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Abstract—Live video streaming has become a mainstay as a
standard communication solution for several enterprises world-
wide. To efficiently stream high-quality live video content to
a large amount of offices, companies employ distributed video
streaming solutions which rely on prior knowledge of the under-
lying evolving enterprise network. However, such networks are
highly complex and dynamic. Hence, to optimally coordinate the
live video distribution, the available network capacity between
viewers has to be accurately predicted. In this paper we propose
a graph representation learning technique on weighted and
dynamic graphs to predict the network capacity, that is the
weights of connections/links between viewers/nodes. We propose
VStreamDRLS, a graph neural network architecture with a
self-attention mechanism to capture the evolution of the graph
structure of live video streaming events. VStreamDRLS employs
the graph convolutional network (GCN) model over the duration
of a live video streaming event and introduces a self-attention
mechanism to evolve the GCN parameters. In doing so, our model
focuses on the GCN weights that are relevant to the evolution
of the graph and generate the node representation, accordingly.
We evaluate our proposed approach on the link prediction
task on two real-world datasets, generated by enterprise live
video streaming events. The duration of each event lasted an
hour. The experimental results demonstrate the effectiveness of
VStreamDRLS when compared with state-of-the-art strategies.
Our evaluation datasets and implementation are publicly avail-
able at https://github.com/stefanosantaris/vstreamdrls.

Index Terms—Dynamic graph representation learning, Self-
attention mechanism, Video streaming

I. INTRODUCTION

Live video streaming has become an essential communica-
tion solution for large organizations with several applications
such as training employees, announcing product releases, and
so on. For example, the fortune-500 companies1 have several
offices around the world with thousand of employees in
each office. Delivering a high-quality video stream to each
office is a challenging task because of the offices’ network
capacity limitations, and the amount of data that need to be
transferred among a large number of viewers. To overcome
these challenges, enterprises apply different software solutions
to transfer the video stream to each office and then distribute

1https://fortune.com/fortune500/

Fig. 1. A distributed live video streaming process in enterprise networks.
The video streaming event is produced by the broadcast user. Then, Viewers
1 and 2 are the only users who retrieve the video stream via the CDN and
the respective office gateways, to distribute it to the rest of the viewers. The
goal is to preserve high bandwidth connections (1GB/s) among viewers in the
same office during the live video streaming event, and miminize the number
of low bandwidth connections (100MB/s) among viewers in different offices.

the video between viewers via the internal high-bandwidth
network [1], [2]. For example, as shown in Figure 1 each
viewer is connected to a limited number of other viewers.
Instead of directly connecting all viewers to the Content
Delivery Network (CDN) server and download the video
stream transmitted by the broadcaster, in practice only a small
subset of viewers, for example, Viewer 1 and 5 in Figure 1 are
responsible to fetch the video stream via the offices’ gateways.
Thereafter, each viewer exploits the connections to distribute
the video stream to the remaining viewers, so as to reduce
the office’s network traffic and satisfy the network’s capacity
limitation.

To efficiently coordinate the distribution between viewers in
the same office, distributed video streaming solutions require
a prior knowledge of the enterprise network. Without this
knowledge, the viewers may erroneously establish connections
to viewers of different offices, thus significantly reducing the
performance of video streaming [3]. In addition, for security
reasons large enterprises provide limited information about
their internal network topology. A possible solution would
be to exploit the network characteristics of each viewer,
for example, private/public Internet Protocol (IP) addresses,
and distribute the video stream between viewers with similar
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characteristics. However, the recent Data Protection Regulation
[4] prohibits the collection of the IP addresses by third
parties. Moreover, enterprises continuously adapt the internal
network topologies, to meet the evolving requirements of
their employees. To overcome the problem of the unknown
and evolving internal network topology, baseline strategies
for video streaming distribution such as [5], [6] allow each
viewer to establish random connections and periodically adapt
their connections based on the observed network capacity until
it converges to the underlying enterprise network. Despite
their convergence guarantees, the time complexity to infer
the underlying network increases exponentially along with the
number of viewers in the enterprise. In practice, a large number
of viewers from different offices participates in real-world
enterprise live video streaming events, for example, thousands
of viewers at hundred of offices. Meanwhile, the average
duration of the event lasts several minutes, for instance, from
30 to 60 minutes. As a consequence, randomly selecting
the connections that each viewer maintains has a negative
impact on the performance of a video streaming event [3].
Therefore, it is important to predict the network capacity
between different viewers in real-time during a live video
streaming event and coordinate the connections to distribute
the video stream among viewers, accordingly.

