadecimal notation. Each hexadecimal number has its LSB on the right, so the binary representation should be
read from right to left.
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Fig. 3. Comparison of simulation results and bounds for codes designed for BPSK with non-coherent detection (2RI2). Target SNR at FER=10−8 is 0, 5
and 10 dB, corresponding to required dmin of 22,7, and 3 respectively.

TABLE IV
BPSK CODES. GENERATOR MATRICES OF GOOD RATE-COMPATIBLE CODES FOR COHERENT AND NON-COHERENT DETECTION. K = 8 AND MAXIMUM

CODE LENGTH N = 256.

0-31 32-63 64-95 96-127 128-159 160-191 192-223 224-255
Coherent detection (Z2)

1 B60CC170 C06D5BD9 3792D386 0C019BF6 A2AC8EA4 5A6655A6 0F09AFAF A2E06F0C
2 8740E3C4 EBF583EA 40D580B3 0FDB00DF EE798298 69F03FF3 3FFFA955 960395A9
3 2CB158A6 3F9EC328 134ACC79 C265AB06 F5554BFF 95FF363F CFFFC965 F6F0CFF5
4 D7A5A915 527217DA A3FFED21 E6B15804 F61AC94F F0009C33 C05C3609 995C5C96
5 ADD81F34 A1813BF1 B187ED2A E66B02B1 65528FD8 C553CC0C 9AA553F0 9AC03F9A
6 CFAABDA7 C0D26C37 A2C19ED8 FF03E402 1B2CF598 6F050CA0 3F0C9F63 0C9F030C
7 9E3FFC0F 9FF5238C 8BF334D3 D4EA816C 8FB01B03 A60F6CA9 A6A3CA53 F74A936A
8 CA4DA8F3 661EBE67 CB9558BE 726B3285 8B54C955 0AC0FA09 036FA3A9 378306CA

Non Coherent detection of BPSK (Z2)
- FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
1 F999750E F18E7072 60BB790A 703FCE66 ECAABE56 6096E920 A0FA9039 6A5369AA
2 6A66FECB 853B0E6B 3CD19CCF 733328D4 188B2829 6566FB34 99C5C355 33659AC0
3 650F1B00 F23732A8 E6B8E6CA FC159543 EC35B180 FC636E85 0C93FF09 A900330A
4 CA9BEF81 D397FD46 64D49C39 17DA5A4D BC102B14 5999F46D 555C03C3 03CA6FA0
5 0FF15456 49982A0E 9F9620F0 71B330E6 C7E43FD6 C03334D8 5F509663 3F035A60
6 6F602B84 627C1B11 06D153AC 17F33F14 E9594E70 FF3C6E64 0A063590 3A366C0C
7 5336D973 CCAE71BF 45384AF0 4C3F18C1 2468DBEA 953577B0 FAC6636C 90A9C59C
8 559B1E57 2C354DBA 94C21C9C 16BFE8CE AF328170 A0968680 9003FC36 F530F995
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Fig. 4. Comparison of simulation results and bounds for codes designed for QPSK with coherent detection (4). Target SNR at FER=10−8 is 0, 5 and 10
dB, corresponding to required dmin of 43,14, and 5.

TABLE V
QPSK CODES.GENERATOR MATRICES OF GOOD RATE-COMPATIBLE CODES FOR COHERENT AND NON-COHERENT DETECTION. K = 8 AND MAXIMUM

CODE LENGTH N = 256.

0-31 32-63 64-95 96-127 128-159 160-191 192-223 224-255
Coherent detection (codes over Z4)

1-2 5CA272B7 8BB1BEEB B645D089 E8DD708A B16F2C92 BD6C24B3 390F4A8D 632DCE31
3-4 9E0592A6 0E8D8D45 99DDECC8 3A06F70D 0866F421 EE8F409C CEE1D497 E7AD3D2D
5-6 68B29C05 9EB80F05 B6C6B50E F443A875 787406A9 6C017FD0 5A4CB78E 0BBFC41C
7-8 570C66E7 2C003E2C A05678FA 5F23FE74 A8016DB0 FC76395D 3E6ED680 677BAFD8

Non Coherent detection of QPSK (codes over Z4)
- 55555555 55555555 55555555 55555555 55555555 55555555 55555555 55555555
1-2 773F8EF4 A840C467 9C9E7E57 70762CD3 1214EA38 AFC0B6CA C68A58F0 FF77C946
3-4 EF9E5FF2 916302C1 D5D27978 880B090D EF82BA05 956A5CD2 5F7DD5D2 89B64BC5
5-6 6CF632A6 3A8ACF2B 572D64A5 5FF77D0D AFF031F6 CD07AF80 35D00DF0 E8DFB604
7-8 C02A2B67 839C432D 3DB1875F E7F7C875 449A58A7 9FFEBF6B 4647DD82 341C8002

Non Coherent detection of QPSK (codes over Z2)
- FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
- AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA
1 33450EDA 82F99BB4 656CA503 19B61663 36501FC3 6A69F93F 741E26C5 5A0003E2
2 F8252756 1AD5E6D5 C939916E 726C4BCC C96ABD0F FA000A9C 4FB93E07 ABB33000
3 9150254A B4E249C5 6A699FEE D44BC8A9 AF30B67B E3533006 6B127392 0FA0AEBB
4 765CC63C 9C41E7C8 A5059438 8EBE5E93 395C0616 453FF366 2E1BAB96 CE2A3011
5 C99A7FB9 625D30D7 C09F09AC 5990AB03 F96AA05E A5636CA3 5B3BCCB4 98805987
6 FFAA59A6 A1F655A0 C3CA37D4 58D94600 9A395B36 7A56AAAA 83D1A6BB CC3C0FD1
7 55461830 B433128F 5ACA3CE4 F1E5979A 59F534D1 4F5066A0 E276999B 9BB991B4
8 8F192E8D 52DB486A 959A6A0E 9FF6399A C3F9EAD0 F90F9AC5 419BB5EF 3E133CCF
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