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Abstract—In this paper we evaluate the effect of noise on value of the metric is commensurate with percentage of edges
community scoring and centrality-based parameters with repect removed. If a metric is sensitive then it can serve as a good

to two different aspects of network analysis: (i) sensitity, thatis i dicator of how much the network has been changed (see
how the parameter value changes as edges are removed and (ii)Section 1)

reliability in the context of message spreading, that is howthe o . )
time taken to broadcast a message changes as edges are renove  1he second metric iseliability , that is whether certain
Our experiments on synthetic and real-world networks and operations in the network can be performed efficiently in

three different noise models demonstrate that for both the spects  gpijte of the missing edges. If a metric is reliable then it
over all networks and all noise models,permanence qualifies guarantees good performance even under noise. Here we

as the most effective metric. For the sensitivity experimeis lect di th didat tion. &dh
closeness centrality is a close second. For the message adirg select message spreading as the candidate operalion. dde se

experiments, closeness and betweenness centrality baseiator ~nodes that initiate message spreading are selected from the
selection closely competes with permanence. This is becaus high valued entities of different metrics. A metric has high

permanence has a dual characteristic where the cumulative reliability if the time for message spreading under noisesdo
permanence over all vertices is sensitive to noise but the sd . gigpificantly degrade if its high valued entities arestd
of the top-rank vertices, which are used to find seeds during .
message spreading remain relatively stable under noise. as seed_s (see Sectlon IV?' In ConFrast to previous Wc_'rkuv]' [
[11], which focused on single noise models and primarily on
|. INTRODUCTION centrality metrics, to the best of our knowledge this is the

Network analysis has become an ubiquitous tool for undditst comparative study encompassing several centrality an
standing the behavior of various complex systefis [9]. Tl®mmunity-scoring parameters and different types of noise
vertices in the network represent the entities of the cormplenodels.
system and the edges represent their pairwise interactions Overview of Experiments (Sectiori l) Among the central-

However, in the practical context, due to the limitations ifty measures we consider closeness, betweenness andifagera
data gathering, not all interactions can be observed. Gonaed among the community scoring functions we consider
quently, the network can be potentially incomplete, as manmnodularity, cut-ratio and conductance. We also includera th
fested by missing edges. It is therefore important to detegm type of metric, permanence [2]. Although permanence is a
the effect of this incompleteness or noise on different netw community scoring metric, unlike the others it is vertexdzhs
parameters and rank them according to how they behave un@iBerefore permanence can also be considered as a centrality
noise. measure.

In this paper we study the effect of noise on two important We apply three different noise models on real-world and
classes of network analysis metrics — (i) centrality measursynthetic networks. We empirically evaluate the above itgetr
and (i) community scoring functions. Centrality measure® estimate their sensitivity to varying levels of noise. sigo
are key to applications that rely on node ranking, and tlmeeasure their reliability by observing whether high valued
community scoring functions determine the quality of clussertices of these metrics can serve as effective seeds for
ters/communities that are used in many applications raguir message spreading.
unsupervised classification. In all our experiments, we ensure that in spite of the