During a live video streaming event, the number of viewers
and their connections significantly vary over time, as viewers
emerge and leave at unexpected pace. At the same time each
viewer has to maintain a limited number of connections. A
live video streaming event can be modeled as a dynamic and
weighted graph, where viewers and their connections are the
nodes and edges of the graph, respectively. The weight of
the connection corresponds to the network capacity between
two nodes. The generated graphs are highly dimensional,
sparse and significantly evolve over time. To reduce the
graph dimensionality, representation learning approaches have
recently introduced to learn low-dimensional node features as
latent representations [7]–[9]. However, such approaches are
designed to work on static graphs, ignoring the evolution of
the graph during a live video streaming event. Recent attempts
on dynamic graphs extend the static approaches by enforcing
smoothness techniques [10]–[12] or designing recurrent neural
networks [13]–[15] between consecutive graph convolutional
networks (GCNs) [16]. Most recently self-attention mecha-
nisms have been explored to learn node representations by
identifying the significance of each edge between sequential
graph snapshots [17]. Although state-of-the-art dynamic ap-
proaches are effective on high-sparsity settings, they achieve
low performance on graphs generated by live video streaming
events. This occurs because consecutive graph snapshots sig-
nificantly differ during live video streaming events as we will
show in our experiments.

To overcome the shortcomings of existing strategies in the
case of video streaming distribution, in this paper we pro-
pose a neural network model Dynamic Graph Representation
Learning for enterprise Video Streaming with Self-Attention,
namely VstreamDRLS. Our model adapts the GCN architec-

ture to address the problem of learning node representations
on dynamic graphs. Provided that the graphs generated by live
video streaming events evolve over time, we introduce a self-
attention mechanism on the GCN to focus on the parameter
weights that are relevant to the evolution of the graph. Our
main contributions are summarized as follows:
• We demonstrate the limitations of existing graph rep-

resentation learning approaches on the evolving graphs
generated by video streaming distribution events. To the
best of our knowledge we are the first who considered the
problem of live video streaming on enterprise networks
as a problem of dynamic graph representation learning.

• We propose a neural network model that integrates a
self-attention mechanism into graph convolutional net-
works to learn latent node representations when graph
snapshots vary significantly. In particular, when the graph
significantly changes the self-attention mechanism tends
to forget the historical information and forces the GCN
to produce different latent node representations, accord-
ingly. This is achieved by performing self-attention on
the weights of the GCN parameters and capturing the
temporal evolution accordingly. In doing so, our model
captures the graph structure evolution and learns node
representations to efficiently predict the network capac-
ity between different viewers/nodes during a live video
streaming event.

Our experiments on real-world datasets from video streaming
distribution events demonstrate the superiority of our model
over other state-of-the-art methods.

The remainder of the paper is organized as follows: Sec-
tion II reviews the related work and in Section III we detail the
proposed VstreamDRLS model. Our experimental evaluation
is presented in Section IV and we conclude the study in
Section V.

II. RELATED WORK

State-of-the-art graph representation learning techniques
calculate low-dimensional latent node representations from
two types of graphs: (i) static graphs where nodes and edges
are fixed, and (ii) dynamic graphs where both nodes and edges
evolve on different graph snapshots. Static approaches exploit
a wide range of techniques to learn node representations, such
as matrix factorization [18], [19], Random Walks [7], [9], [11],
Deep AutoEncoders [20], Graph Convolutions [16], Graph
Attentions [21], [22], and Adversarial Learning [23]. Despite
their success on static graphs, these methods fail to capture
the evolution of dynamic graphs.

