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Abstract

Political astroturfing and organised trolling are online malicious be-
haviours with significant real-world effects. Common approaches exam-
ining these phenomena focus on broad campaigns rather than the small
groups responsible. To reveal latent networks of cooperating accounts, we
propose a novel temporal window approach that relies on account inter-
actions and metadata alone. It detects groups of accounts engaging in
behaviours that, in concert, execute different goal-based strategies, which
we describe. Our approach is validated against two relevant datasets with
ground truth data.

1 Introduction

Online social networks (OSNs) have established themselves as flexible and ac-
cessible systems for activity coordination and information dissemination. This
benefit was illustrated during the Arab Spring [1] but its danger continues in
ongoing political interference [2–4]. Modern information campaigns are partici-
patory, using the audience to amplify the desired narrative [5]. Through cycli-
cal reporting, social media users can unknowingly become “unwitting agents”
as “sincere activists” of state-based operations [6]. The use of political bots to
influence the framing and discussion of issues in the mainstream media (MSM)
remains prevalent [2, 7, 8]. This megaphone effect requires coordinated action
and a degree of regularity that may leave traces in the digital record.

Relevant research has focused on high level analyses of campaign detection
and classification [9–11], the identification of botnets and other dissemination
groups [8, 12, 13], and coordination at the community level [14, 15]. Some have
considered generalised approaches to social media analytics [16–18], but unan-
swered questions regarding the clarification of coordination strategies remain.

We present a new approach to detect groups engaging in potentially coor-
dinated activities, revealed through anomalous levels of coincidental behaviour.
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Links in the groups are inferred from behaviours that, with intent, are used to
execute a number of identifiable coordination strategies. We validate our new
technique on various datasets and show it successfully identifies coordinating
communities.

Our approach infers ties between accounts based on activity to construct
latent connection networks (LCNs), in which highly coordinating communities
(HCCs) are detected. We use a variant of focal structures analysis (FSA) [19]
to do this. A window-based approach is used to enforce temporal constraints.

Comparison of two relevant datasets, including labeled ground truth, with
a randomised dataset provides validation. These research questions guided our
evaluation:

RQ1 How can HCCs be found in an LCN?

RQ2 How do the discovered communities differ?

RQ3 Are the HCCs internally or externally focused?

RQ4 How consistent is the HCC messaging?

This paper provides an overview of relevant literature, followed by a discus-
sion of online coordination strategies and their execution. Our approach is then
explained, and its experimental validation is presented1.

1.1 Related Work

Sociological studies of influence campaigns can reveal their intent and how they
are conducted. Starbird et al. [5] highlight three kinds: orchestrated, centrally
controlled campaigns (e.g., paid teams [20,21]); cultivated campaigns that infil-
trate existing movements; and emergent campaigns arising from shared ideology
(e.g., groups around conspiracists). Though their strategies differ, they use the
same online interactions as normal users, but their patterns differ.

Computer science has focused on detecting information operations on social
media via automation [22], campaign detection [9–11,23], temporal patterns [24],
and community detection [12, 13, 25]. Other studies have explored how bots
and humans interact in political settings [2, 7], including exploring how deeply
embedded bots appear in the network and their degree of organisation [8]. There
is, however, a research gap: the computer science study of the “orchestrated
activities” of accounts in general, regardless of their degree of automation [11,
26].

Though some studies have observed the existence of strategic behaviour in
and between online groups (e.g., [4,14,15]), the challenge of identifying a broad
range of strategies and their underpinning execution methods remains.

Inferring social networks from OSN data requires attendance to the tem-
poral aspect to understand information (and influence) flow and degrees of ac-
tivity [27]. Real time processing of OSN posts can enable tracking narratives

1See https://github.com/weberdc/find hccs for code and data.
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via text clusters [28], but to process networks requires graph streams [29] or
window-based pipelines (e.g., [17, 18]).

