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Abstract—K-clique percolation is an overlapping community
finding algorithm which extracts particular structures, comprised
of overlapping cliques, from complex networks. While it is
conceptually straightforward, and can be elegantly expressed
using clique graphs, certain aspects of k-clique percolation
are computationally challenging in practice. In this paper we
investigate aspects of empirical social networks, such as the large
numbers of overlapping maximal cliques contained within them,
that make clique percolation, and clique graph representations,
computationally expensive. We motivate a simple algorithm
to conduct clique percolation, and investigate its performance
compared to current best-in-class algorithms. We present im-
provements to this algorithm1, which allow us to perform k-clique
percolation on much larger empirical datasets. Our approaches
perform much better than existing algorithms on networks ex-
hibiting pervasively overlapping community structure, especially
for higher values of k. However, clique percolation remains a hard
computational problem; current algorithms still scale worse than
some other overlapping community finding algorithms.

I. INTRODUCTION

One particular type of percolation, important in the study of
complex networks, studied by Palla et al. [1] is k-clique per-
colation, which Fortunato’s review [2] of community detection
methods describes as the most popular overlapping community
detection method. A clique is a group of nodes in a network,
such that every node is connected to each other node. Palla et
al. argue that percolated k-cliques – groups of cliques of size
k, that are connected together by cliques of size (k-1) – are
important structures in complex networks, and a good way to
find community structure. They discuss k-clique percolation
in a variety of application contexts, including authorship
networks, word association networks, and certain biological
contexts, for example, claiming that percolated k-cliques in
protein-protein interaction networks correspond to functional
units of protein structure. Additionally, Palla, Barabasi, and
Vicsek [3] apply k-clique percolation to the study of social
dynamics, in mobile telecoms social network datasets.

More generally, the work of Evans [4] motivates ‘clique
graphs’ as interesting constructions to use when studying
structure in networks and finding communities. A ‘clique
graph’ of a specific source network is formed by representing
each clique in the source network by a node in the ‘clique
graph’. Pairs of nodes in the clique graph are then connected
by edges where the corresponding pair of cliques overlap

1Source code available: http://sites.google.com/site/CliquePercComp

in the source network. Clique graphs have many interesting
properties, not least that k-clique percolation can be expressed
as a simple thresholding on the clique graph. Clique graph
construction and k-clique percolation are thus linked. Evans
argues that different types of partitioning and thresholding of
the clique graph are interesting to examine for the purposes
of overlapping community detection, and also to examine
structure in complex networks generally.

However, in practice these approaches to find network struc-
ture present computational challenges. In a naive algorithmic
approach to k-clique percolation, one algorithm to percolate k-
cliques – for example as described in the review of Fortunato,
citing the work of Everett and Borgatti [5] – is “In order
to find k-clique communities, one searches first for maximal
cliques. Then a clique-clique overlap matrix O is built, which
is an nc × nc matrix, nc being the number of cliques; Oij

is the number of vertices shared by cliques i and j. To find
k-cliques, one needs simply to keep the entries of O which
are larger than or equal to k − 1, set the others to zero and
find the connected components of the resulting matrix.” This
simple algorithm, which essentially finds k-clique percolations
by finding connected components in a certain construction
of the clique graph, is quadratic in the number of maximal
cliques in the graph, by virtue of the way that it builds
the complete clique-clique overlap matrix. Furthermore, the
number of cliques, and maximal cliques, in an empirical
network may be very large, as we will discuss.

Some work has presented faster computational methods of
obtaining percolated k-clique structures. The authors of the
original Palla et al. paper have provided a faster CFinder
[6] implementation to find percolated k-cliques. More recent
work has been done by Kumpula et al. with their ‘Sequen-
tial Clique Percolation’ algorithm (SCP) [7] which further
improves efficiency. However, these improved methods often
perform poorly on networks with the kind of pervasively
overlapping community structure we see in many real world
social networks – an area of increasing interest in the applied
study of community structure – and particularly poorly when
performing percolation with high values of k. In this work,
we consider several computational aspects of the problem of
percolating structures in large complex networks. We focus
our discussion on k-clique percolation, but the techniques we
describe could be applied to the computation of many similar
percolation problems.
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We note that there are many other overlapping community
finding methods, some of which are much more scalable
than clique percolation; however in this paper we focus on
clique percolation, due to its popularity. We also hope that k-
clique percolation will serve as a case study for computational
techniques that could later be used to improve the scalability
of algorithms for other types of percolation.

A. Structure of the paper

In Section II we define clique percolation. We also discuss
clique graphs, which are a useful conceptual tool to understand
the problem and to gain insight into various algorithms. We
show how, even though cliques are indicative of community
structure, there can be many more cliques than communities.

Algorithms typically fall into one of two classes: either they
are based on finding the k-cliques or else they limit themselves
to the maximal cliques with at least k nodes in them. We
explain how these are equivalent and discuss an example of
each kind from the literature.

In Section III we discuss some challenges that face all the
examples in the literature and which are also faced by our
algorithms. The number of cliques can be very large, as can
the size of the clique graph. Also we explain why, while it
is tempting to attempt to represent a community of cliques
merely as the union of the nodes in its constituent cliques,
such a method will lead to an incorrect algorithm.

In Section IV, we define and motivate our algorithms and
evaluate the speed of them against SCP on a variety of
synthetic networks and on empirical social networks.

In Section V, we briefly mention other approaches to this
problem that we considered and other overlapping community
finding algorithms of interest.

II. K-CLIQUE PERCOLATION

We now give a description of k-clique percolation, con-
straining ourselves to computationally relevant properties.
For a detailed introduction to the method, and arguments
motivating it as a tool for overlapping community finding,
consult Palla et al. [1]. In k-clique percolation, if two cliques
of size k share k-1 nodes, we say that these two cliques
percolate into each other. The maximal sets of cliques, which
satisfy the property that every clique in the set is reachable
from every other clique in the set, through a path connecting
percolating pairs, form the communities output by k-clique
percolation. These communities are then typically output as
the sets of nodes contained within each set of cliques – and
may overlap. Typically, for a given community found by k-
clique-percolation, a particular application requires these sets
of nodes as the representation of the communities found.
However, as we will see later, in order to maintain a correct
understanding of clique percolation it is best to think about k-
clique communities as sets of overlapping cliques, rather than
the set of nodes that each set of percolated cliques contains.

