Models of Communication Dynamics for Simulation of Information Diffusion
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Abstract—We study information diffusion in real-life and address is how different models of diffusion, in particutze
synthetic dynamic networks, using well known threshold and  cascade and threshold models, behaveymamic networks.
cascade models of diffusion. Our test-bed is the communication Our results indicate that the dynamics of the diffusion
network of the LiveJournal Blogosphere. We observe that the . .
dynamic and static versions of the Blogograph, yield very depends ;trongly on the type of diffusion 'moidel, and the
different behaviors of the diffusion. It was earlier discovered ~ dynamic view of the network versus the static view can have
that the communication dynamics of the Blogograph is quite an even more drastic effect on how the diffusion spreads.
high - over 60% of the links each week were not present in the  Thus, given initial conditions, in order to predict how the
previous week, though the size of the node set is relatively diffusion will spread, it is necessary to have an accurate
stable. Our models of the Blogograph evolution reproduce ; - .
general stable statistics of the real-life Blogograph. We discover modgl of the dynam'cl evolution of the network. Our. mgln
that the diffusion footprint on our models closely approximate ~ goal is to study how different models of the communication
the diffusion footprint of the real-life dynamic network. dynamics of the social network fare in reproducing the

observed diffusion footprint on the real dynamic network.

I. INTRODUCTION II. RELATED WORK

In recent years blogs and other Internet social media The information diffusion in social networks was analyzed
have become the major transmitter of information such asrom theoretical [5] and empirical perspectives [6]. Newma
news, rumors and even intentional misinformation. Diffusi  [3] provides theoretical analysis of the spreading of disea
through blogs and forums on the web has reached thin various networks. Kempe et al. [2] provide a framework
scope where it is no longer a local phenomenon of limitedfor reasoning about spread of influence in a social network.
interest to online communities, but it has very real impact Leskovec et al. [7] study the cascading behavior of diffu-
on the well-being of the offline world. Online channels of sion in the network of interlinked blog post. They propose
information diffusion were used by perpetrators to spreadhe generative model of cascade formation which results in
misinformation that resulted in significant loses by phgbkic information cascades with similar properties as observed.
entities such as commercial banks [1]. Considering the lowrhe major difference between their generative model and
cost of attacks through diffusion of false rumors it is only the variation of the model that we apply to dynamic graphs
reasonable to believe that it will continue and grow. is the ability of the nodes to be infected multiple times.

We need to track the extent of a diffusion over a dynamic Lahiri et al. [8] investigate the impact of structural
network such as the blogosphere. Specifically, given thehanges of the network on the individual ability of the nodes
initial set of infected nodes and the diffusion laws (theibas to facilitate the information diffusion. They found thastets
properties of the diffusion such as how people get infectedbtained from a static representation of the network héd lit
along links and at what rates) how will the diffusion spread.correspondence with results from a dynamic representation
In order to be able t@redict macroscopic properties of the We investigate dynamic and static views of the networks
diffusion dynamics (such as the rate at which the networkyenerated by the models of link dynamics and we find that
is getting infected), it is necessary to have a model of thesame phenomena is present as well.

(communication) link dynamics of the network, because as Habiba and Berger-Wolf [9] extend the work of Kempe
we will show, having a static view of the network leads to et al. [2] to study the diffusion in dynamic graphs. They
a drastically different result. solve the problem of selecting the set of individuals for

Mathematical epidemiology and lately computer sciencenitial infection so that resulting extend of the spread in
has expended significant effort in developing and studyinghe dynamic network is maximized. They observed the
models of disease spread [2], [3], [4]. Typically such studysignificant difference between the extend of the spread in
has been on static networks. Information diffusion hasaggregate and dynamic views of networks. We also came
similar properties to disease spreading, and the question wacross a drastic difference in the scope of diffusion and we



further looked into the rate of diffusion under dynamic and Iteration 1 Iteration 2 Iteration 3
static network representations.