This work contributes to the identification of strategic coordination be-
haviours, along with a general technique to enable detection of groups using
them.

2 Coordination Strategies

Online influence relies on two primary mechanisms: dissemination and engage-
ment. For example, an investigation of social media activity following UK terror-
ist attacks in 20172 identified accounts promulgating contradictory narratives,
inflaming racial tensions and simultaneously promoting tolerance to sow divi-
sion. By engaging aggressively, the accounts drew in participants who then
spread the message.

Dissemination aims to maximise audience, to convince through repeated
exposure and, in the case of malicious use, to cause outrage, polarisation and
confusion, or at least attract attention to distract from other content.

Engagement is a subset of dissemination that solicits a response. It relies
on targeting individuals or communities through mentions, replies and the use
of hashtags as well as rhetorical approaches that invite responses (e.g., inflam-
matory comments or, as present in the UK terrorist example above, pleas to
highly popular accounts).

A number of online coordination strategies have been observed in the liter-
ature making use of both dissemination and engagement, including:

1. Pollution: flooding a community with repeated or objectionable content,
causing the OSN to shut it down [15,30];

2. Boost : heavily reposting content to make it appear popular [12,13,23];

3. Bully : groups of individuals harassing another individual or community [14,
31]; and

4. Metadata Shuffling : groups of accounts changing metadata to hide their
identities [3, 32].

Different behaviour primitives (e.g., Table 1) can be used to execute these
strategies. Dissemination can be carried out by reposting, using hashtags, or
mentioning highly connected individuals in the hope they spread a message
further. Accounts doing this covertly will avoid direct connections, and thus
inference is required for identification. Giglietto et al. [33] propose detecting
anomalous levels of coincidental URL use as a way to do this; we expand this
approach to other interactions.

Some strategies require more sophisticated detection: detecting bullying
through dogpiling (e.g., during the #GamerGate incident [31]) requires col-
lection of (mostly) entire conversation trees, which, while trivial to obtain on

2https://crestresearch.ac.uk/resources/russian-influence-uk-terrorist-attacks/
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Table 1: Social media interaction equivalents

OSN POST REPOST REPLY MENTION TAG LIKE

Twitter tweet retweet reply tweet @mention #hashtags favourite
Facebook post share comment mention #hashtag reactions
Tumblr post repost comment @mention #tag heart
Reddit post crosspost comment /u/mention subreddit up/down vote

Figure 1: Conceptual LCN construction and HCC discovery process.

forum-based sites (e.g., Facebook and Reddit), are difficult on stream-of-post
sites (e.g., Twitter, Parler and Gab). Detecting metadata shuffling requires
long term collection on broad issues to detect the same accounts being active in
different contexts.

3 Methodology

The major OSNs share a number of features, primarily in how they permit
users to interact. By focusing on these commonalities, it is possible to develop
approaches that generalise across the OSNs that offer them.

Traditional social network analysis relies on long-standing relationships be-
tween actors. On OSNs these are typically friend/follower relations. These are
expensive to collect and quickly degrade in meaning if not followed with fre-
quent activity. By focusing on active interactions, it is possible to understand
not just who is interacting with whom, but to what degree. This provides a
basis for constructing (or inferring) social networks, acknowledging they may
be transitory.

LCNs are built from inferred links between accounts. Supporting criteria
include retweeting the same tweet (co-retweet), using the same hashtags (co-
hashtag) or URLs (co-URL), mentioning the same accounts (co-mention), or
joining the same ‘conversation’ (a tree of reply chains with a common root
tweet) (co-conv).

3.1 The LCN / HCC Pipeline

The key steps to extract HCCs from raw social media data are shown in Figure 1.
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Step 1. Convert social media posts P to common interaction primitives,
Iall. This step removes extraneous data and provides an opportunity for the
fusion of sources.

Step 2. From Iall, filter the interactions, IC , relevant to the set C={c1, c2, ..., cq}
of criteria (e.g., co-mentions and co-hashtags). Illustrated in Figure 1b are the
filtered mentions (in orange) and hashtag uses (in purple), ordered according to
timestamp.

