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Abstract—We study information diffusion in real-life and
synthetic dynamic networks, using well known threshold and
cascade models of diffusion. Our test-bed is the communication
network of the LiveJournal Blogosphere. We observe that the
dynamic and static versions of the Blogograph, yield very
different behaviors of the diffusion. It was earlier discovered
that the communication dynamics of the Blogograph is quite
high - over 60% of the links each week were not present in the
previous week, though the size of the node set is relatively
stable. Our models of the Blogograph evolution reproduce
general stable statistics of the real-life Blogograph. We discover
that the diffusion footprint on our models closely approximate
the diffusion footprint of the real-life dynamic network.

I. I NTRODUCTION

In recent years blogs and other Internet social media
have become the major transmitter of information such as
news, rumors and even intentional misinformation. Diffusion
through blogs and forums on the web has reached the
scope where it is no longer a local phenomenon of limited
interest to online communities, but it has very real impact
on the well-being of the offline world. Online channels of
information diffusion were used by perpetrators to spread
misinformation that resulted in significant loses by physical
entities such as commercial banks [1]. Considering the low
cost of attacks through diffusion of false rumors it is only
reasonable to believe that it will continue and grow.

We need to track the extent of a diffusion over a dynamic
network such as the blogosphere. Specifically, given the
initial set of infected nodes and the diffusion laws (the basic
properties of the diffusion such as how people get infected
along links and at what rates) how will the diffusion spread.
In order to be able topredict macroscopic properties of the
diffusion dynamics (such as the rate at which the network
is getting infected), it is necessary to have a model of the
(communication) link dynamics of the network, because as
we will show, having a static view of the network leads to
a drastically different result.

Mathematical epidemiology and lately computer science
has expended significant effort in developing and studying
models of disease spread [2], [3], [4]. Typically such study
has been on static networks. Information diffusion has
similar properties to disease spreading, and the question we

address is how different models of diffusion, in particularthe
cascade and threshold models, behave ondynamic networks.
Our results indicate that the dynamics of the diffusion
depends strongly on the type of diffusion model, and the
dynamic view of the network versus the static view can have
an even more drastic effect on how the diffusion spreads.
Thus, given initial conditions, in order to predict how the
diffusion will spread, it is necessary to have an accurate
model of the dynamic evolution of the network. Our main
goal is to study how different models of the communication
dynamics of the social network fare in reproducing the
observed diffusion footprint on the real dynamic network.

II. RELATED WORK

The information diffusion in social networks was analyzed
from theoretical [5] and empirical perspectives [6]. Newman
[3] provides theoretical analysis of the spreading of disease
in various networks. Kempe et al. [2] provide a framework
for reasoning about spread of influence in a social network.

Leskovec et al. [7] study the cascading behavior of diffu-
sion in the network of interlinked blog post. They propose
the generative model of cascade formation which results in
information cascades with similar properties as observed.
The major difference between their generative model and
the variation of the model that we apply to dynamic graphs
is the ability of the nodes to be infected multiple times.

Lahiri et al. [8] investigate the impact of structural
changes of the network on the individual ability of the nodes
to facilitate the information diffusion. They found that results
obtained from a static representation of the network had little
correspondence with results from a dynamic representation.
We investigate dynamic and static views of the networks
generated by the models of link dynamics and we find that
same phenomena is present as well.

Habiba and Berger-Wolf [9] extend the work of Kempe
et al. [2] to study the diffusion in dynamic graphs. They
solve the problem of selecting the set of individuals for
initial infection so that resulting extend of the spread in
the dynamic network is maximized. They observed the
significant difference between the extend of the spread in
aggregate and dynamic views of networks. We also came
across a drastic difference in the scope of diffusion and we



further looked into the rate of diffusion under dynamic and
static network representations.

A number of models of dynamic graph generation were
proposed over the last decade (see [10], [11], [12], [13], [14],
[15], [16]). These models capture the growth of the network
where nodes arrive one at a time, attach and never leave the
network or break existing edges. In our earlier work [17] we
proposed the model that also incorporated the link dynamics,
where edges are formed and broken as network evolution
proceeds. We use these models of network evolution in this
work.

III. D ATA

The data for this study was collected from the Russian
section of LiveJournal. In this section we describe the
collection process and the obtained network.

We chose to focus on the Russian section of LiveJournal
as it is reasonable but not excessively large (currently close
to 580,000 bloggers out of the total 15 million) and almost
self-contained. This network already serves as a major
carrier for variety of news, rumors and other information.