Recent approaches on dynamic graphs aim to learn the
temporal dynamics over consecutive graph snapshots. For ex-
ample, Dynamic Joint Variational Graph AutoEncoder (Dyn-
VGAE) shares weights between consecutive GCNs and models
the graph evolution by formulating a joint loss function [24].
Recently, a set of approaches tries to summarize the graph
evolution based on recurrent architectures such as Gated
Recurrent Units (GRUs) between GCNs. For instance, Graph
Convolutional Recurrent Network (GCRN) exploits GCNs to



compute the node representations and then provides the gener-
ated representations to Long-Short Term Memory (LSTM) net-
works to learn the graph dynamics [25]. Dyngraph2vec stacks
several LSTMs in the AutoEncoder architecture to learn the
long-term dependencies of the dynamic graph [13]. Evolving
Graph Convolutional Network (EvolveGCN) employs GRUs
to store the importance of the node features in the hidden states
and learn the weights of each GCN layer [15]. Dynamic Self-
Attention Network (DySAT) captures the graph evolution by
applying a self-attention mechanism to focus on the important
node features and edges that are preserved over consecutive
graph snapshots [17]. Instead our self-attention mechanism
differs from DySAT, as in our architecture the proposed
self-attention mechanism is designed to capture the temporal
evolution on the weights of the GCN parameters and not the
node representations as DySAT does. Despite the ability of
dynamic approaches to learn node representations on evolving
graphs, these approaches underperform in the link prediction
task during live video streaming events (Section IV).

III. PROPOSED MODEL

A dynamic network G is defined as a sequence of graph
snapshots G = {G1,G2, . . . ,GK} evolving over K time steps.
For each time step k = 1, . . . ,K, the graph snapshot Gk is
denoted by Gk = (Vk, Ek,Xk), where Vk is the set of nk =
|Vk| nodes and Ek corresponds to the set of edges Ek. Xk ∈
Rnk×m is the node feature matrix, where each node has m
features. The k-th graph snapshot corresponds to a weighted
adjacency matrix Ak ∈ Rnk×nk , with Ak(u, v) > 0, for nodes
u and v ∈ Vk, if e(u, v) ∈ Ek. The problem of dynamic
graph representation learning is to compute the latent node
representation matrix Zk ∈ Rnk×d at each time step k =
1, . . . ,K, with d� m. The computed node representations in
Zk should capture the evolution of the graph up to the time
step k, on condition that the pairwise node representations
similarities approximate the adjacency matrix Ak [8].

An overview of the architecture of the proposed model is
illustrated in Figure 2. For a streaming event up to the k-th
time step, we consider k sequentially coupled GCN models.
Each GCN model has L convolutional layers. The inputs of
the first convolutional layer of each GCNk model are (i) the
adjacency matrix Ak, (ii) the node feature matrix Xk and
(iii) the parameter weight matrix W1

k−1 ∈ Rm×d1 at the first
convolutional layer of the previous GCNk−1 model, with d1
being the dimensionality of the latent node representations
produced by the first convolutional layer. To capture the graph
structure evolution, the self-attention mechanism is applied on
the previous parameter weight matrix W1

k−1 for calculating
the parameter weight matrix W1

k ∈ Rm×d1 at the first layer
of each GCNk model, by taking into account how much the
nodes’ neighborhoods have been preserved when transitioning
from time step k−1 to k. The output of the proposed model is
the final latent node representation matrix Zk = ZL

k ∈ Rnk×d,
generated by the top (L-th) layer of the last GCNk model,
with d = dL being the dimensionality of the final latent node
representations.

In the rest of this Section we first introduce the baseline
GCN model [16] on static graphs in Section III-A, and then
present the proposed model in Section III-B. Finally, we
outline the learning strategy of our model in Section III-C.