Step 3. Infer links between accounts given C, ensuring links are typed
by criterion. The result, M , is a collection of inferred pairings. The count
of inferred links between accounts u and v due to criterion c ∈ C is βc

{u,v}.
Figure 1c shows inferred links between accounts due to common interactions.

Step 4. Construct an LCN, L, from the pairings in M . This network
L=(V,E) is a set of vertices V representing accounts connected by weighted
edges E of inferred links. These edges represent evidence of different criteria
linking the adjacent vertices. The weight of each edge e{u,v} ∈ E between
vertices representing u and v for each criterion c is wc

{u,v}, and is equal to
βc
{u,v}.

Some community detection algorithms will require the multi-edges be col-
lapsed to single edges, however, the edge weights are incomparable (e.g., retweet-
ing the same tweet is not equivalent to using the same hashtag). For practical
purposes, the inferred links can be collapsed and the weights combined for clus-
ter detection using a simple summation, e.g., Equation (1), or a more complex
process like varied criteria weighting. Implementations can retain information
about how the edges were collapsed for later analysis, but the lack of multi-edges
permits scope for more community detection algorithms to be used.

w{u,v} =

q∑
c=1

wc
{u,v} (1)

Some criteria may result in highly connected LCNs, even if its members
never directly interact. The final step filters out these coincidental connections.

Step 5. Identify the highest coordinating communities, H, in L (Figure 1e),
using FSA V (Algorithm 1), a variant of FSA [19], or an alternative community
detection algorithm, merging multi-edges as required. FSA V divides L into
communities using the Louvain algorithm [34] and builds candidate HCCs within
each, starting with the ‘heaviest’ (i.e., highest weight) edge (representing the
most evidence of coordination). It then attaches the next heaviest edge until
the candidate’s mean edge weight (MEW) is no less than θ (0 < θ ≤ 1) of
the previous candidate’s MEW, or is less than L’s overall MEW. In testing,
edge weights appeared to follow a power law, so θ was introduced to identify
the point at which the edge weight drops significantly; θ requires tuning. A
final filter ensures no HCC with a MEW less than L’s is returned. Unlike in
FSA [19], recursion is not used, nor stitching of candidates, resulting in a simpler
algorithm.

This algorithm prioritises edge weights while maintaining an awareness of
the network topology by examining adjacent edges, something ignored by simple
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Algorithm 1 Extract HCCs (FSA V)

Input: L=(V,E): An LCN, θ: HCC threshold
Output: H: Highly coordinating communities

1: E′ ← MergeMultiEdges(E)
2: g mean← MeanWeight(E′)
3: louvain communities← ApplyLouvain(L)
4: Create new list, H
5: for l ∈ louvain communities do
6: Create new community candidate, h = (Vh, Eh)
7: Add heaviest edge e ∈ l to h
8: growing ← true
9: while growing do

10: Find heaviest edge ~e ∈ l connected to h not in h
11: old mean← MeanWeight(Eh)
12: new mean← MeanWeight(Concatenate(Eh, ~e))
13: if new mean < g mean or

new mean < (old mean× θ) then
14: growing ← false
15: else
16: Add ~e to h
17: if MeanWeight(Eh) > g mean then
18: Add h to H

edge weight filtering. Our goal is to find sets of strongly coordinating users, so it
is appropriate to prioritise strongly tied communities while still acknowledging
coordination can also be achieved with weak ties (e.g., 100 accounts paid to
retweet a single tweet).

The complexity of the entire pipeline is low order polynomial, O(n2), due
primarily to the pairwise comparison of accounts to infer links in Step 3, which
is constrained by window size when addressing the temporal aspect. Commu-
nity detection algorithms designed for large networks may help to address this
limitation [35].