A. Clique Graphs

A clique graph is formed from a source network by creating
a node in the clique graph for each clique in the source
network and joining two nodes in the clique graph if their
corresponding cliques in the source network share nodes, or
‘overlap’ – see Figure 1 for a visualisation. This is a simple
visualisation of a small clique graph extracted from a simple
network; such relationships are difficult to visualise due to
the heavily overlapping nature of cliques in networks; this is
especially true as the value of k used is increased. The edges in
a clique graph may be weighted, corresponding to the overlap
between the cliques. Thresholding such a graph – removing the
nodes corresponding to cliques of size less than some value k,
and removing edges with weight lower than (k−1) – yields a
graph in which the connected components are the cliques that
would have percolated into each other, in k-clique percolation.
Figures 4a, 4b, and 4c illustrate this process. As both thresh-
olding the edges of a graph and calculating the connected
components of a graph are computationally inexpensive, it is
inexpensive to calculate the k-clique percolations, given the
clique graph.

The clique graph is a useful conceptual tool to understand
the definition of k-clique percolation, and to understand the
particular algorithms that have been used to recover these
structures. Evans [4] discusses some other general advantages
of using clique graphs: “The advantage is that there are
many well established methods for analysing the properties of
vertices of a graph and for the price of a simple transformation,
these can be applied to obtain the same information about the
cliques”, and goes on to state that “In terms of computational
efficiency, the clique graphs are generally bigger [than the
source network] but by how much depends on the detailed
structure of the graph. The speed savings of a good fast vertex
partitioning algorithm [...] may compensate for the larger size
of the clique graph.” However, while clique graphs are an
elegant construction, and a useful tool for reasoning about
clique percolation, there are computational obstacles to their
use on many empirical networks, as we shall see; in practice,
the clique graph often takes a very long time to construct.

We will also later see that, in the specific case of k-clique
percolation, it is in fact not necessary to compute the entire
clique graph in order to compute the percolated communities.

B. Cliques vs. Maximal Cliques

Throughout this paper, we discuss k-clique percolation,
with reference to two definitions of ‘clique’: A ‘clique’ is a
fully connected sub-graph – a set of nodes all of which are
connected to each other. A ‘maximal clique’ is a clique that is
contained in no larger clique. Every maximal clique is a clique,
by definition, but the opposite does not hold. Thus there are
always more cliques than maximal cliques.

In fact, as has been previously [1][7] pointed out, any
maximal clique of size n will always have

(
n
k

)
cliques of

size k, for each k < n, within it. Note, however, that these
contained cliques will not be distinct across maximal cliques.
Nonetheless, by definition, each maximal clique will have at



Fig. 1. This illustration shows a very simple network, and its clique graph. We
represent the source network with circular nodes. We represent the maximal
cliques in this network as squares, placing a square at the center of each 4-
clique. The corresponding maximal clique graph, with threshold of overlap 3,
is shown below. The connected components in this graph – there is only one
in our example – correspond to the cliques that percolate into each other –
this entire graph would be one k-clique percolation, for k = 4.

least one clique within it that is not contained in any other
clique, and usually many more. Thus, the number of cliques
in any non-trivial network is always greater than the number of
maximal cliques. This is an important consideration, as some
algorithms have complexity in terms of cliques, and others in
terms of maximal cliques. It is important to realise that cliques
of size k will always percolate within a larger clique of size
greater than k; thus a maximal clique of size greater than k
contains a k-clique percolation (which may also extend outside
it). Further, any k-clique sharing k-1 nodes with this maximal
clique will be part of the same percolation. Hence, clique
percolation can be equivalently defined in these two different
ways; one definition is based on a clique graph of every clique
with exactly k nodes, while another definition is based on
a maximal-clique graph of every maximal clique of at least
k nodes. Various algorithmic implementations make use of
each of these definitions, with consequences for computational
performance.

C. More cliques than communities

The large numbers of maximal cliques found in the
‘Facebook 100’ networks [8] shown in Table II – much
greater than the number of nodes in each network – may be
surprising, given the sociological interpretation of cliques as a
community structure [9]; if a clique corresponds to the idea of
a community, we may wonder why social networks contain so
many more maximal cliques than nodes. However, in empirical
social networks, we often observe a situation where a large
maximal clique may overlap heavily with many other smaller
maximal cliques that differ from it by only a few nodes. It is
also the case, that if edges are randomly deleted from a single
maximal clique, this maximal clique will often be replaced by
many smaller maximal cliques. A visualisation of this is shown
in Figure 2, where a single maximal clique, after having 2
edges removed, turns into 4 maximal cliques. Thus, in a social
network setting, if not every friendship is present between
a strong community of individuals, many maximal cliques
may emerge within this single ‘community’ of nodes. This
goes some way to intuitively explaining the large numbers of
maximal cliques seen in datasets from on-line social networks.

Fig. 2. A maximal 6-clique. If the dashed edges are removed, this diagram
shown now contains 4 maximal cliques. This counter-intuitive behaviour,
whereby missing edges can increase the number of maximal cliques in a
network, partly illustrates why a particular empirical network can have many
more maximal cliques than it has edges, nodes, and communities.

D. Previous approaches

1) CFinder: The original CFinder implementation, as de-
scribed by Palla et al. in supplementary material [1], follows
the method of Everett and Borgatti, finding all maximal
cliques, by a custom method, and generating the overlap ma-
trix between these cliques. Once this overlap matrix is found,
percolations for all values of k can then easily be calculated.
However, building the full overlap matrix – equivalent to
the full clique graph – naively requires O(n2

c) clique-clique
comparisons, in nc the number of maximal cliques. Thus,
CFinder performs poorly on the empirical networks we study.

2) SCP: SCP [7], on the other hand, works off a custom
clique finding algorithm to find, not all the maximal cliques,
but all cliques of size k. For each clique of size k, or ‘k-clique’,
it is trivial to find the cliques of size k-1 inside it. SCP is
based on a bipartite graph with the k-cliques on one side and
the (k-1)-cliques on the other side. A (k-1)-clique is linked
to every k-clique containing it. The connected components
in this bipartite network correspond to the clique percolation
communities. The idea is that two (k-1)-cliques percolate into
each other if they are both members of the same k-clique,
and this is equivalent to the conventional definition of two
k-cliques being linked if they share k-1 nodes.