A. Graph Convolutional Network

As the baseline GCN model [16] is designed to process
static graphs, for clarity we omit the time index k for all
the graph variables in this Section. A GCN consists of l =
1, . . . , L convolutional layers, stacked sequentially as shown
in Figure 2. This means that the input of the l-th layer is the
output of the previous l− 1 layer. The reason for considering
multiple convolutional layers is to sequentially aggregate the
high-dimensional node representations to their neighborhood
and embed nodes with similar representations into a signifi-
cantly low-dimensional latent space [16]. Therefore, the GCN
model takes as input a normalized adjacency matrix Â ∈
Rn×n, where n is the number of nodes. To compute the low-
dimensional latent node representations Zl ∈ Rn×dl at each
convolutional layer l, we aggregate the latent representations
Zl−1 ∈ Rn×dl−1 of the node neighborhood at the previous
l − 1 convolutional layer, with dl < dl−1, as follows:

Zl = f(ÂZl−1Wl) (1)

where Â is a symmetrically normalized adjacency matrix
which is defined as:

Â = D−1/2ÃD−1/2

Ã = A+ I
D = diag

(∑
j A(u, v)

) (2)

and f is a non-linear activation function, such as ReLU(x) =
max(0, x). The activation function at the last (L-th) layer is
the linear function f(x) = x. In Equation (1), the parameter
weight matrix Wl ∈ Rdl−1×dl computes the latent node
representations Zl at the l-th layer. At the last L-th convo-
lutional layer, the parameter weight matrix WL ∈ RdL−1×dL

is used to compute the final latent node representation matrix
ZL ∈ Rn×dL . For simplicity, we set Z = ZL and d = dL.
Note that the input of the first convolutional layer is the node
feature matrix X ∈ Rn×m. If the graph does not have node
features, as it happens in ours graphs during the live video
streaming events, the node feature matrix X is replaced by
the identity matrix I ∈ Rn×n, with m = n.

B. VstreamDRLS

The input of the self-attention mechanism in each GCNk

model is the parameter weight matrix W1
k−1 at the first layer

of the previous GCNk−1 model and the adjacency matrix Ak.
Provided that in our setting holds m = nk, thus W1

k−1 ∈
Rnk×d1 , ∀ node v ∈ Vt we calculate the parameter weight
vector W1

k(v) ∈ Rd1 of the GCNk model as follows:

W1
k(v) = ELU

( ∑
u∈Nv

αu,vHkW
1
k−1(u)

)
(3)



Fig. 2. Overview of the architecture of the proposed VStreamDRLS model for k consecutive graph snapshots. Each GCN model consists of L convolutional
layers. To capture the graph structure evolution, the parameter weight matrix W1

k at the first convolutional layer of each GCNk model is calculated based
on the self-attention mechanism on the parameter weight matrix W1

k−1 of the previous GCNk−1 model and the adjacency matrix Ak . The output of the
proposed VStreamDRLS model is the final latent node representation matrix Zk = ZL

k at the top L-th layer of the last GCNk model.

where Nv = {u ∈ Vt : (v, u) ∈ Et} is the neighborhood
set of node v at the graph snapshot Gt based on the adjacency
matrix Ak, and ELU is the Exponential Linear Unit activation
function. Variable Hk ∈ Rd1×d1 is the transformation matrix
that needs to be learned for the weight matrices W1

k and
W1

k−1 at the first convolutional layers of the GCNk and
GCNk−1 models. To measure the importance of the neighbor
u to the node v in Equation (3), we perform self-attention on
the nodes u and v, by applying the attention weight αu,v to
the transformed weight vector HkW

1
k−1(u) ∈ Rd1 , as shown

in Equation (3). The attention weight αu,v corresponds to the
normalized value of the attention coefficient cu,v , calculated
based on the softmax function [17], [21] as follows:

αu,v =
exp(cu,v)∑

w∈Nv
exp(cw,v)

cu,v = σ
(
Ak(u, v) · a>k [HkW

1
k−1(u) ‖ HkW

1
k−1(v)]

)
(4)

where σ is the sigmoid function, Ak(u, v) is the edge weight
of nodes u and v ∈ Vk, and a ∈ R2d1 is the 2d1-dimensional
parameter vector in the self-attention mechanism. Symbol ‖
denotes the concatenation operation.