3.2 Addressing the Temporal Aspect

Temporal information is a key element of coordination, and thus is critical for
effective coordination detection. Frequent posts within a short period may rep-
resent genuine discussion or deliberate attempts to game trend algorithms [10,
26, 28]. We treat the post stream as a series of discrete windows to constrain
detection periods. An LCN is constructed from each window (Step 4), and these
are then aggregated and mined for HCCs (Step 5). As we assume posts arrive
in order, their timestamp metadata can be used to sort and assign them to
windows.
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4 Evaluation and Validation

Our approach was evaluated by searching for Boost by co-retweet and other
strategies in two datasets, while varying window sizes (γ). FSA V was compared
against two other community detection algorithms when applied to the LCNs
built in Step 4 (aggregated). We then validated the resulting HCCs through
content, temporal and network analysis.

Table 2: Dataset statistics
Tweets (T) Retweets (RT) Accounts T / Account / Day RT / Account / Day

DS1 115,913 63,164 (54.5%) 20,563 0.31 0.17
- GT 4,193 2,505 (59.7%) 134 1.74 1.04
DS2 1,571,245 729,937 (56.5%) 1,381 3.12 1.45

4.1 The Datasets

The two real-world datasets selected (Table 2) represent two primary collection
techniques: filtering a stream of posts using keywords direct from the OSN
(DS1) and collecting the posts of specific accounts (DS2):

DS1 Tweets relating to a regional Australian election in March 2018, including
a ground truth subset (GT); and

DS2 A large subset of the Internet Research Agency (IRA) dataset published
by Twitter in October 20183.

The data were collected, held and analysed in accordance with an approved
ethics protocol4.

DS1 was collected using RAPID [16] over an 18 day period (the election was
on day 15) in March 2018. The filter terms included nine hashtags and 134
political handles (candidate and party accounts)5. The dataset was expanded
by retrieving all replied to, quoted and political account tweets posted during
the collection period. The political account tweets formed our ground truth.

The IRA tweets cover 2009 to 2018, but DS2 consists of all posted in 2016,
the year of the US Presidential election. Because DS2 consists entirely of IRA
accounts [20], it was expected to include evidence of cooperation.

4.2 Set Up

Window size γ was set at {15, 60, 360, 1440} (in minutes) and the three commu-
nity detection methods used on the aggregated LCNs were:

3https://about.twitter.com/en us/values/elections-integrity.html
4Protocol H-2018-045 was approved by the University of Adelaide’s human research ethics

committee.
5Not included, but available on request, as per the ethics protocol.
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• FSA V (θ=0.3);

• k nearest neighbour (kNN ) with k=ln(|V |) (cf. [23]);

• a simple threshold retaining the heaviest 90% of edges.

Values for θ and the threshold were based on experimenting with values in
[0.1, 0.9], maximising the MEW to HCC size ratio, using the γ={15, 1440} DS1
and DS2 aggregated LCNs. Values for γ were based on Zhao et al.’s [36] ob-
servation that 75% of retweets occur within six hours of posting. This implies
that if attempts were made to boost a tweet, retweeting it in much shorter
times would be required for it to stand out from typical traffic. Varol et al. [10]
checked Twitter’s trending hashtags every 10 minutes, so values chosen for γ
ranged from 15m to a day, growing by a factor of approximately four at each in-
crement. Coordinated retweeting was expected to occur in the smaller windows,
but then replaced by coincidental co-retweeting as the window size increases.

4.3 Results

The research questions introduced in Section 1 guide our discussion, but we also
present follow-up analyses.

4.3.1 HCC Detection (RQ1)

Detecting different strategies. The three detection methods all detected HCCs
when searching for Boost (co-retweets), Pollute (co-hashtags), and Bully (co-
mentions) (Table 3). Notably, kNN consistently builds a single large HCC,
highlighting the need to filter the network prior to applying it (cf. [23]). The
kNN HCC is also consistently nearly as large as the original LCN for DS2,
perhaps due to the low number of accounts and the fact that every edge of the
retained vertices is retained, regardless of weight. It is not clear, then, that kNN
is producing meaningful results, even if it can extract a community.

