
Measuring the Impact of Influence on Individuals:
Roadmap to Quantifying Attitude

Xiaoyun Fu
Department of Computer Science

Iowa State University
xfu@iastate.edu

Madhavan Padmanabhan
Department of Computer Science

Iowa State University
madhavrp@iastate.edu

Raj Gaurav Kumar
Department of Computer Science

Iowa State University
gaurav@iastate.edu

Samik Basu
Department of Computer Science

Iowa State University
sbasu@iastate.edu

Shawn Dorius
Department of Sociology
Iowa State University
sdorius@iastate.edu

A. Pavan
Department of Computer Science

Iowa State University
pavan@iastate.edu

Abstract—Influence diffusion has been central to the study
of the propagation of information in social networks, where
influence is typically modeled as a binary property of entities:
influenced or not influenced. We introduce the notion of attitude,
which, as described in social psychology, is the degree by which an
entity is influenced by the information. We present an information
diffusion model that quantifies the degree of influence, i.e.,
attitude of individuals, in a social network. With this model,
we formulate and study attitude maximization problem. We
prove that the function for computing attitude is monotonic
and sub-modular, and the attitude maximization problem is NP-
Hard. We present a greedy algorithm for maximization with an
approximation guarantee of (1 − 1/e). Using the same model,
we also introduce the notion of “actionable” attitude with the
aim to study the scenarios where attaining individuals with
high attitude is objectively more important than maximizing the
attitude of the entire network. We show that the function for
computing actionable attitude, unlike that for computing attitude,
is non-submodular and however is approximately submodular. We
present approximation algorithm for maximizing actionable atti-
tude in a network. We experimentally evaluated our algorithms
and study empirical properties of the attitude of nodes in network
such as spatial and value distribution of high attitude nodes.

I. INTRODUCTION

The proliferation of social networks and their influence in
modern society led to a large body of research in several
scientific domains that focus on utilizing and explaining the
significance of the impact of social networks. One of the key
problems investigated is to understand the diffusion of in-
formation/influence propagation in social networks. Diffusion
refers to the (probabilistic) behavior of the interaction between
the entities in the network describing when/how an entity is
influenced by the actions of its neighbors.

Seminal works of Domingos and Richardson, and Kempe
et al. proposed two popular models for information diffu-
sion/influence propagation—Independent Cascade and Linear
Threshold [11], [18]. In these models, a node of a network is
said to be influenced if it receives the information originated
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at the seed set. This concept of influence is binary: an entity is
either influenced or is not influenced. Real-world experience
shows that not all influenced individuals are the same. I.e,
some individuals are more strongly influenced by certain
information compared to others. Thus, the strength of influence
can vary from one individual to the other. This phenomenon
has been pointed out in social sciences literature.

Within social psychology, two related concepts, attitudes
and beliefs, are frequently studied to understand human behav-
ior. Beliefs, which represent people’s ideas about the way the
world is or should be, are commonly conceptualized as binary
in nature, present or absent [13]. Throughout their lives, people
acquire new beliefs, and sometimes, new beliefs replace old
beliefs. In this way, people tend to acquire a very large number
of beliefs over the life course. This notion of belief in social
psychology, that is binary in nature, can be considered similar
to the notion of “influence” in computational social network
analysis which is also binary in nature.

Attitudes, on the other hand, are “latent predispositions
to respond or behave in particular ways toward attitude ob-
jects” [12]. In contrast to beliefs, which are largely cognitive in
nature, attitudes, have a cognitive, affective, and a behavioral
component [30]. Being subjective in nature, attitudes can vary
in strength such that a person can hold a very strong attitude or
a weak attitude toward an object or concept, and thus attitude
quantifies the strength of belief [2], [13]. Individuals acquire
attitudes through experiences and exposure. In the case of
exposure, a body of research shows that repeated exposure
to an object/idea increases the likelihood that a person will
adopt a more favorable attitude toward it [34]. Thus attitude
being non-binary can be thought of strength of influence.
Motivated by these studies, we study the problem of arriving
at a mathematical model that captures the notion of attitude
resulting from information propagation in social networks.

Our first contribution is to define a mathematical model
for measuring attitude. Within social networks, people are
often subjected to repeated exposures to information such as
an anti-vaccine message, a pro-GMO message, or gun safety
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messaging. It has been observed that when an individual is
exposed to a large number of, say, anti-vaccine messages,
this increases the probability that that person will adopt a
similar anti-vaccine attitude. Based on this, we postulate that
the strength of influence or attitude of an individual, toward
an object/concept, can be captured by the number of times
the individual receives the information from its neighbors.
In other words, if an already influenced individual is further
provided with the same/similar influencing information, then
the latter reinforces the learned belief of the individual, thus
shaping and increasing his/her attitude. We use the number of
reinforcements as a way to quantify the attitude.

Using this model, we define attitude of an individual and the
total attitude of the network as functions from 2V to reals (2V

denotes the power set of nodes V of the network). We denote
the function that captures the total attitude of the network
with σAtt(.) We study the computational complexity of the
function σAtt and provide efficient algorithms to approximate
it. We prove that this function is #P-hard and it is monotone
and submodular. We provide an (ε, δ)-approximation algorithm
for computing attitude with provable guarantees. We then
formulate the attitude maximization problem–find a seed set
S of size k that will result in maximum total attitude of the
network. We first prove that the attitude maximization problem
is NP-hard. Based on the monotonicity and submodularity
of attitude, we propose a greedy algorithm that achieves a
(1− 1/e) approximation guarantee.

We further introduce the concept of actionable attitude.
The introduction of this concept is motivated by the fact that
individuals with higher attitude (strongly influenced) are likely
to act according to the attitude. This is particularly important
in campaigns (such as political or gun-safety messaging),
where motivated and dedicated volunteers are necessary to
carry and spread the message (possibly beyond the social
network); and such volunteers are the ones who are strongly
influenced. Our second major contribution is the study of
the underlying computational problem related to actionable
attitude maximization. We prove that though the function
for computing actionable attitude is not submodular, it is
approximately submodular. Based on this we design efficient
approximation algorithms to maximize the actionable attitude
in a network.

II. RELATED WORK

Computational models of information diffusion in social
networks is introduced and formalized in the seminal works
of Domingos and Richardson [11] and Kempe, Kleinberg
and Tardos [18]. There are two widely-studied probabilistic
diffusion models: Independent Cascade (IC) model and Linear
Threshold (LT) model. Kempe et al. [18] proved that the
influence maximization problem is NP-hard, and also proved
that a greedy algorithm achieves a (1 − 1/e) approxima-
tion guarantee. The approximation guarantee of the greedy
approach stems from the non-negativity, monotonicity and
submodularity of the influence function. Since then several

improvements have been proposed to make the greedy algo-
rithm more practical and scalable [7], [10], [14], [17], [20],
[28], [32], [33]. Several variants of the influence maximization
problem have been studied in the literature, since the work of
Kempe et al. such as topic-aware influence maximization and
targeted influence maximization [4], [8], [15], [21], [22], [25],
[29], [31].

Enhancements to the basic influence propagation model
have been proposed that take into account the opinions of
users [9], [14], [35]. Liu et al. [23], [24] introduced PageRank
based diffusion model, as a generalization of the basic IC
model.