While SCP consistently outperforms CFinder [7], the im-
portant term for the performance of SCP on a network is
thus not the number of maximal cliques of size at least k,
but the number of cliques of size k-1. As we discuss in our
experimental work, empirical social networks often contain
maximal cliques of substantial size; given that such large
maximal cliques contain very many smaller k-cliques, the fact
that SCP has complexity in terms of the number of cliques of
size k-1 often leads to poor performance in practice. We note
that, as stated by Kumpula et al., SCP is most efficient for low
sizes of k, and performs poorly as the value of k increases.

III. COMPUTATIONAL CHALLENGES

In this section, we look at some of the challenges that face
any k-clique percolation algorithm. We discuss our specific
solutions and algorithms in the next section.

A. Quantity of cliques

To understand why k-clique percolation is so computation-
ally expensive on certain types of online social networks,



we first quantify the numbers of maximal cliques in these
empirical networks. The various algorithms deal with the
edges in the clique graph differently, but each algorithm
requires all the (maximal) cliques be found first.

As shown in Table I, even networks that have small numbers
of nodes and edges, can have very large numbers of maximal
cliques. It is worth noting that the worst case networks, in
terms of the ratio of maximal cliques to nodes in the network,
are online social networks; such datasets, for example the
Facebook networks, feature highly overlapping community
structure and have very large numbers of maximal cliques.
Our primary interest, in this work, is in clique percolation
in the challenging domain of modern online social networks,
which exhibit pervasive overlap [10] [11]. The ‘Facebook
100’ dataset of Traud et al. [8] provides us with a range of
similar empirical networks of differing size. We focus on the
smallest 10 of these networks – shown in Table II – which
capture the general topological features, in terms of densely
overlapping community structure, but are also small enough to
benchmark existing algorithms efficiently on. There are very
large numbers of maximal cliques in these networks, many
more than the number of nodes or edges.

TABLE I
THE VAST NUMBER OF MAXIMAL CLIQUES (SIZE≥4) PRESENT IN MANY

EMPIRICAL NETWORKS. OF PARTICULAR NOTE ARE THE FACEBOOK AND
TWITTER DATASETS, WITH MANY MORE MAXIMAL CLIQUES THAN NODES
OR EDGES. DATASETS FROM SNAP [12] AND OTHER SOURCES; SEE [11]

FOR DETAILS.

Network Nodes Edges Maximal
Cliques

Largest
Clique

Email-Enron 36,692 367,662 205,712 20
Email-EuAll 265,009 420,045 93,267 16

Mobile1 10,001 48,556 1,550 10
Mobile2 10,001 91,930 3,538 10
Mobile3 10,001 88,714 951 9

Facebook-caltech 769 16,656 31,745 20
Facebook-princeton 6,596 293,320 1,286,678 34

Facebook-georgetown 9,414 425,638 1,440,853 33
Twitter1 2,001 47,000 23,570 12
Twitter2 2,001 71,264 554,489 27
Twitter3 2,001 48,914 130,399 22

Slashdot0811 77,360 516,575 441,941 26
Collab-AstroPhysics 18,771 396,160 27,997 57

Collab-CondMat 23,133 186,936 8,824 26
Collab-HighEnergy 9,875 237,010 2,636 32

Cite-HighEnergy 27,769 421,578 419,942 23
Amazon0302 262,111 1,234,877 117,054 7

Epinions 75,879 841,372 1,596,598 23
Web-NotreDame 325,729 1,497,134 130,965 155

Web-Stanford 281,903 2,312,497 774,555 61
Wiki-Vote 7,115 103,689 436,629 17

ProteinInteract-Collins 1,622 9,070 4,310 33

B. Clique Graph size

From the large numbers of cliques present in these types of
pervasively overlapping network, it can be seen that naively
performing O(n2

c) intersection tests, in nc the number of
cliques, in order to populate a clique-clique intersection matrix
would be computationally prohibitive.

TABLE II
THE VAST NUMBER OF MAXIMAL CLIQUES (SIZE>=3) PRESENT, EVEN IN

RELATIVELY SMALL EMPIRICAL ON-LINE SOCIAL NETWORKS.
‘CGBOUND’ IS THE NUMBER OF EDGES, IN 1000S, WE CALCULATED IN

EACH k = 5 MAXIMAL CLIQUE GRAPH, AFTER SEVERAL WEEKS
COMPUTATION, AND IS AN UNDERESTIMATE OF THE TRUE VALUE.

(*REED98 IS THE EXACT NUMBER, NOT AN UNDERESTIMATE.)

Network Nodes Edges Maximal
Cliques

Largest
Clique

CGBound
(1000s)

Caltech36 769 16,656 32,207 20 2,475
Reed98 962 18,812 33,991 16 1,774*

Simmons81 1,518 32,988 45,538 19 2,244
Haverford76 1,446 59,589 475,567 24 127

Swarthmore42 1,659 61,050 306,542 20 282
USFCA72 2,682 65,252 108,929 29 1,128

Mich67 3,748 81,903 154,971 27 843
Bowdoin47 2,252 84,387 331,738 23 235

Oberlin44 2,920 89,912 198,803 22 644
Amherst41 2,235 90,954 599,430 21 79

However, in addition, by attempting to measure the size
of the maximal clique graph, we can see that even if we
had a fast way to generate the full clique graph, it would be
extremely unwieldy to work with, because of the vast number
of edges in it. It is computationally expensive to obtain all
the edges in the clique graph for these networks. Running
a process to calculate maximal clique graph edges on one
of the smallest Facebook networks (Caltech) for a period of
12 hours calculated in excess of 449,000 edges in the clique
graph; this was the clique graph of maximal cliques of size
greater than 7, with edges of intersection of at least 6 nodes.
Similarly, looking at maximal cliques of size greater than 5
with intersections of 4 nodes, we generated over 1,700,000
edges over a period of several days computation. We note that
the total number of edges in the clique graph, in this small
network with only 769 nodes, may even be much larger than
this. Here, we are calculating these clique graph edges by
performing set-set intersection tests, for each clique, against
the set of cliques with which it shares a node. Table II shows
an underestimate of the number of edges in each clique graph,
formed after over one week of computation. The number of
actual edges present may be vastly greater, but merely dealing
with clique graphs that are sometimes so many orders of
magnitude larger than the original source network would be
computationally prohibitive. Even if there were a way to speed
up these intersection tests, merely dealing with clique graphs
that are so many orders of magnitude larger than the original
source network fast becomes computationally prohibitive.