Higher attention weights αu,v reflect on more important
neighbors when the graph evolves over time. This means
that high attention weights correspond to neighbors that are
preserved over consecutive snapshots, whereas low attention
weights are computed for neighbors that are not maintained
over the graph evolution. In practice, during a live video
streaming event this means that high attention weights cor-
respond to neighbors with a high network capacity over con-
secutive snapshots, whereas low attention weights are assigned
to neighbors with a low network capacity.

In Equation (4), the attention coefficient cu,v expresses the
difference between two consecutive graph snapshots. The co-
efficient value between node v and its neighbor u is decreased
when the graph snapshots significantly differ. In doing so,
our model forgets the previous weight vector W1

k−1(v) when

the neighbors of node v significantly change. Otherwise, the
attention coefficients have high values which reflect on the
importance of the connection between node v and its neighbor
u. In doing so, we are able to attend the evolution of the graph
and directly reflect this evolution on the parameter weight
matrix W1

k of each GCNk model.

C. Learning Strategy

Provided k = 1, . . . ,K graph snapshots during a live
video streaming event, in our model we have to train k
consecutive GCN models, simultaneously. Instead of con-
sidering all the k different graph snapshots/time steps, in
practice in our implementation we consider a time window
w < k. Therefore, our model consists of w consecutive GCN
models {GCNk−w, . . . , GCNk}. As we will show later in
Section IV-E considering all the k different time steps does not
necessarily pay off in terms of the link prediction accuracy.
In doing so, we also avoid to compute k different GCNs, thus
highly reducing the complexity of our model.

As aforementioned, within a time window w the GCN
models {GCNk−w, . . . , GCNk} are connected in a sequen-
tial manner via the weights W1

k−1 and W1
k at the first

convolutional layers of two consequtive GCNs. Each GCNk

model takes as input the adjacency matrix Ak, the node
features Xk and the parameter weight matrix W1

k−1 at the
first convolutional layer of the previous GCNk−1 model.
Note that the parameter weight matrix W1

1 of the first GCN1

model is randomly initialized. When training our model,
each GCNk model updates the respective weight matrix W1

k

according to the attention mechanism in Equation (3) and then
computes the final node latent representation matrix Zk based
on Equation (1). To train our model and compute the final node
latent representation matrix Zk, we formulate the following
Root Mean Square Error loss function with respect to Zk:



min
Zk

L =

√√√√ 1

nk

∑
v∈Vk

∑
u∈Nv

(
f
(
Z>k (u)Zk(v)

)
−Ak(u, v)

)2

(5)
where f is the ReLU activation function and the term(
Z>k (u)Zk(v) − Ak(u, v)

)
expresses the prediction error of

how well the neighborhood Nv of node v is preserved in the
d-dimensional node representations Zk(u) and Zk(v), when
compared with the connections/links in the adjacency matrix
Ak(u, v).

In Algorithm 1, we present the steps to learn the final
latent node representations at time step k, given a window
size w. The inputs of VStreamDRLS model are the w ad-
jacency matrices {Ak−w, . . . ,Ak}, and the feature matrices
{Xk−w, . . . ,Xk}. The output of our model is the final node
latent representation matrix Zk. To train our model, the goal is
to minimize the loss function L in Equation (5), with respect to
the final node latent representation matrix Zk. At the beginning
of the training, the w different transformation matrices Hk are
randomly initialized [26]. In lines 2-4, we calculate the param-
eter weight matrix W1

k, also requiring to recursively compute
the w previous weight matrices W1

k−1, W1
k−2,. . . ,W1

k−w
based on Equation (3). In line 5, we convolute the adjacency
matrix Ak with the weights W1

k based on Equation (1) to
generate the final node latent representation matrix Zk. In
lines 6-7, we calculate the loss function L, and optimize
the parameters Hk−w, . . . ,Hk based on the backpropagation
algorithm with the Adam optimizer [27]. We repeat the process
in lines 1-8 until the algorithm convergences, and compute the
final node latent representation matrix Zk.