Varying window size. Different strategies may be executed over different
time periods, based on their aims. Boost ing a message to game trending algo-
rithms requires the messages to appear close in time, whereas some forms of
Bully ing exhibit only consistency and low variation (mentioning the same ac-
count repeatedly). Polluting a user’s timeline on Twitter can also be achieved
by frequently joining their conversations over a sustained period. Varying γ
searching for Boost, we found different accounts were prominent over different
timeframes (Table 4); the overlap in the accounts detected in each timeframe
differed considerably even though the number of HCCs stayed relatively similar.
HCC sizes seemed to follow a power law; most were very small but a few were
large.

HCC detection methods. Similarly, HCCs discovered by the three commu-
nity extraction methods (Table 5) exhibit large discrepancies, suggesting that
whichever method is used, tuning is required to produce interpretable results.
This is evident in the literature: Cao et al. conducted significant pre-processing
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Table 3: HCCs by coordination strategy
GT DS1 DS2

Strategy γ Nodes Edges Comp. Nodes Edges Comp. Nodes Edges Comp.

L
C

N

Boost 15 44 112 5 8,855 80,702 419 855 23,022 14
Pollute 15 51 154 2 13,831 1,281,134 73 1,203 65,949 5
Bully 60 70 482 1 16,519 1,925,487 222 1,103 37,368 5

F
S
A

V Boost 15 9 6 3 633 753 167 113 758 19
Pollute 15 9 5 4 135 93 50 24 15 9
Bully 60 11 7 4 338 280 119 109 1,123 16

kN
N

Boost 15 9 21 1 1,041 33,621 1 675 22,494 1
Pollute 15 11 37 1 724 153,424 1 1,040 65,280 1
Bully 60 18 135 1 1,713 663,413 1 692 35,136 1

T
h
re

sh
ol

d Boost 15 11 16 3 85 68 31 8 10 2
Pollute 15 24 26 3 44 37 10 6 13 1
Bully 60 15 19 3 25 23 8 10 10 3

Table 4: HCCs by window size γ (Boost, FSA V)

Graph Attributes HCC Sizes Nodes in common
γ Nodes Edges HCCs Min. Max. γ=15 γ=60 γ=360 γ=1440

D
S

1

15 633 753 167 2 18 633 218 93 100
60 619 1,293 151 2 13 - 619 208 193

360 503 1,119 127 2 19 - - 503 350
1440 815 2,019 141 2 110 - - - 815

D
S

2

15 113 758 19 2 65 113 34 29 25
60 77 394 18 2 27 - 77 62 54

360 98 775 15 2 32 - - 98 56
1440 69 380 15 2 27 - - - 69

when identifying URL sharing campaigns [23], and Pacheco et al. showed how
specific strategies could identify groups in the online narrative surrounding the
Syrian White Helmet organisation [37]. Here we present the variation in results
while controlling methods and other variables and keeping the coordination
strategy constant, as our focus is the effectiveness of the method.

4.3.2 HCC Differentiation (RQ2)

How similar are the discovered HCCs to each other and to the rest of the corpus?
The HCC detection methods used relied on network information; in contrast we
examine content, metadata and temporal information to validate the results.
We contrast DS1 and DS2 results with GT (cf. [4]) and a RANDOM dataset
(cf. [23]), constructed by randomly assigning non-HCC accounts from DS1 to
groups matching the distribution of its HCCs (FSA V, γ=15). As DS2 consisted
entirely of bad actors, it was felt non-HCC accounts from DS1 would be more
representative of non-coordinating ‘normal’ accounts.