A number of models of dynamic graph generation were Static
proposed over the last decade (see [10], [11], [12], [13},[1  °™™
[15], [16]). These models capture the growth of the network
where nodes arrive one at a time, attach and never leave tl g}/f;‘:g‘(');
network or break existing edges. In our earlier work [17] we
proposed the model that also incorporated the link dynamics
where edges are formed and broken as network evolutiopigure 2. Diffusion in static and dynamic networks. Red nostesw the

proceeds. We use these models of network evolution in thigropagation of infection in static and dynamic graphs. Inistease the
work network structure remains the same as diffusion progresses) dynamic
' case it changes.

[1l. DATA

The data for this study was collected from the Russiaredges in a graph of a given week did not appear in a graph
section of LiveJournal. In this section we describe theof a previous week. In-depth analysis and statistics fa thi
collection process and the obtained network. network were reported in [17].

We chose to focus on the Russian section of LiveJournal
as it is reasonable but not excessively large (currentlgeclo
to 580,000 bloggers out of the total 15 million) and almost We use models of communication dynamics to simulate
self-contained. This network already serves as a majothe network evolution and the models of diffusion to mimic
carrier for variety of news, rumors and other information. the diffusion of information. We evaluated two models of

We refer to the LiveJournal network as the blogographdiffusion with seven models of network evolution.

We define the blogograph as a directed, unweighted graph .

representing communication of the bloggers within a fixedA' Models of diffusion

time-period. A vertex in the blogograph represents a blogge The model of diffusion specifies the set of individuals that

and a directed edge represent the communication by theill be infected in the next time cycle given the structure

means of commenting on a post. In particular, for everyof the graph and the set of individuals who are currently
comment we place an edge from the vertex corresponding tinfected. Both cascade and threshold models start off by
the author of the comment to the author of the post. Parallghfecting a fraction of all vertices which are selected uni-

edges and loops are not allowed and a comment is ignorg@rmly at random from the set of all vertices. The algorithm

if the corresponding edge is already present in the graptthen determines the nodes that will be infected in the next
An illustration of the blogograph’s construction is given o iteration and then iterates. The set of newly infected nodes

IV. MODELS

Figure 1. is determined as follows:
The data was collected between December of 2007 and 1) Linear Threshold Model: at the initialization the
May of 2008 using a real time RSS update feature of succeptability threshold; is assigned to every node

LiveJournal that publishes all posts as they appear on any i and influence threshold; ; is assigned to every
of the hosted blogs. We obtain the comments to the posts pair (i,7). In the undirected case that we used any

by "screen-scraping” them from the HTML code of the blog nodei for which 3. (b;; + b;,;) > 6; will become

two weeks after the post was up. infected. In our experiments we set dlj ; = 1
We aggregate the edges corresponding to comments into  and we randomly sampled; for every node from

the weekly snapshots of the network; for each week the com- uniform continuous distribution between 0 and 1. The

munication graph contains the bloggers that either posted o threshold was sampled once per node and did not

commented during a week. We chose to split graphs into change in the duration of the experiment.

one week periods due to highly cyclic nature of activity in

the blogosphere - the activity of bloggers on the weekends 2) Independent Cascade Model:at the initialization

is much lower than on weekdays. For study of diffusion every pair of nodeq,j) in the graph is assigned

we create three views of this data - a static snapshots of  the infection probabilityp; ; and this value does

each week, the union of ten snapshots and the dynamic not change throughout the experiment. When a node

graph that we define to be a sequence of ten consecutive  becomes infected either during the initial random

snapshots. Therefore, the 21 observed weeks yield 12 union infection or from another node in the graph, it will be

and dynamic graphs. contagious and able to spread infection to its adjacent
On average a weekly snapshot of blogograph contains neighbors during the next iteration. The infection is

about 153,000 vertices and 510,000 edges. About 70% of passed over the edde, j) with probability p; ; that



Thread on Alice’s Blog 6‘ Thread on Bill's Blog

> Alice posted Edge Edgest . gjii posted
° Bill commented B—>A @ g é:% > Alice commented
; C—>A
° Alice commented DB ° Cory commented
° Cory commented e ° Dave commented

