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Abstract—Most real-world social networks are inherently
dynamic and composed of communities that are constantly
changing in membership. As a result, recent years have
witnessed increased attention toward the challenging problem
of detecting evolving communities. This paper presents a game-
theoretic approach for community detection in dynamic social
networks in which each node is treated as a rational agent who
periodically chooses from a set of predefined actions in order
to maximize its utility function. The community structure of
a snapshot emerges after the game reaches Nash equilibrium;
the partitions and agent information are then transferred to
the next snapshot. An evaluation of our method on two real
world dynamic datasets (AS-Internet Routers Graph and AS-
Oregon Graph) demonstrates that we are able to report more
stable and accurate communities over time compared to the
benchmark methods.
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I. INTRODUCTION

The natural flux of people’s changing social ties and
interests expressed on online social networking sites gen-
erates a dynamic social network. As the network changes,
user communities evolve and can grow, shrink, or disappear.
Here, the word community refers to the emergent groups
that are created as people form highly connected networks
with their families, co-workers, and friends. In this context,
we regard the communities as simply friendship networks
in which the participants share common interests, activities,
or a geographic location. Intuitively we expect more edges
inside the community compared to its outside, i.e., intra-
connections tend to be more common than inter-connections.

Community detection can help us understand the hidden
social structure of the user populations, but the dynamic
aspect of networks can pose problems for standard algo-
rithms. This paper leverages game-theoretic models of ratio-
nal behavior to attack the problem of dynamic community
detection. The proposed approach for solving the problem
treats each node within the observed snapshots of a given
network as a selfish agent who tries to maximize its utility
(the difference of its personal gain and loss functions) in
a game-theoretic way. The Nash equilibrium of the current
game corresponds to the final community structure of the
current snapshot. All of the communities discovered in
previous snapshots are then propagated to the current time

slice and used along with the network structure of the current
snapshot. The main contributions of this paper are twofold:
• We introduce the Dynamic Game Theory method (D-

GT), which extends the game-theoretic model de-
scribed in [1] to the problem of community detection
in dynamic social networks. D-GT treats the nodes of
the network as rational agents which perform a set
of actions in a iterative and game-theoretic way to
maximize their total utility.

• We validate our method on two dynamic datasets, the
AS-Internet Routers Graph and AS-Oregon Graph, and
compare the results with those of two other methods,
LabelRankT and iLCD, evaluating the modularity met-
ric.

In the remainder of the paper, first the related work is
presented in Section II. In Section III we delve into the
problem and explain the proposed method. The experiments
are discussed in Section IV, and finally we conclude the
paper in Section V.

II. RELATED WORK

The problem of community detection has appeared in
various forms across several disciplines including physics,
sociology, and computer science. Many efficient methods
have been proposed for detecting both non-overlapping
and overlapping communities on static networks, among
which CFinder [2] and COPRA [3] have distinguished them-
selves as among the most popular and effective methods,
assuming they are initialized with good parameters [4].
Approaches range from traditional network structure based
algorithms [5]–[7] to more modern optimization algorithms
employing game theory [1], label propagation [8]–[10], and
information diffusion [11], [12]. Detecting community struc-
ture in dynamic networks, on the other hand, has attracted
less research attention due to the complexity of the problem
and dearth of good datasets.

Similar to the static community detection approaches,
methods that have been proposed to detect communities in
dynamic networks can be categorized into two main groups:
traditional and modern methods. Traditional algorithms use
general information about the network properties to perform
community detection. Hui et al. [13] proposed a distributed
method for community detection in which modularity was



used as a measure instead of the objective function. [14]
attempted to track the evolution of communities over time,
using a few static network snapshots. Palla et al. [15]
proposed an innovative method for detecting communities
in dynamic networks based on the k-clique percolation
technique. This approach can detect overlapping commu-
nities; however, it is time consuming, especially on large-
scale networks. iLCD [16] can identify overlapping network
communities by adding edges and then merging similar
ones. However, this model cannot always handle dynamic
behaviors of the network, particularly when new nodes are
introduced or removed, or when existing edges are removed.

In addition to the traditional algorithms, there are some
approaches that use techniques such as cost optimization,
label propagation, random walk, and information theory
to solve the problem of dynamic detection of community
structures. FacetNet proposed in [17] is a framework for
analyzing communities in dynamic networks based on opti-
mizing snapshot costs. FacetNet is guaranteed to converge
to a locally optimal solution; however, its convergence speed
is slow, and it needs to be initialized with the number
of communities, which is usually unknown in practice.
Recently, Xie et al. [18] introduced a stabilized label prop-
agation algorithm named LabelRankT. LabelRankT is an
extension of LabelRank in which each node requires only
local information during label propagation processing. In
this paper, we benchmark our algorithm against both iLCD
and LabelRankT.