These figures illustrate that methods of clique percolation,
or indeed general graph analysis, which require the full clique
graph to be built, are unscalable on these networks. This
motivates methods, such as those we present, which build only
a subset of the clique graph.

C. The necessity of dealing with individual cliques

Given the vast numbers of cliques present in empirical
graphs, a second complication exists that makes clique per-
colation particularly computationally hard. As cliques are
percolating, we would ideally discard the individual cliques



that comprise a percolating structure, and instead describe
that structure as a set of nodes and edges. As there are so
many more cliques than nodes or edges, this would increase
efficiency. However, we cannot do this, because it is not
possible to tell, given a set of nodes, and the edges between
them, whether a given clique percolates into this structure,
without knowing the (k-1)-cliques that comprise this structure.
Counter-intuitively, a percolating k-clique structure can con-
tain (k-1)-cliques that are not part of the k-cliques that yield it.
Figure 3 shows an example of this. As such, it is not possible
to test a candidate clique for percolation, against a percolating
structure, without maintaining a list of the k, or k-1, cliques
that make it up. We believe this is a core computational issue
in k-clique percolation.

Fig. 3. We cannot use an intermediate representation to store a percolating
k-clique structure, without storing the individual cliques that comprise it:
Consider the case where we store just the nodes and edges of the percolating 4-
clique structure shown in the diagram. Even if the highlighted dashed triangle
was part of another 4-clique, with an additional node, not shown, this other
4-clique would not percolate into the 4-clique-community comprising all the
shown nodes; even though all three nodes and edges in the highlighted triangle
are part of the percolated 4-clique community, the triangle is not part of any
of the constituent 4-cliques.

IV. OUR ALGORITHMS

In this section we describe two algorithms. Our algo-
rithms initially obtain the maximal cliques in the graph, and
then attempt to minimise the number of clique overlap tests
that must be carried out to obtain k-clique communities.
Algorithm 1 attempts to build a minimal spanning forest
over the maximal cliques, using a simple data structure to
reduce unnecessary clique intersection tests. Algorithm 2 uses
a hierarchical data structure to further reduce the number of
full intersection tests needed, further improving performance.

1) Maximal Cliques: Like CFinder we have chosen to build
our algorithms around maximal cliques with at least k nodes;
this is in contrast to SCP, which uses k-cliques. This is because
large maximal cliques are often present in empirical data; these
contain large numbers of k-cliques and thus it is often more
efficient to work with the maximal cliques. Figure 5 shows the
clique- and maximal-clique distributions on a typical Facebook
network – though there are many maximal cliques, there are
many more k-cliques than there are maximal cliques of size
greater than k, for all but the smallest values of k.

2) Clique finding: The Bron-Kerbosch clique finding algo-
rithm [13] provides us with a fast way to find all maximal
cliques in the network. While finding all cliques, or maximal
cliques, is computationally hard on an arbitrary graph, on the
networks that we examine in practice, this method finds all

clique extremely fast, such that clique-finding is a small part of
the computational time in our algorithms. Instead computation
is dominated by comparing cliques against each other.

A. Algorithmic framework

Our goal is to find which cliques are in which connected
components of the thresholded clique graph. We follow a pro-
cedure similar to the well known [14] connected components
algorithm. We process one component at a time, by taking an
arbitrary starting clique and identifying all the cliques in the
same connected component as it. This process repeats until all
cliques have been assigned to a component.

The key point is that we do not first generate the full clique
graph; instead we integrate the process of generating clique
graph edges, with that of finding connected components; and
only generate clique graph edges as we need them for the
connected components calculation. We can do this because, to
calculate the k-clique percolations, we only need the minimal
spanning forest of the clique graph (Fig 4); any other edges
in the clique graph are essentially wasted intersection tests.

We say that all the cliques are initially unvisited, and
that they each become visited as they are assigned to their
component. As the component expands, there is a set of cliques
described as the frontier. The expansion proceeds until the
frontier is empty. At each iteration, a clique is selected from
the frontier (the ‘current frontier clique’) and its unvisited
neighbours in the clique graph are identified. A ‘neighbouring’
clique is a clique which has an intersection of at least k-1
nodes with the current frontier clique; this corresponds to an
edge in the clique graph. These neighbours are moved into the
frontier and marked as visited and our current frontier clique is
moved out of the frontier, as it has now been fully processed.
Eventually, there will be no unvisited neighbours of any of the
frontier cliques and the frontier will gradually become empty –
this completes the identification of this component. If we know
that clique A is connected to clique B in the clique graph, and
B to C, then there is no need to test if A is connected to C;
thus we can ignore cliques that have already been visited, when
searching for the neighbours of the current frontier clique.

Our two algorithms differ in how they identify the unvisited
neighbouring cliques of the current frontier node. Otherwise,
they both use the framework which has just been described.

One naive way to identify the neighbouring unvisited cliques
of the current frontier clique is to iterate through all the other
cliques, testing the size of their intersection with the current
frontier clique. If the intersection has at least k-1 nodes and
if the clique is unvisited then it is a neighbouring unvisited
clique. Our two algorithms embody different strategies to
speed up this identification.

B. Algorithm 1

1) Node-to-cliques maps: For a given current frontier
clique, testing against every other clique is expensive. We can
vastly improve this, by realizing that two cliques can only
neighbour each other in the clique graph, if they share at least
one node (i.e. are adjacent by at least one node). We maintain



(a) The source network. (b) Maximal cliques of size at least 4, represented by a red box at their
centroids.

(c) The corresponding clique graph of maximal cliques over-
lapping by at least 3 nodes.

(d) A minimal spanning forest of the clique graph.