Figure 1. Blogograph generation example. Vertices are glémeevery blogger who posted or commented, the edges aredpfem® the author of the
comment to the author of the post (the blog owner). Parallekgdod loops are not allowed.

is assigned to this edge. Whether or not the node attachment proportional to out-degrees. Therefore,

infects any of its neighbors during the contagious this definition of area is only combined with two
state it will not enter contagious state in the following attachment models.

iterations again. In our experiments we sampjed

from continuous probability distribution with probabil-  2) k-neighborhood: the nodes can attach to other nodes
ity density functionf(z) = %x_z/?’ (cube of a random that are not further thert hops away from them.
number sampled from uniform continuous distribution Similarly to a global area definitiork-neighborhood
between 0 and 1). only produces meaningful graphs when combined

with uniform attachment and attachment proportional

o . . to out-degree. We found that= 3 produces the best
The models of communication dynamics specify the struc- models and we usg-neighborhood area definition in
ture of the graph of the next iteration given the structure of our experiments.

current graph and the distribution of out-degrees. The fsode
generate the sequence of graphs recursively using the graph3) Union of clusters: the area of a node is defined to

B. Models of communication dynamics

of the last iteration to produce the graph of the next. In be the union of all clusters [18] in the graph that
the remainder of this section we will briefly describe these contain this node. This area definition works well with
models. We refer the reader to [17] for detailed description all methods of attachment and therefore yields three
and analyses. models of communication dynamics.

These models of communication dynamics are based on o . .
o ) For the first iteration, the models were given the graph

the principle of locality: every node can attach to nodes . :
- ! X ) with random assignment of edges. The models were also
within their local neighborhood using some method of selec-

. .~ ~~configured with out-degree distribution observed in Live-
tion of nodes for attachment. Full model of communlcatlon‘]ou”?al 9

dynamics is specified by the definition of local area and the We found that graphs produced by the combination of
rule for attachment with in local area. . .
We considered three rules of attachment: clusters_, area definition and preferential attachment were
most similar to observed network when compared by the
ensemble of parameters as shows in Table I. Graphs pro-
duced by combination o8-Neighborhood area definition
with preferential attachment were also quite similar to the
. . observed ones. The summary of parameters of the models
2) Preferentlal attachment (m—degree)- the nodg- of communication dynamics is given in Table I.
is selected from the local area with probability — rne models of communication dynamics were used to
proportional to its in-degree. generate the dynamic network. We experiment with three
. views of this network - the static snapshot graphs of each
3) Preferential ~ attachment  (out-degreexhe node joration, a union of ten snapshots and dynamic graph that

is selected from the local area with probability is made up of a sequence of ten snapshot graphs.
proportional to its out-degree.
C. Combining the models

We considered three definitions of local area: The models of diffusion were applied to every view of

1) Global attachment: every node is aware of the full observed and modeled networks. In case of static snapshot
network and its local area contains all nodes. Asand union graphs the diffusion progressed through the same
described in [17] global area definition only producesgraph at every iteration. In case of dynamic view the
reasonable graphs with uniform attachment andstructure of the graph changed as iterations of diffusion

1) Uniform attachment: node can attach to any other
node in its neighborhood with uniform probability.



(a) Static Parameters (b) Dynamic Parameter

[ Area Attch [ GC C d E gerr | 1 — . . . . . .
Observed 0.9545 0.0613 534 00289 0.00144 ool Clusters, P () 1
Global Uniform | 0.9867 52 x10-° 7.86 1075 0.04215 o8k i N P 1
Global P.A. (in) - - - - - orE i :
Global PA. (out)| 0.9688  0.00018 521 0427 001189 5 ©06f || 1
3-Neighb. uniform | 0.8939  0.00045 530 04331 001792 § ©°5 | | 1
3-Neighb.  P.A.(in) - - - - - L 1
3-Neighb. P.A.(out) | 0.9776  0.00133 453 0.1412 0.03504 03 R\ ;i 1
Clusters uniform 0.9646 0.00252 6.73 0.7267 0.03484 0.2 = /\\ b
Clusters  PA.(in) | 0.9643  0.00149  6.88 0.1713 0.03811 o1p NGl 1
Clusters  PA. (out) 0.9523  0.03156  6.56 0.5320 0.02034 0 L

Prev. Dist.