The Markov Cluster Algorithm (MCL) proposed in [19]
uses simulations of flow (random walk) and repeatedly
executes matrix multiplications followed by an inflation
operator. Regularized-MCL [20] is an extension of MCL that
uses a regularization operator to avoid overfitting the data
with too many communities. The authors observed that this
approach still suffers from the scalability issue of the original
MCL. In order to overcome this problem, they introduced a
multi-level version of regularized MCL in which the graph
is successively coarsened prior to running regularized MCL.
Jimeng et al. [21] presented a parameter-free methodology
for detecting clusters on time-evolving graphs based on
mutual information and entropy.

In contrast, our method, D-GT, attempts to simulate the
decision-making process of the individuals creating the
communities, rather than focusing on statistical correla-
tions between labels of neighboring nodes. We believe that
exploiting game theory for dynamic community detection
yields more realistic, fine-grained communities since intrin-
sically game theory is a good representation for expressing
the behavior of individuals and strategic interactions among
them [22]. In previous work, we have demonstrated the
success of game-theoretic approaches in static community
detection across several domains, including detecting guilds
in massively multiplayer online games [23] and predicting
trust between users on e-commerce sites [24].

Table I
DEFINITION OF SYMBOLS

Symbol Definition
T Snapshots
Gt A graph with no self-edges at snapshot Tt

mt, nt Number of edges and vertices at snapshot Tt

At Adjacency matrix at snapshot Tt

S Profile of strategies
si Strategy of agent i
gi Gain function of agent i
li Loss function of agent i
ui Utility function of agent i
Cij Similarity between agents i and j

Table II
DEFINITION OF POSSIBLE ACTIONS.

Action Definition
Join Add a new label to si
Leave Remove a label from si
Switch Remove a label from si and add a new one
No Action No specific action is performed

III. METHOD

In this section, we present the framework for D-GT;
our source code is freely available at https://github.com/
hamidalvari/D-GT/. Table I shows the symbols and defini-
tions used throughout the paper.

Suppose that we have M snapshots T = {T0, T1, ..., TM}
of the given network with their corresponding underlying
graphs Gt = (Vt, Et), with nt = |Vt| vertices and mt =
|Et| edges where t ∈ {1, 2, ...,M}. We extend the work
described in [1] by considering the process of community
detection as an iterative game performed in a dynamic multi-
agent environment in which each node of the underlying
graph is a selfish agent who decides to maximize its total
utility ui. In other words, we use an agent-based model to
detect communities by optimizing each user’s utility through
a stochastic search process.

During the game, each agent can periodically take an
action (join, switch, leave, or no operation) to change its
community membership. Specifically, it decides whether to
join a new community C by adding its label to si which
results in the utility gain uJoin according to (1):

si ← si ∪ {C}. (1)

Another option is to leave one of its own communities, e.g.,
C ′, by removing its label from si which results in the utility
gain uLeave:

si ← si/{C ′}. (2)

The agent can also decide to switch communities, say C ′,
by deleting its label from si, adding the new community, C,
and receiving uSwitch as its utility:

si ← si/{C ′}, si ← si ∪ {C}. (3)



Finally, the new utility u′i for this agent is calculated and
the previous utility ui is replaced by the new one:

u′i ← max{uJoin, uLeave, uSwitch, unoOp}. (4)

The set of all communities is denoted by [k] = 1, 2, . . . , n.
We define a strategy profile S = (s1, s2, ..., sn) which
represents the set of all strategies of all agents, where
si ⊆ [k] denotes the strategy of agent i, i.e. the set of its
labels.

In our framework, for each snapshot, the best response
strategy of an agent i with respect to strategies S−i of other
agents is calculated as: arg maxsi⊆[k] ui(S−i, si). The utility
function for each agent is calculated by:

ui(S−i, si) = gi(S−i, si)− li(S−i, si), (5)

where the gain function for agent i is formulated as follows:

gi(S) =
1

mt

|si|∑
L=1

Σj∈L,j 6=iCij . (6)

For calculating the similarities between each pair of ver-
tices in G, we can use local or global properties, regardless
of whether or not the nodes are directly connected. In this
paper, we use neighborhood similarity [1] to quantify the
structural similarity between users:

Cij =


wij(1− didj/2mt) Aij,t = 1, wij >= 1

wij/nt Aij,t = 0, wij >= 1
didj/4mt Aij,t = 1, wij = 0
−didj/4mt Aij,t = 0, wij = 0

(7)

where wij is the number of common neighbors shared by
node i and j and di is the degree of node i. Cij assumes
its highest value when two nodes have at least one common
neighbor and are also directly connected, i.e. Aij,t = 1.