These models do not capture the notion of attitude/strength
of influence that we seek to formalize. Aggarwal et al. [1]
introduced a flow authority model to determine assimilation
of information in a network. This model differs from the
Independent Cascade and does not capture the notion of
attitude due to repeated activations. Consider a network where
node 1 has a directed edge to node 2 and 3, and node 2 has a
directed edge to node 3, and edge probabilities are 1. Due to
repeated activation, node 3 can receive information from nodes
1 and 2 and thus should have a higher attitude than nodes 1 and
2. However, in the flow-authority model all nodes will have
equal probability of receiving (p = 1) and does not distinguish
node 3 from others whereas our proposed model will.

In [36], the authors discussed the problem of maximizing
cumulative influence in a model where the same node can re-
peatedly activate his/her neighbor within a given time interval.
This is realized by identifying a node to be newly activated in
multiple iterations of the diffusion process (even if the node,
under consideration may have been already activated). Such a
model may lead to divergence in the computation of objective
function, and hence, the computation is parameterized by a
time interval. This distinguishes our model where only the
newly activated nodes can alter the attitude of his/her neighbor;
which ensures the convergence of computation of our objective
function and allows the method to be step agnostic.

III. PRELIMINARIES

We describe the notation and definitions used frequently in
this paper.

DEFINITION 1 (Monotonicity & Submodularity). Let V be
a ground set and f : 2V → R be a set function, where 2V

denotes the power set of V . We say that f is monotone if
f(S) ≤ f(T ) when S ⊆ T . We say that f is submodular if
for every pair of sets S and T with S ⊆ T and every x /∈ T ,
f(S ∪ {x})− f(S) ≥ f(T ∪ {x})− f(T ).

We use f(x|S) to denote the marginal gain of x with respect
to S, defined as f(S ∪ {x})− f(S).

THEOREM 1 (Chernoff Bound). Let X1, X2...Xn be inde-
pendent identically distributed random variables taking value
in the range [0, 1]. X =

∑n
i=1Xi. If µ = E[X], then for

λ ∈ (0, 1), P [|X − µ| ≥ µλ] ≤ 2exp(− λ2

2+λ · µ)



A social network is modeled as a weighted directed graph
G = (V,E) with parameters p : e ∈ E → [0, 1], where V and
E (|V | = n and |E| = m) denote the set of nodes and edges,
respectively. The function p(e = (u, v)) is the probability of
node u influencing/activating node v. This denotes probability
that the information is successfully transferred from u to v.
We first recall the standard Independent Cascade model of
information diffusion.

DEFINITION 2. [IC-Model] Information spreads via a ran-
dom discrete process that begins at a set S called seed set.
Initially at step zero, all nodes in S are activated/influenced.
In each step, each newly activated node u attempts to ac-
tivate/influence its inactivated neighbor v with probability
p(u, v). The diffusion process terminates when no new nodes
are influenced in a step.

Given a set of nodes S, let σ(S) be the expected number of
nodes that are influenced at the end of the diffusion process
when the seed set is S.

INFLUENCE MAXIMIZATION PROBLEM. Given a social net-
work G = (V,E), and an integer k > 0, find a seed set S ⊆ V
of size k such that σ(S) is maximized.

Kempe et al. [18] proved that the influence maximization
problem is NP-hard and showed that the function σ(.) is
monotone and submodular. Based on this, they designed a
(1−1/e)-approximation algorithm for the influence maximiza-
tion problem.

IV. MODELING ATTITUDE

In this section, we provide a mathematical model and
definition to capture the notion of attitude.

DEFINITION 3. [Attitude-IC model (AIC)] The diffusion
proceeds in discrete rounds starting from some set of seed-
nodes S. Initially, all non-seed nodes have the attitude 0 and
every seed node starts with an attitude value of 1. At each
step, each newly influenced node u tries to send information
to each of its neighbor v as per the edge probability p(u, v).
If u succeeds, then v’s attitude is incremented by 1; and its
status is changed to influenced if it is not already influenced.
When u succeeds in sending information v, we say that the
edge 〈u, v〉 is activated. The process terminates when no new
nodes are influenced in a step.

Consider Figure 1 and let seed set is S = {a}. At step
t = 0, the attitude of a is 1, a tries to send information to
b, c, succeeding with probability 1. At t = 1, the attitudes of
a, b, c are 1. The newly activated nodes b, c send information to
their neighbors. Node b succeeds and increments the attitude
of nodes a, c. Simultaneously, c succeeds and increments the
attitude of nodes a, b. At t = 2, the attitudes of a, b, c are
3, 2, 2 respectively. Since no new nodes are activated in this
step, the diffusion ends.

Note that, unlike in the standard information diffusion
model, where each activated node gets one chance to influence
its un-influenced neighbors, in our model, each newly activated
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Fig. 1. An example showing inf-max problem 6= attitude-max problem

node tries to influence all its neighbors irrespective of whether
they are already influenced or not. Thus an activated node
can receive information from a newly activated node and this
captures the notion of repeated exposure or reinforcement,
which, in turn, results in an increase of the recipient’s attitude.

For any set S ⊆ V of nodes, we use Attv(S) to denote the
final attitude of node v when the seed set is S. Note that this is
a random variable and let E[Attv(S)], denote the expectation
of Attv(S). We define AttIn(S) as

∑
v∈V Attv(S). The

total expected attitude of the network resulting from diffusion
starting at seed S is σAtt(S) = E[AttIn(S)]. Observe that by
l linearity of expectation, σAtt(S) =

∑
v∈V E[Attv(S)].

By overloading notation, we often interpret G as a distri-
bution over unweighted directed graphs, each edge e = (u, v)
is realized independently with probability p(u, v). We write
g ∼ G to denote that an unweighted graph g is drawn from
this graph distribution G. Given a set of nodes S ⊆ V and a
graph g, we use

1) RSg to denote the set of nodes reachable from S in g.
2) ESg = {e = (u, v)|u, v ∈ RSg and e ∈ g} is the set of

activated edges in g due to diffusion from S. Let ESg,v
be the set of activated edges of the form 〈., v〉.

3) AttIng(S) to denote the attitude induced by S in graph
g and is equal to

∑
v∈V Attg,v(S), where Attg,v(S) is

the attitude of v in the graph g computed as the number
of activated incoming edges to v.

We next prove a critical theorem that will be used in our
subsequent proofs. Informally, this theorem states that the
σAtt(S) is the expected number of activated edges.

THEOREM 2. If g ∼ G then for any S ⊆ V , σAtt(S) = |S|+∑
g∼G |ESg |×Pr(g ∼ G), and E[Attv(S)] =

∑
g∼G |ESg,v|×

Pr(g ∼ G).

Proof. Recall that, a node u contributes to the attitude of its
neighbor v, if u is influenced and it is successful in “passing”
on the influence to v (irrespective of whether v is already
influenced or not) via the directed edge 〈u, v〉. We refer to
such an edge as an activated edge.