Table |
COMPARISON OF NETWORK PARAMETERS OF OBSERVED AND MODELED NBWORKS. TABLE (A) SHOWS THE STATIC PARAMETERS OF GRAPHIGC -
SIZE OF A GIANT COMPONENT C' - CLUSTERING COEFFICIENTd - THE AVERAGE DIAMETER, E - THE DIFFERENCE OF OUTDEGREE DISTRIBUTIONS
Gerr - THE DIFFERENCE IN CLUSTER STRUCTURES OF THE GRAPHBIGURE (B) SHOWS THE EDGE HISTORYWHICH MEASURES HOW CLOSE THE END
POINTS OF THE OBSERVED EDGE WERE IN THE GRAPH OF PREVIOUS TIME/CLE. THESE STATISTICS ARE COVERED IN MORE DEPTH I17]

progressed. The first iteration of diffusion occurred overcommunication dynamics were compared to rate of spread
the first snapshot in the dynamic graph, then the edges af observed graphs. Table Il provides some quantitative
the graph were changed in accordance with second snapshmimparison of resulting curves of rate of diffusion. The
and the second iteration of diffusion was executed and seesults in Figure 4 consider the x 3 matrix of possible
on. Diffusion in static and dynamic views of network is diffusion scenarios, for the 3 possible views of the network
illustrated in Figure 2. (static snapshot, static union and dynamic) and the 2 plessib
diffusion models (cascade and threshold). In each plot the
V. RESULTS diffusion footprint for the real graph is grey, the area
We compare the rate of spread of the diffusion overrepresenting the range of observed behaviors (an error bar)
models of the communication dynamics with diffusion over We compare the observed true footprint with the diffusion
the real observed network. Given an initial fraction of footprints of four of the models of the network dynamics
randomly selected infected nodes, and the initial graph, wavhich were introduced in the previous section:
track at time steg = 1,2, ... the expected fraction of the 1. Cluster based areas with preferential attachment ac-
network which is infected. The expectation is computed bycording to out-degree.
a sample average over at least 20 runs (where we randomize2. Global area with preferential attachment according to
over the set of infected nodes and the diffusion processut-degree.
itself). 3. 3-neighborhood area with uniform attachment.
First, we compare the diffusion on the dynamic and static 4. Global area with uniform attachment.
views of real observed network. Figure 3 shows the rateModel (4) is a benchmark evolving random graph which
of spread under cascade and threshold models of diffusiotypically has a diffusion footprint that is nothing like the
in dynamic and various static views of the network. Theobserved one. In general the other three models yield
snapshot view takes the network at some time-step as a stati@fusion footprints in all the 6 scenarios which match the
network. The union static view aggregates all edges oveobserved diffusion well. By our estimate the 3-neighborhoo
ten time steps and considers this aggregated network asmaodel with uniform attachment seems best. The largest
static network. In dynamic view the network changes whiledeviation between the models and the observed is for the
diffusion progresses as discussed in the previous sedtien. aggregate union view. We hypothesize that this is because
initial infection is a randomly selected fraction of theiemt the 1-neighborhoods in the real graph are much more stable
network, and we experimented with different sizes for thisthan the 1-neighborhoods in any of the models. The results
fraction (0.1%, 1%, 5% and 10%). The results in all casesndicate that these models are good approximations to the
are qualitatively similar, and we only present the resultsreality in large social networks and hence provide a viable
for an initial infected fraction of 1%. It can be seen thattest bed for studying diffusion in social networks, espigcia
the dynamic view leads to a drastic change in the diffusiometworks which are as dynamic as the blogosphere.
footprint, as compared to either static view. In-fact, ieth  We observe that the cascade diffusion model stabilized
threshold model for the diffusion, the real dynamic networkin all graphs after just a few iterations although it reached
seems to add significant diffusive power. different final infection rate based on the view of the graph
The rate of diffusion in graphs generated by models of(static or dynamic). In the case of the threshold models