We evaluate these metrics based on two orthogonal qualitiesise, the underlying community structure is not signiftgan
The first is sensitivity, that is whether the change in thedisrupted from its original form and the giant component of
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LFR Benchmark: We use the benchmatR model [8] that
generates different networks and ground-truth commumitie
N P of various quality. We usen = 1000, u = 0.3 keeping
: Foy T all other parameters to the default values of the original
. Y I eSO implementatior.
YT T M v Railway: has been taken from Ghosh et al. [4].
. Football: has been taken from Girvan et al! [5].
g - 1 B Noise Models. We experiment with three noise models —
o uniform, crawled and censored (see [11] for detailed de-
aaaed B N scription), — to simulate real-world sources of noise. We
s g | g do not allow formation of disconnected components while
T OhomiGise ot csoredfbie ® " Chwlednise  ® introducing noise. We vary noise levels in steps of 2% from
Fig. 1. Sensitivity of the different quality metrics for yang levels of noise O t0 30 in all our experiments.
(in steps of 2%) with x-axis as the noise level and y-axis asmletric values. Metrics. Our set of network parameters for evaluation in-
:eiiggflf/;gd}gifﬁﬁg”gaﬁg{‘gsf;rfhgoiﬁ‘s gﬁ:&zn&?m networks clude community-scoring metrics namely, modularity, cut-
ratio, and conductance, and centrality metrics namely detw
the network remains connected. Nevertheless, as we skall sess, closeness and Pagerank. For the definitions of these
even this constrained noise can significantly affect théyaiga metrics the reader is referred to [10]. We also include a
Key Results (i) For both the objectives — sensitivity andrecently introduced metric permanence [2], that serve$ bot
reliability and for all the given noise models and networksls a community scoring function as well as a measure of
permanence proves to be the most sensitive and most reliatgatrality.
metric in majority of the cases. (i) The other centrality
metrics can be ranked in a partial order. The only other metri
that exhibits sensitivity is closeness. For reliabilityhem a A sensitive parameter is one whose change is commensurate
difference in the performance can be observed, closeneks wafith the amount of noise applied. For small amounts of noise,
betweenness also show high reliability. (iii) For all sémity the change in the parameter values should be low, whereas,
experiments, and for most reliability experiments, thetipar as the noise increases, the change should be much higher. A
ordering of metrics is relatively independent of the noismlel  sensitive parameter can function as a good indicator ofhenet
and type of network. Community scoring metrics,apart from network significantly changed from its original topology.
permanence, are not sensitive. Our goal is to rank the network parameters by the extent
Rationale for the behavior of permanence (Section_l). to which they are sensitive to the noise level.
At a quick glance it would seem that sensitivity and reliipil ~ Methodology. We apply the three noise models on the
are mutually opposing properties. Sensitivity is used as ane synthetic LFR networku(= 0.3), and two real-world,
indicator of noise, whereas reliability is used to guaramieod railway and football, networks. For each increasing level
performance in spite of noise. It is therefore surprisingtthof noise we compute the value of the parameters. For the
permanence is both the most sensitive as well as the mesttex-based metrics we take the average over all vertices.
reliable among all the metrics that we investigate. We compute the value of the community-scoring parameters
We believe that this is because permanence encompad¥sed on the ground-truth community assignment from the
both community-like and centrality-like properties. Whihe original network. Our rationale is that because community
cumulative value of permanence is sensitive to the level @gtection is expensive, therefore, re-computing the conityu
noise, satisfying the sensitivity criterion, its high rardetices after each noise addition would defeat the purpose of qyickl
are stable under noise and therefore serve as effective seedscertaining the change in the network. Further, our sadect
the noisy versions of the networks. We compute the Jaccd@ise level is low enough such that it does not significantly
Index (J1) for the high ranked vertices between the originghange the original ground-truth community. Our results ar
and noisy networks. Permanence exhibits the highest JI axgraged over ten simulation runs.

therefore the set of its high ranked vertices change the.leas Results. The results in Fig[]1 show that the change in
permanance has the highest slope with respect to increasing

[l. EXPERIMENTAL SETUP noise. This indicates that permanence is most sensitiveisen

) ) o . as compared to the other parameters. However, there are some
Datasets.Here is a brief description of the different networks

we used (see Tablé | for properties of real-world networks). Yhttps:/sites.google.com/site/santofortunato/intaes2
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IIl. SENSITIVITY OF THE METRICS
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Metrics Railway Football LFR (0.3)

Permanence (0.12, -0.08) (0.261, 0.091) (0.121, 0.003) )

Closeness (0.019, 0.0048) (0.176, 0.041) (0.336, 0.301) ) j 7 m ad

Betweenness  (0.038, 0.043) (0.394, 0.358)  (0.12, 0.1099) o5 (I

Pagerank (0.0033, 0.0034)  (0.008, 0.008)  (0.001, 0.001) A

Modularity ~ (0.467, 0.464) (0.555, 0.557)  (0.661, 0.658) | ﬁj,ff\

Conductance  (0.552, 0.551) (0.407, 0.4003) (0.303, 0.3) -

CutRatio (0.012, 0.0098)  (0.038, 0.027)  (0.004, 0.003) —

Permanence (0.116, -0.028) _ (0.355, 0.165) _ (0.109, -0.09)

Closeness (0.02, 0.004) (0.176, 0.037)  (0.336, 0.293) , A

Betweenness  (0.041, 0.065) (0.39, 0.40) (0.162, 0.303) o o F\ " ™

Pagerank (0.0033, 0.0034)  (0.008, 0.008)  (0.001, 0.001) L o \\\;;\ﬂ L s

Modularity ~ (0.467, 0.502) (0.555, 0.548)  (0.661, 0.659) LN S [N

Conductance  (0.548, 0.513) (0.406, 0.401)  (0.303, 0.301) « /A e w 7

CutRatio (0.012, 0.0098)  (0.038, 0.027)  (0.004, 0.003) e * ‘ %

Permanence  (0.09, -0.016) _ (0.25, 0.066)  (0.129, -0.097) e v S e TN

Closeness (0.02, 0.001) (0.183, 0.047) (0.336,0.237)

Betweenneness  (0.038, 0.031) (0.391, 0.198) (0.106, p.072 :

Pagerank (0.0033, 0.0033)  (0.008, 0.008)  (0.001, 0.001) & s

Modularity (0.451, 0.4) (0.549, 0.526)  (0.657, 0.644) ) 5 i

Conductance (0.583, 0.576) (0.407, 0.441)  (0.304, 0.327) HE L &

CutRatio (0.012, 0.0098)  (0.038, 0.027)  (0.004, 0.003) o N Y . A
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noise (2NP rRow) AND cRAWLED NoISE (3RP Row). THE NUMBERS IN

BOLD SHOWS THE RANGE THAT HAS THE LARGEST SEPARATION Fig. 2. Time required to broadcast a message for differead sede selection
mechanisms (permanence, closeness, betweenness, Ragamdnvarying
cases, e.g., the football network where the closenessatigntr noise |EV(G|S ('ndsteps |;>f 2‘(’?3‘- L';R”networkk?h(?-g, first l;)arllel), ralllway
. . - : . . network (second panel) and football network (third pan€he first column
is also quite sensm\(e. While betweene_ss IS Sllghtly $mn of figures represents results for uniform noise, the middleran represents
the LFR networks, it shows an opposite trend, i.e. increaserésuits for censored noise and the last column representiisréor the crawled
value with noise for censored noise in the real-world neksor noise.