Let g be a graph drawn as per the distribution. Note that
g corresponds to a particular diffusion process. In g, if a
node v is not reachable from S, it means v is not activated
in that diffusion process, and its incoming edges, if any, are
not activated. Thus the attitude of such a node is 0. On the
other hand, if a node v is reachable from S in g, it means



v is activated in the diffusion process. If x is the number
of incoming edges to v in G, this means that v received
information through its neighbors x times. Thus the attitude of
v is x in this diffusion process. Thus node v’s attitude is the
number of activated incoming edges of v. Let N(v) denote the
number of activated incoming edges of v. Then AttIng(S) is
equal to∑

v∈V
Attg,v(S) =

∑
v∈RSg

Attg,v(S) +
∑
v/∈RSg

Attg,v(S)

= |S|+
∑
v∈RSg

N(v) + 0 = |S|+ |ESg |

The term |S| is due to the fact that every seed node starts with
an attitude value of 1. This leads to

σAtt(S) = E[AttIn(S)]

= Eg∼G[AttIng(S)] = |S|+
∑
g∼G
|ESg | × Pr(g ∼ G)

The second equality stated in the theorem follows from sim-
ilar arguments. Let g be a graph drawn as per the distribution.
Observe that Attg,v(S) = |ESg,v|. This leads to:

E[Attv(S)] =
∑
g∼G Attg,v(S)× Pr(g ∼ G)

=
∑
g∼G |ESg,v| × Pr(g ∼ G)

A. Properties of Attitude

In this section, we investigate several properties of the
function σAtt(.). We first show that the σAtt is monotone and
submodular

THEOREM 3. Under the AIC model, σAtt(.) is a monotone,
non-decreasing function function.

Proof. Let g ∼ G and S ⊆ T ⊆ V . We observe RSg ⊆ RTg
since S ⊆ T . Thus, ESg ⊆ ETg and |ESg | ≤ |ETg |. Therefore,
σAtt(S) ≤ σAtt(T ).

THEOREM 4. Under the AIC model, σAtt(.) is a submodular
function.

Proof. Let g ∼ G, S ⊆ T ⊆ V and u /∈ T . Our objective is
to prove that

σAtt(S ∪ {u})− σAtt(S)

=
∑
g∼G

(|ES∪{u}g | − |ESg |)× Pr(g ∼ G)

≥ σAtt(T ∪ {u})− σAtt(T )

=
∑
g∼G

(|ET∪{u}g | − |ETg |)× Pr(g ∼ G)

Since Pr(g ∼ G) ≥ 0, the proof obligation is

∀g ∼ G |ES∪{u}g | − |ESg | ≥ |ET∪{u}g | − |ETg |

Observe that,

|ES∪{u}g | − |ESg | = |E
S∪{u}
g \ ESg | and

|ET∪{u}g | − |ETg | = |E
T∪{u}
g \ ETg |

RSg ⊆ RTg and ESg ⊆ ETg .
For any g ∼ G, if e ∈ E

T∪{u}
g \ ETg then e /∈ ETg and

e ∈ E{u}g . Since ESg ⊆ ETg , e /∈ ESg . We know that e ∈ E{u}g

and thus e ∈ ES∪{u}g . Therefore, e ∈ ES∪{u}g \ ESg and thus
E
T∪{u}
g \ETg ⊆ E

S∪{u}
g \ESg . This leads to |ES∪{u}g \ESg | ≥

|ET∪{u}g \ ETg |.

The following result establishes the hardness of computing
σAtt.

THEOREM 5. Under the AIC model, given G = (V,E) and
a seed S ⊆ V , computing the values of the following is #P-
Hard: 1) σAtt(S), 2) E[Attv(·)],∀v ∈ V .

Proof. Let σ(S) be the influence of S under the IC model.
Computation of σ(S) is known to be a #P-Hard problem [10].
Assume that there exists a function A(G,S) that computes
σAtt(S). Let a1 = A(G,S). Add a new vertex vnew to G.
∀v ∈ V , add an edge (v, vnew) and set p(v, vnew) = 1.
This results in graph G′. Let a2 = A(G′, S). a2 − a1 =∑
v∈V P (S activates v) = σ(S). Therefore, A can be

used to compute σ(S). Similarly, let A′(G, v) be a function
that computes E[Attv(S)]. A′(G′, vnew) will be able to com-
pute σ(S) as E[Attvnew(S)] = σ(S). Similar arguments prove
that computing E[Attv(·)] is also #P-hard.

B. Attitude Computation

From Theorem 5, it follows that computing σAtt(S) exactly
is computationally infeasible. In this section, we provide
efficient approximation algorithms to estimate σAtt(S). Borgs
et. al. [7] introduced Reverse Influence Sampling (RIS), which
has been used to develop efficient Influence Maximization
algorithms [16], [28], [32], [33]. Using ideas from these works,
combining with Theorem 2, we introduce a Reverse Attitude
Sampling (RAS) technique.

Recall that g denotes the un-weighted graph drawn from
the random graph distribution G. We write gT to denote the
transpose of g. The following lemma and theorem establish the
relationship between an edge being activated by some nodes
in any set S ⊆ V and the reachability of some node in S from
reverse of the same edges in gT ; this relationship is key to the
correctness of RAS technique.

LEMMA 1. Let e = (x, y) be an arbitrary edge in G, R{x}
gT

be the set of nodes reachable from x in gT , where gT is
the transpose of un-weighted graph g drawn from random
distribution G. Then for any S ⊆ V , P [S activates e in g] =

P [S ∩R{x}
gT
6= ∅]

Both events, S activates e in g and S ∩ R{x}
gT
6= ∅ requires

drawing g from G such that there exists a path between some
node in S and node x (from S to x in g and x to S in gT ). The
probability of occurrence of such events are identical, as the
probabilities of edges in g and their reverse in gT are equal.

The following theorem relates the σAtt(S) to reverse attitude
sampling.



THEOREM 6. Given a graph G = (V,E), for any S ⊆ V , and
for any v ∈ V , let E(Attv(S)) denotes the expected attitude
of v induced by S. Then, E(Attv(S)) = |InDegree(v)| ×
Pg∼G,e=(u,v)∼E [S ∩R{u}

gT
| e ∈ g] and σAtt(S) = |S|+ |E|×

Pg∼G,e=(x,y)∼E [S ∩R{x}
gT
| e ∈ g]

Proof. With respect to a set S and a node v, we will define
the random variable

X(u,v)
g =

{
1 if (u, v) ∈ ESg
0 otherwise

Therefore, by Theorem 2, it follows that

E(Attv(S)) =
∑

(u,v)∈E

Eg∼G[X(u,v)
g ].

Note that,

Eg∼G[X(u,v)
g ] = Pg∼G[∃w ∈ S. u ∈ R{w}g ∧ (u, v) ∈ g]

= Pg∼G[∃w ∈ S. w ∈ R{u}
gT
∧ (u, v) ∈ g]

By linearity of expectation, we have:

E(Attv(S)) =
∑

(u,v)∈E

Eg∼G[X(u,v)
g ]

=
∑

(u,v)∈E

Pg∼G[∃w ∈ S. w ∈ R{u}
gT
∧ (u, v) ∈ g]

= |InDegree(v)|×Pg∼G,e=(u,v)∼E [S ∩R{u}
gT
|e ∈ g]

We present the proof of the second equality. With respect
to a set S, we will define the random variable Xe

g = 1 if
e ∈ ESg , otherwise it is zero. Therefore, by Theorem 2, we
have σAtt(S) = Eg∼G[AttIng(S)] = |S| +

∑
e∈E

Eg∼G[Xe
g ].

