Loading [a11y]/accessibility-menu.js
Ear Detection in the Wild Using Faster R-CNN Deep Learning | IEEE Conference Publication | IEEE Xplore
Scheduled Maintenance: On Monday, 27 January, the IEEE Xplore Author Profile management portal will undergo scheduled maintenance from 9:00-11:00 AM ET (1400-1600 UTC). During this time, access to the portal will be unavailable. We apologize for any inconvenience.

Ear Detection in the Wild Using Faster R-CNN Deep Learning


Abstract:

Ear recognition has its advantages in identifying non-cooperative individuals in unconstrained environments. Ear detection is a major step within the ear recognition algo...Show More

Abstract:

Ear recognition has its advantages in identifying non-cooperative individuals in unconstrained environments. Ear detection is a major step within the ear recognition algorithmic process. While conventional approaches for ear detection have been used in the past, Faster Region-based Convolutional Neural Network (Faster R-CNN) based detection methods have recently achieved superior detection performance in various benchmark studies, including those on face detection. In this work, we propose an ear detection system that uses Faster R-CNN. The training of the system is performed on two stages: First, an AlexNet model is trained for classifying ear vs. non-ear segments. Second, the unified Region Proposal Network (RPN) with the AlexNet, that shares the convolutional features, are trained for ear detection. The proposed system operates in real-time and accomplishes 98 % detection rate on a test set, composed of data coming from different ear datasets. In addition, the system's ear detection performance is high even when the test images are coming from un-controlled settings with a wide variety of images in terms of image quality, illumination and ear occlusion.
Date of Conference: 28-31 August 2018
Date Added to IEEE Xplore: 25 October 2018
ISBN Information:

ISSN Information:

Conference Location: Barcelona, Spain

References

References is not available for this document.