We refer to the LiveJournal network as the blogograph.
We define the blogograph as a directed, unweighted graph
representing communication of the bloggers within a fixed
time-period. A vertex in the blogograph represents a blogger
and a directed edge represent the communication by the
means of commenting on a post. In particular, for every
comment we place an edge from the vertex corresponding to
the author of the comment to the author of the post. Parallel
edges and loops are not allowed and a comment is ignored
if the corresponding edge is already present in the graph.
An illustration of the blogograph’s construction is given on
Figure 1.

The data was collected between December of 2007 and
May of 2008 using a real time RSS update feature of
LiveJournal that publishes all posts as they appear on any
of the hosted blogs. We obtain the comments to the posts
by ”screen-scraping” them from the HTML code of the blog
two weeks after the post was up.

We aggregate the edges corresponding to comments into
the weekly snapshots of the network; for each week the com-
munication graph contains the bloggers that either posted or
commented during a week. We chose to split graphs into
one week periods due to highly cyclic nature of activity in
the blogosphere - the activity of bloggers on the weekends
is much lower than on weekdays. For study of diffusion
we create three views of this data - a static snapshots of
each week, the union of ten snapshots and the dynamic
graph that we define to be a sequence of ten consecutive
snapshots. Therefore, the 21 observed weeks yield 12 union
and dynamic graphs.

On average a weekly snapshot of blogograph contains
about 153,000 vertices and 510,000 edges. About 70% of

Figure 2. Diffusion in static and dynamic networks. Red nodesshow the
propagation of infection in static and dynamic graphs. In static case the
network structure remains the same as diffusion progresses, but in dynamic
case it changes.

edges in a graph of a given week did not appear in a graph
of a previous week. In-depth analysis and statistics for this
network were reported in [17].

IV. M ODELS

We use models of communication dynamics to simulate
the network evolution and the models of diffusion to mimic
the diffusion of information. We evaluated two models of
diffusion with seven models of network evolution.

A. Models of diffusion

The model of diffusion specifies the set of individuals that
will be infected in the next time cycle given the structure
of the graph and the set of individuals who are currently
infected. Both cascade and threshold models start off by
infecting a fraction of all vertices which are selected uni-
formly at random from the set of all vertices. The algorithm
then determines the nodes that will be infected in the next
iteration and then iterates. The set of newly infected nodes
is determined as follows:

1) Linear Threshold Model: at the initialization the
succeptability thresholdθi is assigned to every node
i and influence thresholdbi,j is assigned to every
pair (i, j). In the undirected case that we used any
node i for which

∑
j(bi,j + bj,i) > θi will become

infected. In our experiments we set allbi,j = 1
and we randomly sampledθi for every node from
uniform continuous distribution between 0 and 1. The
threshold was sampled once per node and did not
change in the duration of the experiment.

2) Independent Cascade Model:at the initialization
every pair of nodes(i, j) in the graph is assigned
the infection probabilitypi,j and this value does
not change throughout the experiment. When a node
becomes infected either during the initial random
infection or from another node in the graph, it will be
contagious and able to spread infection to its adjacent
neighbors during the next iteration. The infection is
passed over the edge(i, j) with probability pi,j that
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Figure 1. Blogograph generation example. Vertices are placed for every blogger who posted or commented, the edges are placed from the author of the
comment to the author of the post (the blog owner). Parallel edges and loops are not allowed.

is assigned to this edge. Whether or not the node
infects any of its neighbors during the contagious
state it will not enter contagious state in the following
iterations again. In our experiments we sampledpi,j

from continuous probability distribution with probabil-
ity density functionf(x) = 1

3
x−2/3 (cube of a random

number sampled from uniform continuous distribution
between 0 and 1).

B. Models of communication dynamics

The models of communication dynamics specify the struc-
ture of the graph of the next iteration given the structure of
current graph and the distribution of out-degrees. The models
generate the sequence of graphs recursively using the graph
of the last iteration to produce the graph of the next. In
the remainder of this section we will briefly describe these
models. We refer the reader to [17] for detailed description
and analyses.

These models of communication dynamics are based on
the principle of locality: every node can attach to nodes
within their local neighborhood using some method of selec-
tion of nodes for attachment. Full model of communication
dynamics is specified by the definition of local area and the
rule for attachment with in local area.

We considered three rules of attachment:

1) Uniform attachment: node can attach to any other
node in its neighborhood with uniform probability.

2) Preferential attachment (in-degree): the node
is selected from the local area with probability
proportional to its in-degree.

3) Preferential attachment (out-degree):the node
is selected from the local area with probability
proportional to its out-degree.

We considered three definitions of local area:
1) Global attachment: every node is aware of the full

network and its local area contains all nodes. As
described in [17] global area definition only produces
reasonable graphs with uniform attachment and

attachment proportional to out-degrees. Therefore,
this definition of area is only combined with two
attachment models.