Note that,

Eg∼G[Xe
g ] = Pg∼G[∃u ∈ S. x ∈ R{u}g ∧ e = (x, y) ∈ g]

= Pg∼G[∃u ∈ S. u ∈ R{x}
gT
∧ e = (x, y) ∈ g]

By linearity of expectation, we have:

σAtt(S) = |S|+
∑
e∈E

Eg∼G[Xe
g ]

= |S|+
∑
e∈E

Pg∼G[∃u ∈ S. u ∈ R{x}
gT
∧ e = (x, y) ∈ g]

= |S|+ |E|×Pg∼G,e∈E [∃u ∈ S. u ∈ R{x}
gT
∧ e = (x, y) ∈ g]

The above properties pave way for the RAS technique. We
proceed by introducing Random Reverse Reachable Set in the
context of the AIC model. Given a graph G = (V,E), we
construct Random Reverse Reachable Set (RR) of nodes in
V as follows. Consider the transpose of G, GT = (V,ET ),
where the probability annotation for any edge in E remains
unchanged in the reverse of that edge in ET .

We now describe a procedure to generate Random Reverse
Reachable Sets (RR Sets):
Generate RR Set. Randomly pick an edge e = (v, u) ∈ ET .

Algorithm 1: Estimate σAtt(S)

Data: Graph G = (V,E), S ⊆ V
begin
R = Generate β RR Sets using Generate RR Set
X = |{RR ∈ R | S ∩ RR 6= ∅}|

return
|E| ·X
β

Then with probability p(e), add the node u to RR. For any u
is added to RR, for each outgoing edge from u in GT , add the
destination with corresponding edge probability. The process
continues till no node is added to RR.

From Theorem 6, we obtain the following lemma.

LEMMA 2. σAtt(S) = |S|+ |E| × PRR∼R[S ∩RR 6= ∅]

Lemma 2 allows us to design Algorithm 1 to estimate
σAtt(S). In order to get a good estimate, we will obtain a
lower bound for β in Algorithm 1. Let m = |E|. Let Xi

be a random variable that takes value 1 if the i-th RR Set
contains an element of S. Otherwise, Xi = 0. Clearly each Xi

is independent and X =
∑β
i=1Xi. Note, E[X] =

βσAtt(S)

m

P [|σ̂Att(S)− σAtt(S)| ≥ εσAtt(S)]

= P [|mX

β
− σAtt(S)| ≥ εσAtt(S)]

= P [|X − βσAtt(S)

m
| ≥ ε · β

m
σAtt(S)]

≤ 2exp(−ε
2βσAtt(S)

(2 + ε)m
)

The last inequality follows by applying Chernoff Bounds

with λ = ε. Let δ = 2exp(−ε
2βσAtt(S)

(2 + ε)m
). When β ∈

θ( m
ε2σAtt(S)

· log( 1
δ ), Algorithm 1 estimates σAtt(S) within

a relative error of ε with probability 1− δ.

V. ATTITUDE MAXIMIZATION PROBLEM

Having defined Attitude under the AIC-model, a natural
problem arises: How do we find a set of users, who can
influence the network in a way that maximizes the attitude
of the network? We model this as the Attitude Maximization
Problem:

PROBLEM 1. ATTITUDE MAXIMIZATION PROBLEM: Given
a graph G = (V,E), a number k, find S ⊆ V of size at most
k such that σAtt(S) is maximized.

THEOREM 7. Under the AIC model, the attitude maximization
problem, i.e., computing argmaxS⊆V,|S|≤k σAtt(S), is NP-hard.

Proof. Our proof relies on reduction of influence maximiza-
tion problem (a known NP-Hard problem) to attitude maxi-
mization problem.

We consider the influence maximization problem on di-
rected Bi-partite graphs (edges from left nodes to right nodes)
with edge probabilities 1. That is, G = (V,E), where
V = X ∪ Y , X ∩ Y = ∅, E = {(u, v)|u ∈ X, v ∈ Y },
and ∀e ∈ E p(e) = 1. Kempe et al. [18] proved that influence



Algorithm 2: (1− 1/e− ε)-approximate algorithm
Data: Graph G = (V,E), k
Result: Seed Set S
begin
R = Generate β RR Sets using Generate RR Set
Mark all the sets in R as uncovered
while |S| ≤ k do

Find v that covers maximum uncovered sets in R
Mark sets covered by v as covered
Add v to S

return S

maximization problem on such restricted class of graphs is
also NP-hard.

We extend the bipartite graph G to construct an instance
G′ = (V ′, E′) for the attitude maximization problem, where
V ′ = V ∪ Z,Z = {z1, z2, . . . , z2|E|} and for each y ∈ Y ,
there exists an edge to each z ∈ Z with the edge probability
1.

Suppose that there is an algorithm for computing a set S ⊆
X of size k that maximizes σAtt(S). If L nodes in the set Y
are influenced by S, then σAtt(S) ≤ L × 2|E| + |E|. (Each
edge from an influenced node in Y contributes to the attitude
of each nodes in Z, and the overall attitude of nodes in Y can
be at most |E|, the number of edges between X and Y .)

Assume that S does not induce maximum influence in G,
i.e., there exists some S′ 6= S for which G is maximally
influenced. In other words, S′ influences at least L+1 nodes in
Y . Therefore, if S′ is used as seed in G′, then it would have
induced the overall attitude of nodes in Z to be (L + 1) ×
2|E|. This implies, S′ 6= S is a set of size |k| that maximizes
σAtt(S

′) in G′, leading to a contradiction.
Therefore, if any algorithm that computes a set S that

maximizes attitude in G′, then S must also maximize influence
in G.

Before we proceed to present an approximation algorithm
for the attitude maximization problem, we first prove that
influence maximization problem is different from the attitude
maximization problem. In particular, we prove that the optimal
solution for the influence maximization problem is not an opti-
mal solution for the attitude maximization problem. Consider
the from Figure 1. When k = 1, the best seed set for the
influence maximization is {d} whereas the best seed set for
the attitude maximization is any of {a}, {b} or {c}. Thus,

THEOREM 8. An optimal solution to the influence maxi-
mization problem is not an optimal solution to the attitude
maximization problem.

Nemhauser et. al. [27] proved the greedy strategy to max-
imize a non-decreasing, monotone, and submodular function
outputs a (1−1/e)-approximate solution. Recall that σAtt(·) is
in fact a non-decreasing, monotone and submodular function.
However, the challenge lies in efficiently estimating σAtt(·).
Motivated by this, we design a RAS-based approximation
algorithm.

Algorithm 2 is our greedy algorithm for the attitude max-
imization problem. The algorithm works by generating β

random RR Sets. With the goal now to find S that covers the
maximum RR Sets, the problem is transformed to the Maxi-
mum Coverage problem. The greedy algorithm, when applied
to the Maximum Coverage problem, provides a (1 − 1/e)-
approximate solution. We have the following result on the
approximation guarantee Algorithm 2.

THEOREM 9. When β ∈ θ( |E|(1+1ε)
ε2σAtt(S∗)

(log
(
n
k

)
− log(δ))),

Algorithm 2 outputs a seed set Sk such that

σAtt(Sk) ≥
(

1− 1

e
− ε
)
σAtt(S

∗)

with probability at least 1− δ.

Proof. We will prove that the algorithm produces a (1−1/e−
ε)-approximate solution with high probability.

First, we derive the bound for β that is sufficient for
estimating σAtt(S) within a pre-specified error margin ε, in
the context of computing the maximal overall attitude.