Fig. 4. A clique graph visualisation, showing the construction of the clique graph from a source network; the connected components in this graph, which
correspond to clique percolations; and minimal spanning trees of these components – the minimum set of edges in the clique graph which must be found,
and which put an absolute lower bound the number of clique-clique intersection tests to be done in these methods.

a list, for each node, of all the cliques that the node is present
in. Then, for each node in the current clique, we check the list
of other cliques that node is in, to generate the set of cliques
that overlap with the current clique by at least one node.

2) Visiting the cliques: The key step in Algorithm 1 is that
as cliques are added to the current connected component, they
are deleted from the map of nodes-to-cliques. This is how
a clique is marked as ‘visited’, and not considered further.
Pseudo-code is given in Listing 1.

C. Experiments

We performed several benchmarking experiments, of a C++
version of our algorithm, against the binary implementations
of both SCP and CFinder v2.0.5. We do not show benchmark
results for CFinder, as, similar to Kumpula et al. [7] we found
that it was generally very much slower than SCP. As such, all
benchmarks will be shown against SCP.

1) GN benchmarks: After Kumpula et al. [7], we per-
formed benchmarks based on the Girvan-Newman synthetic
benchmark, creating networks of increasing size, containing
increasing numbers of communities, each of 32 nodes. We
first note that these synthetic benchmarks are poor proxies
for many real world social networks, in terms of the clique
size distributions contained within them. Figure 5 shows a

typical example of this difference in the size distributions of
cliques, and maximal cliques, in these GN networks, versus
the Facebook networks; the Facebook networks have more and
larger cliques and maximal cliques. While the main advantage
of our method over SCP is on networks with larger numbers of
cliques, which these GN networks do not contain, we present,
in Figure 6, present performance results as we increase the
number of nodes in the GN network. At k = 4 our method,
while slightly slower than SCP, is competitive, and scales
similarly. However, when we start to look at higher values
of k, we notice that the scaling behaviour of SCP degrades
considerably faster than our method.

2) CondMat benchmark: An example of using k-clique
percolation to find communities in co-authorship data in the
field of condensed matter physics, is described by Palla et al.
[1]. The SCP paper [7] extends this benchmark, comparing the
times of SCP and CFinder for finding k-clique percolations,
in the Arxiv Condensed Matter e-print archive. We produce a
similar benchmark, using the Arxiv ca-CondMat network from
the SNAP dataset collection [12]. Figure 7 shows the runtime
of SCP against that of our implementation, on this network,
for varying values of k. Note that y-axis, showing runtime, is
logarithmic. Both implementations quickly complete for low
values of k, and, as shown in [7], far outperform CFinder; but



1 f o r c l i q u e i n c l i q u e s :
i f n o t c l i q u e i n c l i q u e s t o c o m p o n e n t s d i c t :

3 c u r r e n t c o m p o n e n t += 1
c l i q u e s t o c o m p o n e n t s d i c t [ c l i q u e ] = c u r r e n t c o m p o n e n t

5 f r o n t i e r = s e t ( )
f r o n t i e r . add ( c l i q u e )

7

w h i l e l e n ( f r o n t i e r ) > 0 :
9 c u r r e n t c l i q u e = f r o n t i e r . pop ( )

f o r n e i g h b o u r i n g e t u n v i s i t e d a d j a c e n t c l i q u e s ( c u r r e n t c l i q u e , n o d e s t o c l i q u e s d i c t ) :
11 i f l e n ( c u r r e n t c l i q u e . i n t e r s e c t i o n ( n e i g h b o u r ) ) >= ( k−1) :

c l i q u e s t o c o m p o n e n t s d i c t [ n e i g h b o u r ] = c u r r e n t c o m p o n e n t
13 f r o n t i e r . add ( n e i g h b o u r )

f o r node i n n e i g h b o u r :
15 n o d e s t o c l i q u e s d i c t [ node ] . remove ( n e i g h b o u r )

Listing 1. Python-like pseudo-code description of simple algorithm for improved clique percolation.
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Fig. 6. GN benchmark results, on a similar benchmarking setup to [7]. SCP runtimes are shown by red squares; runtimes of our method are shown by blue
triangles. Runtimes are observed to be similar when k = 4, with SCP marginally ahead; but for k = 5 our method appears to do much better. There are
insufficient numbers of cliques of size 6 or greater present to allow higher values of k to be examined on the GN benchmarks.

as the value of k increases, the runtime of SCP deteriorates.
As noted in the original SCP work “for networks containing
large cliques the SCP method performs best for rather small
values of k” [7]. Our method, by contrast, seems well suited
to this particular type of network, and performs quickly, even
as k is increased.

3) Empirical social network data: We now produce a set
of empirical benchmarks, not previously investigated in the k-
clique percolation literature. We analyse the performance of
SCP against our algorithm, for various values of k, on the
ten smallest of the Facebook 100 networks. This allows us
easily obtain results for higher values of k where SCP cannot
complete in reasonable lengths of time. Figure 9 shows perfor-
mance results for four values of k across these 10 Facebook
networks. These empirical networks vary in their individual
performance characteristics. In common with previous work
on k-clique percolation, it is difficult to give meaningful closed
form analysis of expected performance characteristics in terms
of more general network parameters, such as the number of
nodes, or edges; but the trend is clearly that as k increases,
the performance of our method versus SCP clearly increases,
across all networks. Even for the lowest value of k that we
examine, our method finishes within a few minutes of SCP,
while as the value of k increases, it becomes difficult to obtain
runtimes for SCP. Furthermore, in additional to increasing

runtime, the memory usage of SCP’s data structures, which
allow for fast intersection tests, grows prohibitive.

When analysing these networks, we often find that, for
low values of k, a giant connected component emerges in
the network, due to the pervasively overlapping structure of
community in these networks. Figure 8 shows, for each value
of k on the Mich67 Facebook network, the proportion of nodes
which are in the largest k-clique percolation community with
respect to the number of nodes which have been assigned to
at least one k-clique percolation community. As can be clearly
seen from this chart, smaller values of k do not usefully find
modular structure in the network. An investigation of how
meaningful these structures are as communities is, however,
beyond the scope of this computational work; but this question
cannot even be investigated without an algorithm which runs
reasonably quickly for higher values of k. This particular
chart should not be taken as characteristic of all pervasively
overlapping networks; while we do commonly find that for
low values of k, a giant percolation component is present in
the Facebook 100 datasets, the nature of how this changes as
k increases, varies from network to network.