Internal consistency. If HCCs are boosting a message, it is reasonable to

9



Table 5: HCCs by detection method (Boost, γ=15)

Graph Attributes HCC Sizes Nodes in common
Nodes Edges HCCs Min. Max. FSA V kNN Threshold

D
S
1

FSA V 633 753 167 2 18 633 56 36
kNN 1,041 33,621 1 1,041 1,041 - 1,041 44
Threshold 85 68 31 2 14 - - 85

D
S
2

FSA V 113 758 19 2 65 113 88 4
kNN 675 22,494 1 675 675 - 675 8
Threshold 8 10 2 2 6 - - 8

assume the content of HCCs members will be more similar internally that when
compared externally, to the content of non-members. Treating each HCC mem-
ber’s tweets as a single document, we created a doc-term matrix using 5 char-
acter n-grams for terms, and then compared the members’ document vectors
using cosine similarity. This approach was chosen for its performance with
non-English corpora [38], and because using individual tweets as documents
produced too sparse a matrix. Visualising the similarities between accounts,
grouping them by HCC (Figure 2), the HCCs are discernible as being internally
similar. This method ignores the number of tweets HCCs post, so we can draw
no conclusions about connections between HCC size and the internal similarity
of their content, though more active HCCs (i.e., with more tweets) are more
likely to be similar, through co-occurrence of n-grams. The RANDOM group-
ings demonstrated little to no similarity, internal or external, as expected, while
the DS2 HCCs demonstrated high internal similarity, as expected of organised
accounts over an extended period.

Temporal patterns. Campaign types exhibit different temporal patterns [9].
We used the same temporal averaging technique as Lee et al. [9] to compare the
daily activities of the HCCs found in GT, DS1 and RANDOM (Figure 3a) and
weekly activities in DS2 (Figure 3b). The GT accounts were clearly most active
at two points prior to the election (around day 15), during the last leaders’
debate and just prior to the mandatory electoral advertising blackout. DS1 and
RANDOM HCCs were only consistently active at different times: around the
day 3 leaders’ debate and on election day, respectively. Inter-HCC variation
may have dragged the mean activity value down, as many small HCCs were
inactive each day. Reintroducing FSA’s stitching element to FSA V may avoid
this. In DS2, HCC activity increased in the second half of 2016, culminating
in a peak around the election, inflated by two very active HCCs, both of which
used many predominantly benign hashtags over the year.

Hashtag use. The most frequent hashtags in the most active HCCs revealed
the most in GT. It is possible to assign some HCCs to political parties via
the partisan hashtags (e.g., #voteliberals), although the hashtags of contem-
poraneous cultural events are also prominent (Figure 4a). DS1 hashtags are
all politically relevant, but are dominated by a single small HCC which used
many hashtags very often (Figure 4b). These accounts clearly attempted to
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Figure 2: Similarity matrices of content posted by HCC accounts (γ=15,
FSA V). Each axis has an entry for each account, grouped by HCC. Each cell
represents the similarity between the two corresponding accounts’ content, cal-
culated using cosine similarity (yellow = high similarity). Each account’s con-
tent is represented as a vector of 5 character n-grams of their combined tweets.

disseminate their tweets through using 1, 621 hashtags in 354 tweets. Similarly,
DS2 hashtags were dominated by a single HCC (using 41, 317 relatively general
hashtags in 40, 992 tweets) and one issue-motivated HCC (Figure 4c). Given
DS2 covers an entire year, it is unsurprising that the largest HCCs use such a
variety of hashtags that their hashtags do not appear on the chart.

Analysing co-occurring hashtags can help further explore the HCC discus-
sions to determine if HCCs are truly single groups or merged ones. Applied
to GT HCC activities (Figure 4a), it was possible to delineate subsets of hash-
tags in use: e.g., one HCC promoted a political narrative in some tweets with
#orangelibs and discussed cultural events in others with #adlww (Figure 5), but
was definitely one group.