Consider any S ⊆ V of size k. Let X be the cardinality

of {RR ∈ R|RR ∩ S 6= φ}. σ̂Att(S) = |E| × X

β
is a an

estimate for σAtt(S). Let µ =
β · σAtt(S)

|E|
and σAtt(S

∗) be

the maximum expected attitude induced by any set of size k.

P

[
|σ̂Att(S)− σAtt(S)| ≥ εσAtt(S

∗)

2

]
= P

[
|E| · X

β
− σAtt(S)| ≥ εσAtt(S

∗)

2

]
= P

[
|X
β
− σAtt(S)

|E|
| ≥ εσAtt(S

∗)

2|E|

]
= P

[
|X − µ| ≥ εσAtt(S

∗) · β
2|E|

]
= P

[
|X − µ| ≥ εσAtt(S

∗) · βσAtt(S)

2σAtt(S)|E|

]
We apply Chernoff Bounds with λ =

εσAtt(S
∗)

2σAtt(S)
,

P [|X − µ| ≥ λµ] < 2exp

(
− λ2

2 + λ
µ

)
= 2exp

(
− ε2(σAtt(S

∗))2

(2 + λ)× 4(σAtt(S))2
µ

)
= 2exp

(
− ε2(σAtt(S

∗))2

(2 + λ)× 4(σAtt(S))2
β · σAtt(S)

|E|

)
= 2exp

(
− ε2(σAtt(S

∗))2

(2 + λ)× 4σAtt(S)

β

|E|

)
= 2exp

(
− ε2(σAtt(S

∗))2

|E|(8σAtt(S) + 2εσAtt(S∗))
β

)
≤ 2exp

(
− ε2(σAtt(S

∗))2

|E|(8σAtt(S∗) + 2εσAtt(S∗))
β

)
= 2exp

(
− ε

2σAtt(S
∗)

|E|(8 + 2ε)
β

)
The inequality follows from σAtt(S

∗) ≥ σAtt(S). We would

like the probability of this event to be at most
δ(
n
k

) . Proceeding

further,



2exp

(
− ε

2σAtt(S
∗)

|E|(8 + 2ε)
β

)
≤ δ(

n
k

)
− ε

2σAtt(S
∗)

|E|(8 + 2ε)
β ≤ log

(
δ

2
(
n
k

))
This implies that

β ≥ |E|(8 + 2ε)

ε2σAtt(S∗)

[
log(2) + log

(
n

k

)
− log(δ)

]

β ≥ −|E|(8 + 2ε)

ε2σAtt(S∗)
log

(
δ

2
(
n
k

))
= −|E|(8 + 2ε)

ε2σAtt(S∗)

[
log(δ)− log(2)− log

(
n

k

)]
=
|E|(8 + 2ε)

ε2σAtt(S∗)

[
log(2) + log

(
n

k

)
− log(δ)

]
Now that we have a lower bound for β, we can use the

union bound to show that this number of RR sets is sufficient
to ensure that all sets of size k is within ε · σAtt(S∗)/2 with
probability at least 1− δ. More precisely,

P

[
∀S, |S| = k, |σ̂Att(S)− σAtt(S)| ≥ εσAtt(S

∗)

2

]
≤ δ

Finally we relate the output of 2 with the optimal solution.
Let Sk be the output of Algorithm 2 and S′ the optimal
solution to the coverage problem. Let ∆∗,∆′,∆k be the
number of RR sets covered by the S∗, S′, Sk respectively.
With probability at least 1− δ,

|σAtt(Sk)− σ̂Att(Sk)| ≤ εσAtt(S
∗)

2

σAtt(Sk)− σ̂Att(Sk) ≥ −εσAtt(S
∗)

2

σAtt(Sk) ≥ σ̂Att(Sk)− εσAtt(S
∗)

2

≥ |E|
β

(
1− 1

e

)
∆′ − εσAtt(S

∗)

2

≥ |E|
β

(
1− 1

e

)
∆∗ − εσAtt(S

∗)

2

≥
(

1− 1

e

)
σ̂Att(S

∗)− εσAtt(S
∗)

2

≥
(

1− 1

e

)(
1− ε

2

)
σAtt(S

∗)− εσAtt(S
∗)

2

=

(
1− ε

2
− 1

e
+

ε

2e
− ε

2

)
σAtt(S

∗)

≥
(

1− 1

e
− ε
)
σAtt(S

∗)

Thus, Algorithm 2 outputs
(

1− 1

e
− ε
)

-approximate so-

lution with probability at least 1− δ.

VI. ATTITUDE TO ACTIONABLE ATTITUDE

As noted in the introduction, nodes with high influence are
likely to act based on their influence, and in some scenarios it
is desirable to be able to spread information that results in such
highly influenced individuals. Motivated by this, we introduce
a notion called actionable attitude that attempts to increase the
total attitude of nodes with “high enough attitude”, as opposed
to the total attitude of all the nodes. For this, we need to
understand and formulate the concept of high enough attitude.
Consider a network in which many nodes have an attitude
value close to 2.5 and a few nodes having an attitude more
than 5 (with respect to a certain seed set). For this network,
a value of 5 can be considered high, whereas for a network
with most nodes having an attitude value of more than 7,
a value of 5 is low. This suggests that the notion of high
enough attitude is relative and depends on the structure of the
network and the underlying influencing mechanisms. Thus, a
way to formulate this notion is to incorporate the influence
propagation. Consider a concrete instantiation of a diffusion
process. There are certain nodes that are barely influenced,
they receive the information once and thus their attitude is 1.
However, there exist certain nodes whose opinions have been
reinforced due to multiple exposures. Comparatively these
nodes can be thought of having higher attitude than the nodes
that receive information only once. We refer to the attitude of
these individuals in the network as actionable attitude. Thus
if the goal is to maximize this actionable attitude, then we
should discard the collective attitude of nodes that are barely
influenced. This leads us to the following definition.

DEFINITION 4. [Actionable Attitude] We define Actionable
Attitude induced by a given seed set S as σAct(S) = σAtt(S)−
σ(S).

PROBLEM 2. ACTIONABLE ATTITUDE MAXIMIZATION
PROBLEM: Given a graph G = (V,E) and k, find S ⊆ V
of size at most k such that σAct(S) is maximized.

We first show that the function σAct(·) is a monotone
function but not submodular.

THEOREM 10. Under the AIC model, σAct(.) is a monotone,
non-decreasing function function

Proof. Let g ∼ G and S ⊆ T ⊆ V . We observe |S| ≤ |T |
and Rg(S) ⊆ Rg(T ) since S ⊆ T . Thus, ESg ⊆ ETg and
|ESg | ≤ |ETg |. For the subgraph g′ = (V ′, E′) induced by
RTg \RSg , |E′| ≥ |V ′| − 1 Therefore, σAct(S) = (|S|+ |ESg | −
RTg ) ≤ (|T |+ |S|+ |ESg | −RTg + |E′| − |V ′|) = σAct(T ).

Let g ∼ G and S ⊂ T ⊆ V . We observe |S| < |T | and
Rg(S) ⊆ Rg(T ) since S ⊂ T . Thus, ESg ⊆ ETg and |ESg | ≤
|ETg |. For the subgraph g′ = (V ′, E′) induced by RTg \RSg ,
|E′| ≥ |V ′| − 1 Therefore, σAct(S) = (|S|+ |ESg | − |RSg |) ≤
(|S|+ |ESg |− |RSg |+ |E′|− |V ′|+1) ≤ (|T |+ |ETg |− |RTg |) =
σAct(T ).