D. Counting the failed intersection tests

This type of algorithm involves testing pairs of cliques that
share a node, to see if they intersect by at least k-1 nodes. For
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Fig. 9. Benchmark results on the smallest 10 Facebook 100 graphs, for values of k between 4 and 7. Red columns denote SCP runtimes, blue denote
Algorithm 1. Processes were terminated if they failed to complete within 2 hours (7200 seconds). Running SCP for additional time sometimes resulted in it
using more than 50GB of RAM; the SCP binary implementation consumes a vast amount of RAM for some networks and values of k, presumably for its
disjoint-set forest fast intersection data structure. Our method never uses more than a small multiple of the amount used to store the maximal cliques; never
more than 512MB in these experiments. Experiments are run on a multiprocessor machine, in random sequence. SCP outperforms our algorithm for k = 4,
but performs substantially worse, in both time and space requirements, as values of k get larger.

speed, our goal is to minimize the number of tests required,
as this typically takes up the major portion of the runtime
of such an algorithm. Each test either succeeds, if there are
>= (k-1) nodes in the intersection, or else fails. We cannot
change the minimum number of successful intersection tests
– there will be one such test for each edge in the minimal
spanning tree, i.e. numCliques − numCommunities. But
we can try to minimize the number of failed tests. In this
subsection, we will look at a lower bound on the number of
failed tests that must occur in Algorithm 1 described above.
In many networks, the number of these failed tests is very
large in comparison to the number of the successful tests, and
dominates the computational cost. This motivates our second
algorithm, which we describe in the next section.

Consider every pair of cliques that share at least one node.
We do not need to perform an intersection test for every such
pair – we can potentially avoid testing most pairs of cliques
which percolate into the same community. But we cannot
avoid testing the pairs of cliques which share a node, but never
percolate into the same community. For each network, and for
each value of k, we count the pairs of cliques which share at
least one node and which do not percolate, and divide this by
the necessary number of successful tests. Some of the highest
ratios are shown in Table III. Even though Algorithm 1 is

much faster than SCP for higher k, this is a computational
bottleneck. Each failed intersection test is akin to a ‘false
positive’; we tested the cliques that shared a node, in case they
shared k-1, but this turned out not to be the case. We aim to
minimize the ‘false positive’ rate – the pairs of cliques that
our heuristic ‘suspects’ might percolate together, and hence
need to be expensively tested for overlap against each other –
while of course ensuring we still pick up all the true positives
– the cliques that actually do intersect by k-1 nodes.

E. Algorithm 2

Our second algorithm uses the same framework described
in Section IV-A. The only change is that we have a faster
way, given the current frontier clique, of finding its unvisited
neighbouring cliques: a cheaper way of avoiding intersection
tests, by detecting when two cliques will percolate in way that
gives fewer ‘false positives’ than checking only whether they
share a single node.

We use a complete binary tree where there are as many leaf
nodes as there are maximal cliques. We will refer to the nodes
in this binary tree as tree-nodes, and the tree-nodes which are
at the leaves of our tree will be referred to as leaf-nodes. To
avoid confusion, we use graph-node to refer to the nodes in
our original network. Each tree-node will have a set of graph-
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(d) Maximal clique size distribution,
GN benchmark.

Fig. 5. Clique and maximal clique size distributions, for benchmark and
empirical networks. The benchmark network is a GN network, of 10,000
nodes, constructed to a similar specification as in [7]. The Facebook network
is that of the Simmons81 Facebook 100 dataset, and is typical of Facebook 100
data. We note that there are typically very many more cliques than maximal
cliques; that the peak of the distributions for the empirical network is further to
the left for the maximal cliques, than for all cliques; and that more cliques of
much larger sizes are found in empirical data, than in these GN benchmarks,
despite this particular GN benchmark network’s larger size.
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Fig. 7. Results on the Arxiv CondMat network, from the SNAP dataset
collection [12]. This network was also benchmarked in the work of Kumpula
et al. [7]. This is a network which, perhaps due to the fact it is a one-
mode projection of a bipartite author network, our algorithm seems to be
particularly well on, as K grows, in contrast to SCP. The SCP implementation
was terminated, on values of K larger than 8, for exceeding available memory.
Any single process exceeding 75GB of RAM was terminated.

nodes associated with it. For the leaf-nodes, this will be the
set of graph-nodes that are in the maximal clique which we
associated with that leaf-node. For the other tree-nodes in the
binary tree, the set of graph-nodes will be the union of the
graph-nodes associated with the leaf-nodes descended from it.

This tree is built once at the start of the algorithm and does
not change. But each leaf-node has a boolean field associated
with it which records whether the associated clique has already
been percolated into a community (i.e. it has been visited).
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Fig. 8. The proportion of nodes assigned to any community, that are assigned
to the largest community, for each value of k, on the Mich67 Facebook
network. Clearly, on this particular network, low values of k simply find
a core structure of the network with pervasive overlap, and do not serve to
reveal modular units; larger values of k are required for k-clique percolation
to be in any way meaningful on these networks.

These visited fields will be initialized to False at the beginning,
and will all gradually be set True as the algorithm proceeds
and visits the cliques. For the other tree-nodes, this boolean
field will be set to True when the fields of its children have
been set to True. This means that a boolean field will be True
if and only if all of its descendants have already been visited.

Given the current frontier clique, we could visit all the
leaf nodes and perform an intersection test against each. This
would be the naive algorithm again. But we can ignore cliques
that have been visited already. In particular, if a tree-node has
been marked as visited, then we can ignore all the cliques that
are descended from it. Also, given a particular tree-node we
can test the intersection between the current frontier clique
and the set of graph-nodes which are stored at this tree-node.
If this intersection is less than k-1, then we know that there
cannot be a neighbouring clique among the cliques descended
from this tree-node. These two observations allow us to skip
most of the intersection tests via the information present in
the binary tree.