Examining the Ground Truth. The importance of having ground truth in
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Figure 3: Averaged temporal graphs of HCC activities (γ=15, FSA V).

context is demonstrated by Keller et al. [4]. By analysing the actions of known
bad actors in a broad dataset, they could identify not just different subteams
within the actors and their strategies, but their effect on the broader discussion.
Many datasets comprising only bad actors (e.g., DS2) miss this context.

Considering GT alone, the HCCs identified consist only of members within
the same political party, across all values of γ. Some accounts appeared in each
window size. HCCs of six major parties were identified. Examination of these
HCCs’ content confirmed they were genuine.

4.3.3 Focus of connectivity (RQ3)

Groups that retweet or mention themselves create direct connections; therefore
to be covert, it would be sensible to have a low internal retweet and mention
ratios (IRR and IMR, respectively). Figure 6 shows IRR and IMR for the
datasets. The larger the HCC size, the greater the likelihood of retweeting or
mentioning internally, so it is notable that DS2’s largest HCC has IRR and
IMR’s of around 0, though even the smaller HCCs have low ratios. Ratios for
the smallest HCCs seem largest, possibly due to low numbers of posts, many of
which may be retweets or include a mention, inflating the ratios. The hypothesis
that political accounts would retweet and mention themselves frequently is not
confirmed by these results, possibly because they are retweeting and mentioning
official or party accounts outside the HCCs.

4.3.4 Content variation (RQ4)

Highly coordinated reposting involved reusing the same content frequently, re-
sulting in low feature variation (e.g., hashtags, URLs, mentioned accounts),
which can be measured as entropy [23]. A frequency distribution of each HCC’s
use of each feature type was used to calculate each entropy score. Low feature
variation corresponds to low entropy values. As per [23], we compared the en-
tropy of features used by DS1 and DS2 HCCs to RANDOM ones (Figure 7).
Entries for HCCs which did not use a particular feature are omitted, as their
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Figure 4: Most used hashtags (per account) of the most active HCCs (γ=15,
FSA V). The labels indicate member and tweet counts. Not all HCCs used a
hashtag often enough to be visible.

scores would inflate the number of groups with 0 entropy. Many of DS1’s small
HCCs used only one of a particular feature, resulting in an entropy score of 0
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Figure 5: Cluster of hashtags, connected only when they appeared in the same
tweet (GT, γ=15, FSA V). Link width = tweet count.

(a) Retweets. (b) Mentions.

Figure 6: The proportions of each HCCs retweets and mentions referring to
accounts within the HCC (γ=15, FSA V).
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Figure 7: Cumulative frequency of HCCs’ entropy scores for five tweet features,
comparing DS1 and DS2 with RANDOM (γ=15, FSA V). Feature variation
increases moving right on the x axis.

(Figure 7a). In contrast, DS2’s fewer HCCs have higher entropy values (Fig-
ure 7b), likely because they were active for longer (over 365, not 18, days) and
had more opportunity to use more feature values. The majority of HCCs used
few hashtags and URL domains, which is expected as the dominating domain is
twitter.com, embedded in all retweets. Compared to the RANDOM HCCs (Fig-
ure 7c), DS1 HCCs had lower variation in all features, while the longer activity
period of DS2 resulted in distinctly different entropy distributions.
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Figure 8: While searching for Bully ing behaviour in DS1, these are HCCs of
accounts found engaging in co-mentions (circles) and co-mentions plus co-convs,
i.e., engaged in both (square vertices in bottom right) (γ=360, FSA V, θ=0.01).
Edge thickness and darkness = inferred connections (darker = more). Vertex
colour = tweets posted by that account (darker = more). Created with visone
(https://visone.info).

4.3.5 Multiple criteria: Bully ing

Some strategies can involve a combination of actions. Behaviours that con-
tribute to Bully ing by dogpiling, for example, include joining conversations
started by the target’s posts and mentioning the target repeatedly, within a
confined timeframe. As DS1 included all replied to tweets, we investigated it in-
ferring links via co-mentions and co-convs with a window size of 10 minutes, and
FSA V with θ=0.001, having maximised the ratio of MEW to HCC size. Of 142
HCCs discovered, the largest had five accounts and most only had two. Only 32
had more than ten inferred connections, but five have more than 1, 000. These
heavily connected accounts, after deep analysis, were simply very active Twitter
users who engaged others in conversation via mentions, which outweighed the
more strict co-conv criterion of participants reply ing into the same conversation
reply tree.