THEOREM 11. Under the AIC model, σAct(.) is not submod-
ular.



Proof. Consider the following graph G with each edge prob-
ability 1. Note that, there exists exactly one g ∼ G, which is
the graph itself.

s b

a

1

1
1

c

d

t v
1 1

1

Fig. 2. An example demonstrating σAct(.) is not submodular

Let S = {s}, T = {s, t}. S ⊆ T and v /∈ T . Observe that,
σAct(S) = (|{s}| + |{(s, a), (s, b), (b, a)}|) − |{s, a, b}| =
4 − 3 = 1 and σAct(T ) = (|{s, t}| + |{(s, a), (s, b),
(b, a), (t, c), (c, d)}|) − |{s, a, b, t, c, d}| =
7 − 6 = 1. Similarly, σAct(S ∪ {v}) =
(|{s, v}| + |{(s, a), (s, b), (b, a), (v, c), (c, d)}|) −
|{s, v, a, b, c, d}| = 7 − 6 = 1 and σAct(T ∪ {v}) =
(|{s, t, v}| + |{(s, a), (s, b), (b, a), (t, c), (c, d), (v, c)}|) −
|{s, a, b, t, c, d, v}| = 9 − 7 = 2. Therefore,
σAct(v|S) = σAct(S ∪ {v}) − σAct(S) = 1 − 1 = 0
and σAct(v|T ) = σAct(T ∪{v})−σAct(T ) = 2− 1 = 1. Since
σAct(v|S) < σAct(v|T ), σAct(.) is not submodular.

Note that σAtt(·) and σ(·) are very closely related as they
rely on the same diffusion process. Using this we show
that the actionable attitude function σAct(.) is approximately
submodular [19].

DEFINITION 5. A set function f is ∆-approximate submod-
ular if for every pair of sets S and T with S ⊆ T and every
x /∈ T , f(x|S) ≥ f(x|T )−∆.

Note that for submodular functions ∆ is zero. We show that
the unction σAct(·) is ∆-approximate submodular, where ∆ is
the expected maximum degree of the graph, where each edge
〈u, v〉 is kept with probability p(u, v).

THEOREM 12. Given a graph G = (V,E) let degG(v) denote
the outdegree of any v ∈ V . Then, ∀S ⊂ T ⊆ V and ∀v /∈ T ,
σAct(v|S) ≥ σAct(v|T )− Eg∼G[deg(v)].

Proof. Let f(v|S) = [(|ES∪{v}g | + |S| + 1) − |RS∪{v}g |] −
[(|ESg |+|S|−|RSg |]. Our objective is to prove that σAct(v|T )−
σAct(v|S) =

∑
g∼G

f(v|T )×Pr(g ∼ G)−
∑
g∼G

f(v|S)×Pr(g ∼

G) ≤
∑
g∼G

degg(v)× Pr(g ∼ G)

Since Pr(g ∼ G) ≥ 0, the proof obligation is

∀g ∼ G f(v|T )− f(v|S) ≤ degg(v)

We consider 3 cases.
Case 1. Rvg ∩RTg = ∅. In this case

f(v|S) = (|Evg |+ 1)− |Rvg | = f(v|T ).

Thus, f(v|T )− f(v|S) = 0 ≤ degg(v).

Case 2. Rvg ∩RTg 6= ∅, Rvg ∩RSg = ∅. In this case

f(v|S) = (|Evg |+ 1)− |Rvg |

and

f(v|T ) = {[|ETg |+ |Evg | − |ETg ∩ Evg |
+(|T |+ 1)]− [|RTg |+ |Rvg | − |RTg ∩Rvg |]}
−[|ETg |+ |T | − |RTg |] = (|Evg |+ 1− |Rvg |)
+(|RTg ∩Rvg | − |ETg ∩ Evg |).

For the subgraph g′ = (V ′, E′) induced by
RTg ∩ Rvg\(T ∪ {v}), |E′| ≥ |V ′| − 1. Thus
(|RTg ∩Rvg |− |ETg ∩Evg |) reaches its maximum value degg(v)
when ETg ∩ Evg = ∅. Thus, f(v|T )− f(v|S) ≤ degg(v).

Case 3. Rvg ∩RSg 6= ∅. In this case,

f(v|S) = (|Evg |+ 1− |Rvg |) + (|RSg ∩Rvg | − |ESg ∩ Evg |)
f(v|T ) = (|Evg |+ 1− |Rvg |) + (|RTg ∩Rvg | − |ETg ∩ Evg |)

Therefore,

f(v|T )− f(v|S) = |(RTg \RSg ) ∩Rvg | − |(ETg \ESg ) ∩ Evg |.

For the subgraph g′ = (V ′, E′) induced by (RTg \RSg ) ∩ Rvg ,
|E′| ≥ |V ′| − 1. Thus |(RTg \RSg ) ∩ Rvg | − |(ETg \ESg ) ∩ Evg |
reaches its maximum value degg(v) when (ETg \ESg )∩Evg = ∅.
Thus, f(v|T )− f(v|S) ≤ degg(v).

This leads to following theorem.

THEOREM 13. The function σAct(·) is ∆-approximate sub-
modular, where ∆ is the expected max degree of the graph.

Using this we first show that a greedy algorithm for action-
able attitude maximization problem gives a (1− 1/e) approx-
imation algorithm with an additive error of ∆. The greedy
algorithm starts with an empty set S0. During the iteration i,
it picks an element v such that σAct(Si−1∪{v})−σAct(Si−1)
is maximized. Let S∗ is the optimal solution to the actionable
attitude maximization problem and let Sk be the seed set
produced by the greedy algorithm

THEOREM 14. σAct(Sk) ≥ (1− 1/e)σAct(S
∗)− (k − 1)∆.

Proof. Let S∗ = {e1, e2.., ek} be the optimum solution.

σAct(S
∗) ≤ σAct(Si ∪ S∗) = σAct(Si) + σAct(S

∗|Si)
= σAct(Si) + σAct(e1|Si) + σAct(e2|Si ∪ {e1})+

σAct({e3, e4..ek}|Si ∪ {e1, e2})
≤ σAct(Si) + σAct(e1|Si) + σAct(e2|Si) + ∆+

σAct({e3, e4..ek}|Si ∪ {e1, e2})

≤ σAct(Si) +
∑

e∈S∗\Si

σAct(e|Si) + (k − 1)∆

≤ σAct(Si) + kσAct(Si+1)− kσAct(Si) + (k − 1)∆



Algorithm 3: Estimate σAct
Data: Graph G = (V,E), S ⊆ V , k
begin

foreach v ∈ V do
Rv = Generate a× Indegree(v) RR graphs from v
foreach gT ∈ Rv do

cv
gT

(S) = the number of edges from v that reaches S in gT

- 1

return
∑
v∈V

∑
gT∈Rv

c
v
gT

(S)

|Rv|

By subtracting σAct(S
∗) on both sides, rearranging terms,

and solving the resulting recurrence we obtain

σAct(Si+1)− σAct(S∗) ≥

(1− 1

k
)(σAct(Si)− σAct(S∗))− (1− 1

k
)∆

Solving this recurrence, we get:

σAct(Sk)− σAct(S∗) ≥ (1− 1

k
)k(−σAct(S∗))

−(k − 1)∆

hat σAct(Sk) ≥
(
1− 1

e

)
σAct(S

∗)− (k − 1)∆.