Similar to what happens in real life, we also consider the
loss function li for each agent, which is linear in the number
of labels each agent has, since community membership
incurs implicit overhead costs (e.g., fees) for each individual.
Therefore we define the following loss function for agent i:

li(S−i, si) =
1

mt
(|si| − 1). (8)

The strategy profile S forms a pure Nash equilibrium
of the community formation game if all agents play their
best strategies. Algorithm 1 shows our proposed framework.
After calculating similarities between each pair of agents
(Equation 7), the multi-agent game commences. The com-
munity structure of each snapshot of the network emerges
after agents reach the local equilibrium. For each snapshot
Tk, we use existing agents and labels from all of its previous
snapshots T[1..k−1] along with new agents corresponding
to the new nodes that were just added to the current
snapshot, if any. Propagating community labels from all the

previous snapshots provides the algorithm with a large set of
initial candidate communities and improves the convergence
speed. In the version of the algorithm for static community
detection, each agent is initialized as the lone member of
a single community and must discover new communities
through the use of join or switch operations.

Algorithm 1 D-GT: Dynamic Game Theoretic Model
1: Input: Snapshots T = {T0, T1, ..., TM} of the network
2: Output: Communities of each snapshot
3: for all snapshots do
4: t← current snapshot
5: Construct the list agents of graph Gt

6: Calculate similarities Cij between pairs of vertices of
graph Gt

7: while NOT convergence in the agents’ utilities do
8: agenti = Random Select (agents)
9: actioni = Best Operation (join, leave, switch)

10: u′i= Utility Calculate (agenti, actioni)
11: if ui < u′i then
12: ui ← u′i
13: Update si
14: Update communities
15: else
16: actioni = noOp
17: end if
18: end while
19: Send the labels to the snapshot Tt+1

20: end for

IV. EXPERIMENTS

All of the algorithms were evaluated together on a sys-
tem with 12G of RAM and Intel CPU 2.53 GHz for the
purpose of fair comparison. The following state-of-the-art
community detection approaches are used as benchmarks:
• LabelRankT1 [18]. LabelRankT functions according to

the generalized LabelRank, in which each node requires
only local information during label propagation pro-
cessing. Several parameters must be set before running
the algorithm on the data; we used the best performing
values reported by the authors [18].

• iLCD2 [16]. iLCD is a well known community detec-
tion approach for dynamic social networks which works
by first adding edges and then merging the similar ones.
It takes the dynamics of the network into account when
grouping nodes into communities.

A. Datasets

To illustrate the strength and effectiveness of our ap-
proach, we selected two popular real-world social networks

1https://sites.google.com/site/communitydetectionslpa
2http://www.cazabetremy.fr/Cazabet remy/iLCD.html



Figure 1. The structural changes over 733 snapshots in the AS-Internet dataset, including the number of edges added (E+, left image) and deleted (E−,
middle image), as well as the number of nodes involved in changes (N+−, right image).

Figure 2. The structural changes in the AS-Oregon dataset over 9 snapshots, including the number of edges added (E+, left image) and deleted (E−,
middle image), as well as the number of nodes involved in changes (N+−, right image).

from the SNAP3 graph library. AS-Internet and AS-Oregon
were chosen from the available datasets, since they have a
variable number of snapshots. The large number of nodes in
both datasets demonstrates that our approach is capable of
running on large datasets. The description of the datasets is
as follows:

AS-Internet Routers Graph [25]. This is a commu-
nication network of who-talks-to-whom from the Border
Gateway Protocol logs of routers in the Internet. The dataset
contains 733 daily snapshots collected between November
8, 1997 to January 2, 2000. The number of nodes in the
largest snapshot is 6,477 (with 13,233 edges). In contrast to
citation networks, where nodes and edges only get added
(not deleted), the AS dataset exhibits both the addition
and deletion of nodes and edges over time. The structure
of the graph can change dramatically at each snapshot
(Fig. 1). This figure illustrates the number of edges added
and deleted, as well as the number of nodes involved in
these changes.

AS-Oregon Graph. The dataset contains 9 graphs of
Autonomous Systems (AS) peering information inferred
from Oregon route-views between March 31, 2001 and May
26, 2001. These 9 graphs are different snapshots from the
data with a minimum of 10,670 and maximum of 11,174
nodes. In addition, the number of edges ranges from 21,999
in the snapshot of April 07, 2001 to 23,409 in May 26, 2001.
Figure 2 shows the number of edges added and deleted, as
well as the number of nodes involved in the changes for the
AS-Oregon dataset.