A larger window size was considered (γ=360) in case co-conv interactions
were more prevalent. FSA V (θ=0.01) exposed little further evidence of co-
conv (Figure 8), finding 98 small HCCs again dominated by co-mentions, not
many of which had more than one inferred connection, implying most links were
incidental; FSA V did not filter these out.

This provides an argument for a more sophisticated approach to combining
LCN edge weights for analysis, instead of Equation (1), and that FSA V could be
modified to better balance HCC size and edge weight. Furthermore, it is likely
that bullying accounts will not just co-mention accounts frequently, but have
low diversity in the accounts they co-mention, i.e., they repeatedly co-mention
a small number of accounts. That nuance is not explored here.
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Figure 9: A graph of DS1 HCC accounts (circle vertices) connected to the
accounts they mention or conversations they join (diamonds). Accounts in the
same HCC share colours. Clear communities surrounding HCCs indicate who
they converse with, and which conversants are co-mentioned by mulitple HCC
accounts. Created with visone (https://visone.info).

4.3.6 HCC inter-relationships

Introducing vertices to represent the reasons HCC accounts are connected (e.g.,
who they co-mention, or conversations they join) shows how the HCCs inter-
relate. Figure 9 shows the largest component after such expansion was con-
ducted on the HCCs in Figure 8. HCC accounts (circles) share colours and
the distribution of the reasons for their connection (diamonds) show which are
unique to HCCs and which are shared. Heavy links between HCC accounts with
few adjacent reason vertices imply these are accounts mentioned many times.

4.3.7 Boost ing accounts, not tweets

It is possible to Boost an account rather than just a post. Returning to DS2,
we sought HCCs from accounts retweeting the same account (FSA V, γ=15),
and found that the hashtag use revealed further insights (Figure 10). No longer
does one HCC dominate the hashtags. Instead clear themes are exhibited by
different HCCs, but again, they are not the largest HCCs. The red HCC uses
#blacklivesmatter-related hashtags, while the purple HCC uses pro-Republican
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102

Hashtag uses per account

#blacklivesmatter
#blacktolive

#blm
#blackskinisnotacrime

#btp
#policebrutality

#obamaswishlist
#istartcryingwhen

#tcot
#obamanextjob

#maga
#ineedalawyerbecause

#blacktwitter
#blackhistorymonth

#ihatepokemongobecause
62 (140165)
27 (78686)
5 (72428)
3 (35796)
3 (16849)
3 (7954)
3 (7330)
2 (4222)
3 (1749)
3 (1227)

Figure 10: Most used hashtags (per account) of the most active HCCs boosting
accounts (FSA V, γ=15). The labels indicate member and tweet counts. Not
all HCCs used a hashtag often enough to be visible.

ones (#maga and #tcot), and the green HCC is more general. Given the num-
ber of tweets these HCCs posted over 2016 (at least 16, 849), it is clear they
concentrated their messaging on particular topics, some politically charged.

5 Conclusion

As online influence operations grow in sophistication, our automation and cam-
paign detection methods must also expose the accounts covertly engaging in
“orchestrated activities” [26]. We have described several coordination strate-
gies, their purpose and execution methods, and demonstrated a novel pipeline-
based approach to finding sets of accounts engaging in such behaviours in two
relevant datasets. Using discrete time windows, we temporally constrain po-
tentially coordinated activities, successfully identifying groups operating over
various timeframes. The analysis of HCC evolution, improvement of HCC ex-
traction techniques and investigation of near real time processing provide op-
portunities for future research in this increasingly important field.
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