The search is a recursive search which starts at the root-node
of the binary tree. Listing 2 contains pseudo-code illustrating
this algorithm. At each tree-node, we check if this tree-node
has been marked as visited, and also check the size of the
intersection. If the intersection is large enough and if the tree-
node is still unvisited, then the search will proceed recursively
into each of the two children of the tree-node. Otherwise, the
recursive function will return and that tree-node (and all its
descendants) will not be considered any further.

To save memory, we do not explicitly maintain a set of
graph-nodes at each non-leaf tree-node. Instead we use a
Bloom filter – a fast and memory-efficient structure which
probabilistically records whether a given element is a member
of a set. It sometimes produces false positives, which in our
algorithm would sometimes lead to an overestimate of the
size of the intersection between two cliques; this does not
cause a correctness problem, but does mean that sometimes
the recursive search proceeds slightly deeper than necessary.



1 d e f g e t u n v i s i t e d a d j a c e n t c l i q u e s ( c u r r e n t c l i q u e , b i n a r y t r e e , f r o n t i e r ) :
b i n a r y s e a r c h i n t r e e ( c u r r e n t c l i q u e , b i n a r y t r e e . r o o t n o d e ( ) , f r o n t i e r )

3

d e f b i n a r y s e a r c h i n t r e e ( c u r r e n t c l i q u e , t r e e n o d e , f r o n t i e r ) :
5 i f n o t t r e e n o d e . v i s i t e d f l a g :

i f l e n ( c u r r e n t c l i q u e . i n t e r s e c t i o n ( t r e e . my s e t o f g r ap h n o de s ) ) >= k−1:
7 # t e s t s pass , t h e c h i l d nodes a r e s t i l l c a n d i d a t e s

i f t r e e n o d e . i s a l e a f n o d e ( ) :
9 f r o n t i e r . append ( t r e e n o d e )

t r e e n o d e . v i s i t e d f l a g = True
11 t r e e n o d e . c h e c k i f s i b l i n g h a s b e e n v i s i t e d a n d p r o p a g a t e ( )

e l s e :
13 b i n a r y s e a r c h i n t r e e ( c u r r e n t c l i q u e , t r e e n o d e . l e f t c h i l d )

b i n a r y s e a r c h i n t r e e ( c u r r e n t c l i q u e , t r e e n o d e . r i g h t c h i l d )
15 e l s e :

# t h e c h i l d r e n c a n n o t be s u i t a b l e , don ’ t s e a r c h t h e d e s c e n d a n t s

Listing 2. Python-like pseudo-code description of our more complex clique percolation.

University k Failed tests Successful tests Ratio
Berkeley13 4 10,466,831 1,888,501 5.5424
UC33 5 36,722,163 1,396,585 26.294
JMU79 6 87,790,729 1,007,912 87.101
JMU79 7 202,207,552 942,903 214.45
Baylor93 8 7,979,454,075 5,667,415 1407.9
JMU79 9 2,639,954,200 852,264 3097.5
JMU79 10 4,148,901,179 817,621 5074.3
UC61 11 5,257,215,707 948,764 5541.1
Bingham82 12 3,490,950,418 511,790 6821.0
UC61 13 6,271,564,288 849,242 7384.8
Rutgers89 14 2,988,388,319 386,558 7730.7
Rutgers89 15 2,388,357,546 339,698 7030.8
MIT8 16 3,941,888,908 322,212 12233.
MIT8 17 3,183,156,718 285,917 11133.
Howard90 18 3,675,540,181 148,661 24724.
Howard90 19 3,235,463,119 138,158 23418.
UC61 20 15,499,684,499 582,658 26601.
Howard90 21 2,770,597,042 125,715 22038.
Howard90 22 2,595,044,785 121,188 21413.
Howard90 23 2,443,483,517 117,057 20874.
Howard90 24 2,278,591,525 112,454 20262.
Howard90 25 2,090,574,938 107,072 19524.
Howard90 26 1,893,432,720 101,098 18728.
Howard90 27 1,644,566,572 92,900 17702.
Howard90 28 1,356,613,382 82,661 16411.
Howard90 29 957,002,789 67,611 14154.
Howard90 30 588,629,576 53,215 11061.
Howard90 31 312,582,980 42,017 7439.4
Howard90 32 111,014,036 33,669 3297.2
Wake73 33 558,217,752 136,027 4103.7
Wake73 34 243,637,026 99,631 2445.3
Tulane29 35 15,603,680 8,202 1902.4
Wake73 36 33,370,824 54,029 617.64
Wake73 37 6,927,976 38,747 178.80
FSU53 38 1,081,780,785 4,032,339 268.27
FSU53 39 231,651,220 3,728,247 62.134
FSU53 40 73,496,336 3,396,986 21.635

TABLE III
USING THE FACEBOOK100 NETWORKS. FOR EACH K BETWEEN 4 AND

20, THE UNIVERSITY WITH THE HIGHEST RATIO OF FAILED INTERSECTION
TESTS TO THE NUMBER OF SUCCESSFUL INTERSECTION TESTS IS SHOWN.

F. Evaluation of Algorithm 2

When considering a single value of k, Algorithm 2 was
always faster than Algorithm 1, except sometimes when k = 3.
In Table IV, we see the runtimes of Algorithm 2 on a number
of Facebook networks. These runtimes are the time taken to
compute the communities for all values of k. This algorithm

University Nodes Edges Time(s)
Caltech36 769 16,656 50.94
Reed98 962 18,812 51.84
Simmons81 1,518 32,988 115.10
Haverford76 1,446 59,589 372.39
Swarthmore42 1,659 61,050 235.93
USFCA72 2,682 65,252 215.22
Mich67 3,748 81,903 421.19
Bowdoin47 2,252 84,387 246.39
Oberlin44 2,920 89,912 263.45
Amherst41 2,235 90,954 424.96
Wellesley22 2,970 94,899 338.81
Hamilton46 2,314 96,394 389.64
Smith60 2,970 97,133 421.62
Trinity100 2,613 111,996 477.63
Williams40 2,790 112,986 524.29
Vassar85 3,068 119,161 376.70
Middlebury45 3,075 124,610 500.21
Brandeis99 3,898 137,567 411.83
Wesleyan43 3,593 138,035 622.84
Santa74 3,578 151,747 840.05
Pepperdine86 3,445 152,007 1454.71
Colgate88 3,482 155,043 844.91
UC64 6,833 155,332 967.06
Bucknell39 3,826 158,864 788.16
Rochester38 4,563 161,404 1158.68
Rice31 4,087 184,828 1289.66
JohnsHopkins55 5,180 186,586 1047.59
Vermont70 7,324 191,221 751.05
Lehigh96 5,075 198,347 921.42
Howard90 4,047 204,850 2395.45