2) k-neighborhood: the nodes can attach to other nodes
that are not further thenk hops away from them.
Similarly to a global area definition,k-neighborhood
only produces meaningful graphs when combined
with uniform attachment and attachment proportional
to out-degree. We found thatk = 3 produces the best
models and we use3-neighborhood area definition in
our experiments.

3) Union of clusters: the area of a node is defined to
be the union of all clusters [18] in the graph that
contain this node. This area definition works well with
all methods of attachment and therefore yields three
models of communication dynamics.

For the first iteration, the models were given the graph
with random assignment of edges. The models were also
configured with out-degree distribution observed in Live-
Journal.

We found that graphs produced by the combination of
clusters area definition and preferential attachment were
most similar to observed network when compared by the
ensemble of parameters as shows in Table I. Graphs pro-
duced by combination of3-Neighborhood area definition
with preferential attachment were also quite similar to the
observed ones. The summary of parameters of the models
of communication dynamics is given in Table I.

The models of communication dynamics were used to
generate the dynamic network. We experiment with three
views of this network - the static snapshot graphs of each
iteration, a union of ten snapshots and dynamic graph that
is made up of a sequence of ten snapshot graphs.

C. Combining the models

The models of diffusion were applied to every view of
observed and modeled networks. In case of static snapshot
and union graphs the diffusion progressed through the same
graph at every iteration. In case of dynamic view the
structure of the graph changed as iterations of diffusion



(a) Static Parameters

Area Attch GC C d E gerr

Observed 0.9545 0.0613 5.34 0.0289 0.00144
Global Uniform 0.9867 5.2× 10

−6 7.86 1.075 0.04215
Global P.A. (in) - - - - -
Global P.A. (out) 0.9688 0.00018 5.21 0.427 0.01189
3-Neighb. uniform 0.8939 0.00045 5.30 0.4331 0.01792
3-Neighb. P.A.(in) - - - - -
3-Neighb. P.A.(out) 0.9776 0.00133 4.53 0.1412 0.03504
Clusters uniform 0.9646 0.00252 6.73 0.7267 0.03484
Clusters P.A. (in) 0.9643 0.00149 6.88 0.1713 0.03811
Clusters P.A. (out) 0.9523 0.03156 6.56 0.5320 0.02034

(b) Dynamic Parameter
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Table I
COMPARISON OF NETWORK PARAMETERS OF OBSERVED AND MODELED NETWORKS. TABLE (A) SHOWS THE STATIC PARAMETERS OF GRAPHS: GC -
SIZE OF A GIANT COMPONENT, C - CLUSTERING COEFFICIENT, d - THE AVERAGE DIAMETER, E - THE DIFFERENCE OF OUT-DEGREE DISTRIBUTIONS,
gerr - THE DIFFERENCE IN CLUSTER STRUCTURES OF THE GRAPHS. FIGURE (B) SHOWS THE EDGE HISTORY, WHICH MEASURES HOW CLOSE THE END

POINTS OF THE OBSERVED EDGE WERE IN THE GRAPH OF PREVIOUS TIMECYCLE. THESE STATISTICS ARE COVERED IN MORE DEPTH IN[17]

progressed. The first iteration of diffusion occurred over
the first snapshot in the dynamic graph, then the edges of
the graph were changed in accordance with second snapshot
and the second iteration of diffusion was executed and so
on. Diffusion in static and dynamic views of network is
illustrated in Figure 2.

V. RESULTS

We compare the rate of spread of the diffusion over
models of the communication dynamics with diffusion over
the real observed network. Given an initial fraction of
randomly selected infected nodes, and the initial graph, we
track at time stept = 1, 2, . . . the expected fraction of the
network which is infected. The expectation is computed by
a sample average over at least 20 runs (where we randomize
over the set of infected nodes and the diffusion process
itself).

First, we compare the diffusion on the dynamic and static
views of real observed network. Figure 3 shows the rate
of spread under cascade and threshold models of diffusion
in dynamic and various static views of the network. The
snapshot view takes the network at some time-step as a static
network. The union static view aggregates all edges over
ten time steps and considers this aggregated network as a
static network. In dynamic view the network changes while
diffusion progresses as discussed in the previous section.The
initial infection is a randomly selected fraction of the entire
network, and we experimented with different sizes for this
fraction (0.1%, 1%, 5% and 10%). The results in all cases
are qualitatively similar, and we only present the results
for an initial infected fraction of 1%. It can be seen that
the dynamic view leads to a drastic change in the diffusion
footprint, as compared to either static view. In-fact, in the
threshold model for the diffusion, the real dynamic network
seems to add significant diffusive power.