The greedy algorithm runs in polynomial time; however it is
not scalable. As has been done for influence maximization [7]
and attitude maximization (Section V), we design a more
efficient algorithm based on RR sets. However, the RR set
based algorithms for those maximization problems do not
easily translate to the case of actionable attitude maximiza-
tion. The RR set based algorithm for influence maximization
randomly picks a vertex v and generates a RR graph from
v whereas RR set based algorithm for attitude maximization
starts with picking an edge e uniformly at random. For
influence maximization problem it is critical that each vertex
is picked uniformly at random and for attitude maximization,
it is critical that each edge is picked uniformly at random.
Note that randomly picking a vertex does not imply a random
choice of edge and vice versa. Since the function σAct(·)
is the difference between attitude and influence, neither of
these RR set based methods can be translated for actionable
attitude maximization. We need a mechanism to generate RR
sets using which we can estimate both σ and σAtt. Instead of
randomly picking a vertex or edge in the network, we generate
a sufficient number of RR graphs for each vertex v.

Let FSg (v) be the number of edges from v that reaches
S ∈ gT , Rv be the set of RR graphs from v, and TSg (v) be
the number of edges to v that are reachable from S ∈ g.

THEOREM 15. Given a graph G = (V,E), for any S ⊆ V .
σAct(S) =

∑
v∈V

∑
gT∈Rv

P (g)×max{FSg (v)− 1, 0}

Algorithm 4: Find Best Seed Set for σAct(·)
Data: Graph G = (V,E), k
Result: Seed Set S
begin

foreach v ∈ V do
Rv = Generate a× Indegree(v) RR graphs from v
foreach gT ∈ Rv do

foreach u ∈ gT do
cv
gT

(u) = the number of edges from v that reaches u

in gT - 1

foreach u ∈ V do

c(u) =
∑
v∈V

∑
gT∈Rv

c
v
gT

(u)

|Rv|

while |S| ≤ k do
v∗ = arg max

u∈V \S
c(u)

S = S ∪ {v∗}
foreach v ∈ V do

foreach gT ∈ Rv do
Remove v∗ and all associated edges from gT

foreach u ∈ gT do
compute cv

gT
(u)

return S

Proof. With respect to a set S, we will define the random
variable

Infv(S) =

{
1 if v ∈ RSg
0 otherwise

Then,

σAct(S) =E

[∑
v∈V

Attv(S)

]
− E

[∑
v∈V

Infv(S)

]
=
∑
v∈V

E [Attv(S)− Infv(S)]

=
∑
v∈V

∑
g∼G

P (g)× [Attv(S)− Infv(S)]

=
∑
v∈V

∑
g∼G

P (g)×max{TSg (v)− 1, 0}

=
∑
v∈V

∑
g∼G

P (g)×max{FSgT (v)− 1, 0}

=
∑
v∈V

∑
gT∈Rv

P (gT )×max{FSgT (v)− 1, 0}

THEOREM 16. Given a graph G = (V,E), for any S ⊆
V, u ∈ V , the following holds: σAct(u|S) is equal to

∑
v∈V

∑
gT∈Rv

P (g) ·
[
max{FS∪{u}g (v)− 1, 0}

−max{FSg (v)− 1, 0}
]



Proof.

σAct(u|S) = [σAtt(S ∪ {u})− σ(S ∪ {u})]− [σAtt(S)− σ(S)]

=
∑
v∈V

E [Attv(S ∪ {u})
−Infv(S ∪ {u})− (Attv(S)− Infv(S))]

=
∑
v∈V

∑
g∼G

P (g)

×
[
max{TS∪{u}g (v)− 1, 0} −max{TSg (v)− 1, 0}

]
=
∑
v∈V

∑
g∼G

P (g)

×
[
max{FS∪{u}g (v)− 1, 0} −max{FSg (v)− 1, 0}

]
=
∑
v∈V

∑
gT∈Rv

P (gT )

×
[
max{FS∪{u}g (v)− 1, 0} −max{FSg (v)− 1, 0}

]

Using the above two theorems, we can prove that Al-
gorithm 4 is an approximation algorithm for the actionable
attitude maximization problem. Let S∗ be an optimal solution
and let Sk be the set produced by Algorithm 4.

THEOREM 17. In algorithm 4 if a is O(1/ε2 log n/δ), then

Pr[σAct(Sk) ≥ (1− 1/e− ε)σAct(S∗)− (k − 1)∆] ≥ δ

We can prove the above theorem using Theorems 15 and 16
and techniques used to establish the guarantee on RR set
based algorithm for the attitude maximization problem. We
omit the details. Note that in this algorithm, as opposed to
the attitude maximization algorithm, RR graphs need to be
stored as opposed to RR sets. This leads to high memory usage
and also since processing RR graphs is more expensive than
processing RR sets, this algorithm is not as scalable as one
would like to be.

VII. EXPERIMENTAL EVALUATION

Network-name # Nodes # Edges
ego-Facebook 4039 88234
NetHept 15229 62752
Epinions 75888 508837
Amazon 334863 925872
DBLP 317080 1049866
Youtube 1134890 2987624

TABLE I
DATASETS

Table I lists the
networks used. The
first six networks are
publicly available1.
Experimental Set-
tings. All the al-
gorithms are imple-
mented in C++ and
run on Linux server

with AMD Opteron 6320 CPU (8 cores and 2.8 GHz) and
128GB main memory. To estimate the total attitude using
Algorithm 1, we set ε = 0.1, δ = 0.001. As pointed out in
[3], algorithms that use reverse sampling run into high memory
usage owing to the number of samples generated. To find the

1Datasets are obtained from http://snap.stanford.edu/data/ and https://
microsoft.com/en-us/research/people/weic/. The code is available at https:
//github.com/madhavanrp/QuantifyingAttitude

Attitude Maximizing seed set, we use the ideas from the Stop-
and-Stare algorithm [16], [28] that was developed for the
influence maximization problem. This ensures that we generate
(approximately) correct number of RR sets resulting in lesser
memory used. It can be proved that this implementation
has the same theoretical guarantees as Algorithm 2. The
source code can be found at https://github.com/madhavanrp/
QuantifyingAttitude.

Maximizing Attitude. The results are shown in Figure 3
(x-axis represents the seed set size and the y-axis indicates
the attitude or time). The attitude results produced across a
wide range of graph sizes demonstrate the scalability of RAS-
based maximization. We computed the attitude maximization
seed set for budgets in the range [1, 2000]. As expected as
seed set size increases, the total attitude also increases. Note
that for small networks, the total attitude does not increase
much after certain point. This is due to the submodularity
of the attitude function. After some point, the gain in attitude
becomes minimal. The time taken to compute the seed set does
not increase much as the seed set size increases. For example,
on DBLP (n = 317080,m = 1049866), the time taken is
less than 20 seconds for budgets ranging from 100 − 2000.
This is due to the fact that as the seed set size increases, the
value of σ(S∗) would increase thus resulting in smaller RR
sets (as per the stop-and-stare algorithm).