TABLE IV
THE RUNTIMES OF OUR MORE OPTIMIZED ALGORITHM, TO COMPUTE ALL

VALUES OF k, ON THE SMALLEST 10 FACEBOOK NETWORKS, AND A
SELECTION OF LARGER ONES. THIS ALGORITHM WAS OFTEN ABLE TO

COMPLETE ALL VALUES OF k IN LESS TIME THAN ALGORITHM 1 TOOK TO
COMPLETE k = 4. FOR EVERY DATASET TESTED, THIS ALGORITHM

CALCULATES ANY VALUE OF k FASTER THAN ALGORITHM 1.

frequently computes all values of k quicker than Algorithm 1
can compute the communities for k = 4.

V. OTHER APPROACHES

We now briefly mention other approaches to this problem
that we have considered, as well as other overlapping com-
munity finding algorithms of interest.



A. Hierarchical Partitioning

The work of Narasimhamurthy et al. [15] investigates
speeding up k-clique percolation by dividing the network into
partitions using a graph partitioning algorithm. CFinder is then
run on each partition, generating a set of k-clique communities
for each partition. The union of these sets of percolated
communities is reported as the set of k-clique communities. To
evaluate their approach, they compare the set of communities
found on the partitioned network against the communities
found by running CFinder on the whole unpartitioned network.

This method fails to account for the case where k-clique
communities span the border of the graph partitions. This may
not be a large problem in networks where communities – even
k-clique communities – do not overlap. However, as shown
in our previous work [11] and discussed in other work [10],
[16], it will not be possible, on many networks, to partition
the network without splitting many communities; as such,
this method is an approximation technique not suitable for
networks with pervasive community overlap, such as modern
on-line social networks. We have tried adapt this approximate
method into an exact method, inspired by kd-Trees [17],
where cliques that overlap partitions are explicitly handled,
by pushing them up the partition hierarchy, and testing them
for percolation against the cliques at the same level, or below
them, in the partition tree; however, we find that this method
does not work as well as the related methods described in this
paper; it may be useful in other percolation contexts.

B. Stochastic Approximation

As there are many more cliques than nodes, we consid-
ered whether working with a random subset of the maximal
cliques would yield similar community structure, at lower
computational cost than working with all maximal cliques.
We investigated randomly sampling a subset of the maximal
cliques, and performing percolation with this sampled subset.
However, results were poor; the overlapping NMI [18] of the
k-clique communities found by this approach, compared with
the communities found using all cliques, decreased rapidly
when even a small percentage of cliques (< 10%) were
randomly omitted. Perhaps a more sophisticated sampling
approach will be found in future work; but simple approaches
to stochastic approximation appear unsuitable for this problem.

C. Other structure definitions

Many other definitions of community structure exist. While
it was the goal of this work to focus on improving the
performance of k-clique percolation, researchers have done
work on other definitions of structure, such as K-plexes,
K-cores, and K-trusses. A highly scalable K-truss imple-
mentation in particular has been provided [19]. Types of
percolation structure which lack the properties described in
Figure 3, so that sub-structures can easily be composed into
higher level units discarding the sub-structure, avoid some of
the computational problems of k-clique percolation. However,
these structures are fundamentally different than k-clique
percolation, and a discussion of them should also consider

the field of community finding as a whole, which is beyond
the scope of this computational work.

D. Other overlapping community finding methods

We have focused on k-clique percolation in this work.
However, many other modern overlapping community finding
algorithms exist, many of them with good scaling properties,
such as link partitioning methods [20] [10], relatively scalable
methods which approximate statistical objectives [21] [22],
information theoretic approaches [23], methods explicitly de-
signed to be scalable, such as label propagation [24], other
clique-based methods more scalable than k-clique percolation
[25] [26] and many other methods; Xie et al. [27] provide a
comparative analysis.

We have not investigated these algorithms in this compu-
tational work, focusing instead on the properties of k-clique
percolation; but for many application domains the structures
found by these often more scalable algorithms may be more
suitable than percolated k-cliques.

E. Better, as yet unknown, k-clique percolation methods

In our work, we have focused on algorithms for k-clique
percolation that either find all the cliques, or all the maximal
cliques. We have not definitively ruled out the possibility of
creating a better k-clique percolation algorithm which does not
need to calculate this information, or which uses some other
form of intermediate structure when percolating k-cliques, that
somehow leads to more efficient clique intersection testing.
This may be a potential area of future work, especially if k-
clique percolation were to continue to be widely used, and not
be superseded by more recent overlapping community finding
algorithms.

VI. CONCLUSION

We have examined k-clique percolation as a specific exam-
ple of a computationally challenging percolation problem. We
have shown that vast numbers of cliques exist in empirical
social networks, and that k-clique percolation is a hard prob-
lem to implement well, due to the difficulty of producing in-
termediate representations of percolating structures. From the
large number of overlapping cliques and maximal cliques that
we observe in empirical networks, and the consequent large
number of edges in the clique graphs we have constructed, we
conclude that while clique graphs are an attractive conceptual
tool, their utility is limited in applications of social network
analysis. We have developed and thoroughly benchmarked a
k-clique percolation algorithm that is conceptually simple, yet
performs better than existing methods on many real world
networks, especially when considering k-clique percolation
with higher values of k. This method is challenged by the
large numbers of cliques which share at least one node, but
do not percolate. We introduce a second method which uses
a more sophisticated data structure. With this method we can
conduct clique percolation on larger pervasively overlapping
networks than ever before. However, these methods remain
fundamentally limited by the necessity of testing cliques



against other cliques with which they share some nodes, but
do not percolate. Given the number of cliques, clique perco-
lation remains computationally challenging; other overlapping
community detection methods appear more promising, from a
computational standpoint. We provide software for researchers
studying other percolation problems to leverage our results.
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