3http://snap.stanford.edu/

Table III
DATASET SUMMARY

Data AS-Internet Routers Graph Oregon

min # of nodes 2,948 11,174
max # of nodes 6,477 10,670
min # of edges 3,386 21,999
max # of edges 13,233 23,409
# of snapshots 733 9
edge type directed directed

B. Evaluation

Since the ground truth of neither of the two datasets
is available, it is impossible to use normalized mutual
information (NMI) to calculate the performance of the
different algorithms. Hence, for measuring the performance,
we use modularity [26] to evaluate our algorithm on the
above mentioned datasets. Modularity is the most popu-
lar qualitative measure in detecting communities in social
networks. However, it has been shown that modularity has
drawbacks and becomes unreliable when our networks are
too sparse [27]. Modularity Q is defined as follows:

Q =
1

2m

∑
ij

[Aij −
kikj
2m

]δci,cj (9)

where Aij is an element of the adjacency matrix, δij is the
Kronecker delta symbol, and ci is the label of the community
to which vertex i is assigned. However, modularity is slightly
different for directed networks [28] and can be reformulated
as:



Figure 3. (a) D-GT modularity on the AS-Internet dataset compared with LabelRankT and iLCD. Dataset consists of 733 different snapshots. (b) Number
of communities generated by D-GT algorithm in comparison with LabelRankT and iLCD.

Figure 4. (a) D-GT modularity on the AS-Oregon dataset compared with LabelRankT and iLCD. Dataset consists of 9 different snapshots. (b) Number
of communities generated by D-GT algorithm in comparison with LabelRankT and iLCD.

Q =
1

m

∑
ij

[Aij −
kini k

out
j

m
]δci,cj (10)

where Aij is defined in the conventional manner to be one
if there is an edge from i to j and zero otherwise. Here,
the probability of the existence of an edge from vertex i to
vertex j is kini k

out
j /m, where kini and koutj are the in- and

out-degrees of the vertices respectively.
Beside the modularity, the number of discovered com-

munities is also used to compare the results of different
algorithms. The number of communities, if any, within the
network is typically unknown, however, an algorithm which
discovers many more communities in a network is known
to be more accurate. This can be explained by the fact
that some methods disregard small communities and tend

to combine them in order to maximize the overall network
modularity.

C. Results

We first report the modularity values corresponding to the
D-GT, LabelRankT, and iLCD algorithms and then analyze
the number of communities detected by these approaches.
Results demonstrate that D-GT performs well on both
datasets in comparison with the other two methods.

1) AS-Internet: Fig. 3 shows the modularity of the pro-
posed method compared to the other two algorithms on
the AS-Internet dataset. As can be easily determined, D-
GT achieves competitively higher modularities than La-
belRankT in most of the snapshots, while iLCD fails to
find strong community structure at all. In particular, there
is almost a continuous increase of the modularity values
obtained by D-GT, since our method continues preserving



the community structure of the previous snapshots and
only considers current network changes. Retaining the basic
network community structure is a significant advantage of D-
GT: it avoids the overhead of recomputing from scratch and
hence runs faster. Moreover, D-GT delivers more consistent
results in terms of number of communities as opposed
to the LabelRankT and iLCD which both show dramatic
fluctuations in the number of communities over time due to
the changes in the structure of the underlying network.

2) AS-Oregon: AS-Oregon has many fewer snapshots
compared to the AS-Internet, however, the number of nodes
and edges are high enough for an extensive analysis. We
compare modularity results obtained by D-GT at each net-
work snapshot with those of LabelRankT and iLCD. Fig. 4
reveals that the modularities returned by D-GT are signif-
icantly higher than the results of LabelRankT and are still
much more stable than those of iLCD. In addition to that, our
method outputs a finer network community structure since
it discovers more communities than LabelRankT.

On the other hand, the number of discovered communities
by iLCD is higher than both other approaches and here is
an explanation for that: as shown in Fig. 4, there is a linear
correlation between modularities delivered by iLCD and
the number of communities on this dataset. This suggests
that iLCD generates more communities at the expense at
the expensive of modularity, creating highly disconnected
communities that may not correspond to real groups.

V. CONCLUSION AND FUTURE WORK

This paper presents a game-theoretic approach to the prob-
lem of detecting communities in dynamic social networks.
Our results demonstrate that the proposed method not only
outperforms two other well known methods in terms of
modularity but also in identifying evolving and fine-grained
network communities. In future work, we plan to replicate
the study with other utility functions, loss functions, and
update rules; for instance, Q-learning could be used as the
update rule for the agents.

Moreover, we are seeking to replace our similarity mea-
sure with one based on social features. Deploying such a
measure might give more accurate and realistic results, since
in the real world, individuals with similar social activities
tend to form communities more frequently. Networks from
some data sources, such as Massively Multiplayer Online
Games (MMOGs), can contain a higher proportion of iso-
lated nodes, and it would be beneficial to leverage other
feature sources to handle these disconnected nodes.
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