[ [ Obs. k-N.PA Glob.Un. Clst.PA]
07 T T T T T T T T

Threshold
0.6 | 1 Dynamic | 0.40,0 052,049 0.851.72 0.62,0.84
Union | 0.13,0 0.257.90 0.23,7.12 0.22,5.74
§ 051 1 Cascade
g Dynamic | 0.39,0 0.45,050 0.16,225 0.50,0.76
E 04r Union | 0.61,0 0.66,1.32 0.99,8.92 0.75,3.25
S o3t Table Il
8‘ COMPARISON OF RATE OF DIFFUSION IN DYNAMIC AND UNION VIEWS
L?) 0.2 OF THE GRAPH UNDER CASCADE AND THRESHOLD MODELS WITH
s hot THREE MODELS OF COMMUNICATION DYNAMICS FOR EACH
0.1 Unio%agrsa;h COMBINATION OF A GRAPH VIEW, MODEL OF DIFFUSION AND MODEL
D}/namic graph OF COMMUNICATION DYNAMICS WE PROVIDE VALUES X,Y - X: THE
0 S E— PU— FRACTION OF GRAPH INFECTED AND Y THE DIFFERENCE OF AREA
0 1 2 3 4 . 5 6 7 8 9 UNDER THE CURVE OF RATE OF DIFFUSIOI‘{FIGURE4) OF THE
Iteration MODELED AND OBSERVED NETWORKS
(a) Cascade Model
0.35 T T T T T T T
Snapshor;r
| Union grap! H i H :
03 I pynamic graph certain diffusion models (eg. the_threshold mo_del) regults
. o5 faster spread than even the union graph which aggregates
g all observed edges into a single static graph. The dynamics
£ 02 increases the diffusive power. This is a very surprising
5 015 observation and we point out that similar phenomena such
g as the increase in throughput of a mobile ad-hoc network
@ 01 versus a static ad-hoc network have also been observed [19].
0.05 Since dynamics has a big impact on the diffusion, it
o follows that in order to predict the future spread, one needs
0 1 2 3 4 5 6 7 8 9 to have a model for the link dynamics. We showed that for
Iteration the LiveJournal network certain models are bad (for example
(b) Threshold Model random link dynamics) whereas certain models are very

. - _ good at reproducing the observed diffusion dynamics of the
th:/%ugfaﬁé Vig,‘vi g?tfhgfn‘igﬁj;gna% ‘t’ﬁesec;;’ﬁgn'ﬁ'(‘:’ifé’xma' biggph for — yaa) network. In particular, uniform attachment within the
' 3-neighborhood, global preferential attachment accagrttin
out-degree and cluster-area based preferential attactanen

stabilized quickly in the static snapshot andcqrding to out-degree proQuce diffusion'dyn.amics whigh are
union views of the network but progressed much mordaithful to the real dynamlc network’s diffusion dynam|c§.
aggressively in dynamic view, infecting at a much higher _Our Work_has studied one partlcular. aspect of the diffu-
rate. This observation compliments the results from [g], [8 Sion dynamics, namely the rate at which the network gets
where authors found that the influential nodes (sets whic#fected. Itwould be interesting to also study how goodéhes
achieve maximal spread) in the static and dynamic views ofnodels are at reproducing some other properties of the nodes
the network are not consistent. It has also been corrolbrateVhich get infected (such as degree distributions) and how
in other settings such as ad-hoc network routing wherdh€ dynamics may change the set of influential nodes.
mobility in the network (which results in link dynamics)
can significantly increase the throughput [19].

the diffusion
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