The rest of the metrics remain constant. We report the rang

of the average of each metric obtained for each noise mod: \:\‘\l& IR TONe: S \&M‘"
as a tuple — (average metric value at 2% noise level, averac L. e
metric value at 30% noise level) — in Taljlé Il. In this table, 8 N 87
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permanence shows the largest separation.

10 % 10 2 0 2%
Uniform Noise Censored Noise Crawled Noise

IV. RELIABILITY OF THE METRICS CARONNNANNNE I

e

Components
Components
Components

In message spreading! [3], a set of source vertices (see
nodes) start sending a message. At every time step, a vert:
containing the message transfers the message uniformly
random to one of its neighbors who does not have the messaﬁ?e.

1 % 10 2 0 20
Uniform Noise Censored Noise Crawled Noise

. . . . ig. 3. The variation in the different components of pernmamee and
The algorlthm terminates when all vertices have received t odularity when the noise levels are varied for the footbalwork.

message. The selection of the seed nodes is critical to how

quickly the message spreads.rdiable metric is one whose  petrics perform differently based on the noise level, but
high ranked nodes, if used as seeds, can spread the mesggd@ear winner: Uniform noise in the railway and football
quickly even under noise. networks and censored noise in the football.

Methodology. For each of the centrality metrics, closeness, one metric performs better in most of the noise levels: For
betweeeness and Pagerank, and also for permanence we sglgfdrm and censored noise for the LFR network and censored
a small fraction of the highest ranked nodes as the seed. W§se for the railway network permanence takes the least tim
also select seeds (a) uniformly at random and (b) based @gnspread messages. For crawled noise in the railway nefwork
highest degree as baselines for the spreading experimentspetweenness takes the least time.

For different levels of noise, we compute the the number e therefore see that for the . Therefore vertices with high
of iterations required to broadcast the message in the whelgyeenness centralities would be key connection poitis. T
network and compare the values across the different cétratoaryre is exaggerated in the crawled noise since the nietwor
metrics, permanence and the two baselines. created using BFS-search has become tree-like.

Results: In Fig.[2, we plot the time required to broadcast
for different levels of noise. For each noise level the rissale
averaged over ten different runs. The results can be divided V. ANALYSIS OF PERFORMANCE
into three groups.

All metrics perform equally well: Crawled noise in the LFR  In this section, we explore the characteristics of permaaen
and the football network. that make it such a strong measure under noise.



A. Sensitivity of permanence different community scoring and centrality metrics in term

We compare the sensitivity of permanence with other corfRf Sensitivity and reliability. A key observation is that &
munity scoring metrics. We break the permanence formuta ifh@jority of cases permanence worked better than all ther othe
two partsPl = % v ﬁ andcin(v), and observe how they COMpeting measures mvestlgated. The_gentral !esson is tha
change for the different noise models. The results in Fig.V8ile permanence is appropriately sensitive to differeise
show thatPl remains relatively constant, whereas the interniiVels, the high permanence nodes are almost unaffected by
clustering coefficient is the major contributor to the changh€ application of noise thus making the measure at the same
in permanence. When we contrast this result with the maifne very reliable. _ _ _
factors in modularity (Figz3), namely the internal and eme In future we would Il_ke to investigate the analytical reason
edges, we see that each factor remains relatively congtantfor the stability of high permanence nodes and, thereby,
similar observation holds when we consider the other sgoriR"™0P0Se an algorithm to automatically identify the level of

metrics conductance and cut ratio. noise up to which this stability persists.
. . . The data and the code are available in the public domain
B. Rank of high permanence vertices under noise (https://github.com/Sam131112/Noise_Models.git).

We compare the centrality metrics and permanence to check

how their top ranking vertices alter under noise models. We ) ) )
identify the top 20 of the high valued vertices for each SS and AM acknowledges financial support from project

metric. Then for each noise level we compute the new tdSARM, ITRA, DeiTY. SB acknowledges funding from
ranked vertices. We compute the Jaccard Indeéx [6] betwedRF-CCF Award # 153881.
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Fig. 4. The Jaccard Index between the top vertices of thenatigind the
noisy networks for varying noise levels. We show the fodtlfadp), the
railway (middle) and the LFR{= 0.3, bottom) networks respectively.

VI. CONCLUSION

In this work, we have done rigorous experiments to under-
stand the effect of noise in complex networks and compared
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