The rate of diffusion in graphs generated by models of

communication dynamics were compared to rate of spread
in observed graphs. Table II provides some quantitative
comparison of resulting curves of rate of diffusion. The
results in Figure 4 consider the2 × 3 matrix of possible
diffusion scenarios, for the 3 possible views of the network
(static snapshot, static union and dynamic) and the 2 possible
diffusion models (cascade and threshold). In each plot the
diffusion footprint for the real graph is grey, the area
representing the range of observed behaviors (an error bar).
We compare the observed true footprint with the diffusion
footprints of four of the models of the network dynamics
which were introduced in the previous section:

1. Cluster based areas with preferential attachment ac-
cording to out-degree.

2. Global area with preferential attachment according to
out-degree.

3. 3-neighborhood area with uniform attachment.
4. Global area with uniform attachment.

Model (4) is a benchmark evolving random graph which
typically has a diffusion footprint that is nothing like the
observed one. In general the other three models yield
diffusion footprints in all the 6 scenarios which match the
observed diffusion well. By our estimate the 3-neighborhood
model with uniform attachment seems best. The largest
deviation between the models and the observed is for the
aggregate union view. We hypothesize that this is because
the 1-neighborhoods in the real graph are much more stable
than the 1-neighborhoods in any of the models. The results
indicate that these models are good approximations to the
reality in large social networks and hence provide a viable
test bed for studying diffusion in social networks, especially
networks which are as dynamic as the blogosphere.

We observe that the cascade diffusion model stabilized
in all graphs after just a few iterations although it reached
different final infection rate based on the view of the graph
(static or dynamic). In the case of the threshold models
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Figure 3. The rate of diffusion in observed LiveJournal blogograph for
two static views of the network and the dynamic view.

the diffusion stabilized quickly in the static snapshot and
union views of the network but progressed much more
aggressively in dynamic view, infecting at a much higher
rate. This observation compliments the results from [9], [8]
where authors found that the influential nodes (sets which
achieve maximal spread) in the static and dynamic views of
the network are not consistent. It has also been corroborated
in other settings such as ad-hoc network routing where
mobility in the network (which results in link dynamics)
can significantly increase the throughput [19].

VI. D ISCUSSION

There are two main conclusions which our study supports.
Standard models of diffusion have different spread properties
on the real dynamic LiveJournal network as compared to
various static views of the network (we considered the
snapshot view and the aggregated union of edges view in
addition to the dynamic view). Hence it is important to
take into account interaction between the link dynamics and
the diffusive process if one is to have an accurate picture
of the spread. In fact we see that the dynamic graph for

Obs. k-N.PA Glob.Un. Clst.PA

Threshold
Dynamic 0.40,0 0.52,0.49 0.85,1.72 0.62,0.84

Union 0.13,0 0.25,7.90 0.23,7.12 0.22,5.74
Cascade
Dynamic 0.39,0 0.45,0.50 0.16,2.25 0.50,0.76

Union 0.61,0 0.66,1.32 0.99,8.92 0.75,3.25

Table II
COMPARISON OF RATE OF DIFFUSION IN DYNAMIC AND UNION VIEWS

OF THE GRAPH UNDER CASCADE AND THRESHOLD MODELS WITH

THREE MODELS OF COMMUNICATION DYNAMICS. FOR EACH

COMBINATION OF A GRAPH VIEW, MODEL OF DIFFUSION AND MODEL

OF COMMUNICATION DYNAMICS WE PROVIDE VALUES X,Y - X : THE

FRACTION OF GRAPH INFECTED AND Y: THE DIFFERENCE OF AREA

UNDER THE CURVE OF RATE OF DIFFUSION(FIGURE 4) OF THE

MODELED AND OBSERVED NETWORKS.

certain diffusion models (eg. the threshold model) resultsin
faster spread than even the union graph which aggregates
all observed edges into a single static graph. The dynamics
increases the diffusive power. This is a very surprising
observation and we point out that similar phenomena such
as the increase in throughput of a mobile ad-hoc network
versus a static ad-hoc network have also been observed [19].

Since dynamics has a big impact on the diffusion, it
follows that in order to predict the future spread, one needs
to have a model for the link dynamics. We showed that for
the LiveJournal network certain models are bad (for example
random link dynamics) whereas certain models are very
good at reproducing the observed diffusion dynamics of the
real network. In particular, uniform attachment within the
3-neighborhood, global preferential attachment according to
out-degree and cluster-area based preferential attachment ac-
cording to out-degree produce diffusion dynamics which are
faithful to the real dynamic network’s diffusion dynamics.

Our work has studied one particular aspect of the diffu-
sion dynamics, namely the rate at which the network gets
infected. It would be interesting to also study how good these
models are at reproducing some other properties of the nodes
which get infected (such as degree distributions) and how
the dynamics may change the set of influential nodes.
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