Propagation Probability and Attitude. We consider differ-
ent edge probabilities such as 0.02, 0.05, 0.1 and 1/inDegree.
The overall attitude increases as the probability increases (See
Figure 4). Interestingly, the maximum attitude is observed
when the probability is 1/inDegree. This is explained by
considering the fact that for each node, it is expected that
one of its incoming edges is activated (if its neighbors are
activated). Therefore, the overall attitude is significantly higher
if 1/inDegree is greater than 0.1, on average. We also report
how time varies with probability. We observe that the time
taken is least when the edge probability is 1/inDegree and is
highest when the probability is 0.02. This is again explained
by observing that σAtt(S∗) inversely impacts the number of
RR sets required for estimating attitude. We observe that this
is consistent with the time taken to compute the best seed
with propagation probabilities that produce relatively smaller
overall attitude.

Average Attitude. Next, we focus on the average attitude of
a node. There are two ways to look at this number. The first is
the ratio σAtt(S)/σ(S) which is the ratio of expected attitude
and expected number of influenced nodes. Another measure
for average attitude is to take the expectation of the following
ratio: Total Attitude/Number of nodes influenced. These two
quantities need not be equal, in general, as expectation of a
ratio is not the ratio of expectations. We computed the former
quantity by running the presented algorithms. We estimated the
latter quantity by running simulations (20000). The results are
shown in Table II. Interestingly both the quantities turn out be
almost the same for all the graphs. For all the graphs listed, the
average attitudes calculated as σAtt(S)/σ(S) are greater than

http://snap.stanford.edu/data/
https://microsoft.com/en-us/research/people/weic/
https://microsoft.com/en-us/research/people/weic/
 https://github.com/madhavanrp/QuantifyingAttitude
 https://github.com/madhavanrp/QuantifyingAttitude
https://github.com/madhavanrp/QuantifyingAttitude
https://github.com/madhavanrp/QuantifyingAttitude
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Fig. 3. Attitude results and time taken to find the attitude maximizing seed set
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Fig. 4. Varying probability with k = 100

graph name σAtt(S)
σ(S)

E[ AttInf ] Average indegree

ego-Facebook 3.21 3.20 21.85
Epinions 3.30 3.32 6.71
NetHept 1.34 1.38 4.12
DBLP 1.23 1.23 3.31
Youtube 1.43 1.44 2.63

budget = 100 and edge probability = 0.1
TABLE II

AVERAGE ATTITUDE

1 as expected since every influenced node has attitude greater
than or equal to 1, and they match very well with the results
from the diffusion. Graphs with higher average indegrees tend
to achieve higher average attitudes. For example, Epinions
achieves a higher average attitude than NetHept. With increas-
ing edge probabilities, the average attitude increases(Fig. 5)
because with higher edge probabilities, nodes are more likely
to be activated; and with more activated neighbors, a node
tends to be influenced multiple times.

Maximizing Actionable Attitude. We implement Algorithm
4 to find the seed set that maximizes the Actionable Attitude.
For each v ∈ V , we generate O(Indegree(v)/ε2) RR graphs
where ε = 0.1. Figure 6 examines the Actionable Attitude
while varying the budget. We fix the probability to 0.05.
As expected, the Actionable Attitude does increase when the
seed set size is increased. We observe that the Actionable
Attitude grows in larger quantities for Facebook than for
the other graphs. This is due to the fact that Facebook is
denser, leading to a higher number of edges activated by
the seed set. We also study how the Attitude Maximizing
seed compares with the Actionable Attitude Maximizing seed.

Graph Alg. 2 Alg. 4
ego-Facebook 2.11 2.69
NetHept 1.24 1.34
Amazon 1.01 1.03
DBLP 1.18 2.32

TABLE III
E[Att/Inf ] VALUES FOR

k = 100, p = 0.05

Across various graphs, we
note that the Actionable
Attitude Maximizing seed
set activates fewer nodes
when compared to the Atti-
tude Maximizing seed. For
example, on DBLP with
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Fig. 5. Average attitude trends as edge probability p increases(k = 100)

k = 100, p = 0.05, Atti-
tude maximization algorithm produces Attitude of 2294 with
influence 1930. In the same setting, the actionable attitude
maximization algorithm produces Attitude of 870 with influ-
ence 376. We note two points. The objective function σAct(.)
is higher for the seed set produced by the actionable attitude
maximization compared to the seed set produced by the atti-
tude maximization problem. Very interestingly, for the attitude
maximization seed set the average attitude is 2294/1930 which
is 1.19 whereas the actionable attitude maximization seed
results in an average attitude of 870/376 which is 2.31. Recall
that the notion of actionable attitude attempts to maximize
entities that are strongly influenced and thus should result in
higher average attitude and the experiments concur with this
intuition. Table III compares average attitude for the seed
sets produced by the attitude maximization and actionable
attitude maximization algorithms. The Average Attitude tends
to be higher when the Actionable Attitude is maximized with
Amazon being an outlier.
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Fig. 6. Budget Vs Actionable Attitude, p = 0.05

These observations suggest that Actionable Attitude max-
imization produces fewer overall nodes activated but with



Fig. 8. Clusters of High Attitude nodes

higher individual Attitude. As with maximizing Attitude, we
compared our implementation with the same baseline heuris-
tics observed higher Actionable Attitude. The experiments on
Y outube do not finish as the program runs out of memory.
This is due to the fact that Actionable Attitude Maximizing
requires the RR Graphs to be stored rather than just vertices.

Attitude Distribution. We consider distribution of nodes
with certain attitude values and their contribution to the total
attitude. For each attitude value a, we looked at the total con-
tribution of all nodes with attitude a (obtained by multiplying
number of nodes with attitude a). The attitude values are on
x-axis and the attitude contribution on y-axis of Figure 7.
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Fig. 7. Attitude contributions

On Epinions graph (with
budget 100 and edge prob-
ability 0.1) the total ex-
pected attitude is around
34000 and the expected
number of influenced nodes
is around 10, 500. How-
ever, there are 233 nodes
whose attitude is more than
20 (last bar in the figure).
These nodes alone con-

tribute 8, 000 to the total attitude. Thus 2% of the influenced
nodes contribute nearly 23% to the total attitude. This means a
relatively small fraction of nodes with high attitude contribute
significantly to total attitude and thus average attitude.

Spatial Proximity of Nodes with High attitude. Finally
we visualized the location of nodes with high attitude values
(Figure 8). Red nodes are the nodes with high attitude. We
used the clustering algorithm mentioned in [6] to identify
communities, and visualized them using the OpenOrd al-
gorithm [26] from Gephi [5] which is used for visually
distinguishing clusters. For graph Epinions, a total of 708
communities were identified. We we looked at the top 100
attitude nodes, we noticed that all these nodes were limited to
only 5 of those communities. Similarly, for graph CA-HepTh,
473 communities were identified. The top 100 attitude nodes
were limited to 12 of them. This behavior was observed in
other graphs as well, which showed that high attitude nodes
are generally restricted to a few communities rather than being
distributed across the network.

VIII. CONCLUSION

In this work we have formalized the notion of strength of
influence/attitude in social networks and have formulated the

attitude maximization problem. We present various theoretical
properties related to our formulation. We also introduce the
notion of actionable attitude to capture high attitude nodes by
defining this quality as the (expected) difference between total
attitude and the number of influenced nodes. There are several
other ways to formulate this notion—for example, by looking
at the ratio of attitude and influence or by examining the
number of entities whose attitude value is above a threshold.
Exploring these alternative formulations would be interesting.
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