Algorithm 1 VStreamDRLS model
Input: {Ak−w, . . . ,Ak}, {Xk−w, . . . ,Xk−w}
Output: Zk

Initialisation : {Hk−w, . . . ,Hk}
1: repeat
2: for (i = k − w to k) do
3: W1

i = CalculateWeights(Ai,W
1
i−1,Hi)

4: end for
5: Zk = GCN(Ak,Xk,W

1
k)

6: L = loss(Zk, Ak)
7: {Hk−w, . . . ,Hk} ← UpdateParameters(L)
8: until convergence
9: return Zk

IV. EXPERIMENTS

A. Datasets

Our evaluation datasets were generated by two real live
video streaming events, operated on two different enterprise
networks. We refer to the generated datasets as LiveStream-
400 and LiveStream-20K. Both datasets are anonymized and
we made the generated graphs publicly available.

LiveStream-400 is a weighted undirected graph with 386
viewers/nodes and 61, 125 connections/edges in total. The
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Fig. 3. Edge’s evolution over the graph snapshots in (a) LiveStream-400
and (b) LiveStream-20K. In the parentheses we denote the respective nodes’
evolution.

viewers were equally distributed to 7 different offices around
the world and each viewer attended the video streaming event
for maximum an hour. The dataset consists of 12 graph snap-
shots, collected every 5 minutes during the video streaming
event. To generate this dataset, we modified the distribution
software, so as to remove the connectivity limitation that each
viewer/node has, which means that there was no limitation of
how many connections the viewers could establish. In doing
so, the number of viewers participated into the live video
streaming event was on purpose limited to 400, so that our
video distribution software has no negative impact on the
customer’s experience in the real video streaming event.

LiveStream-20K was generated based on an unmodified
video distribution software provided by our company and
each viewer had a connectivity limitation of maximum 7
connections. The dataset consists of 20, 357 viewers/nodes and
812, 810 connections/edges in total over 12 graph snapshots.
The viewers were equally distributed to 25 different offices
and as in the previous dataset each viewer participated into
the event for maximum an hour.

In Figure 3 we report the edges’ evolution between two
consecutive time steps. The edges’ evolution is defined as (1−
|Ek−1∩Ek|
|Ek| ) · 100. If the edges’ evolution is equal to 100%,

then all edges have been changed when the graph has evolved
from time step k − 1 to k. Similarly, we compute the nodes’
evolution, reported in the parentheses of Figure 3. We can
observe that in both datasets, the edges and nodes significantly
change at the first time steps. This occurs because the majority
of the viewers emerged at the beginning of the video streaming
events. At the last time steps, where nodes are preserved over
consecutive snapshots, the edges’ evolution in both datasets is
in the range of 5-10%.

B. Evaluation Protocol

We evaluate the performance of our model in the link
prediction task on the generated graphs. In our experiments we
train our model on the graph snapshots until the time step k, to
predict the unobserved edges that will occur in the next graph
snapshots Gk+1, Gk+2, . . ., GK , that is all the connections/links
that the viewers/nodes will establish in the next time steps. For
each examined model at time step k, we generate a test set
with the unobserved edges in the next time steps, denoted by



Ok = EK\Ek, where EK is the set of all the edges in all the
K graph snapshots G1, G2, . . ., GK . Following the evaluation
protocol of [8], [15], we learn the node representation matrix
Zk for each time step k, and calculate the weight of an
unobserved connection/link o(u, v) ∈ Ok by concatenating the
representations Zk(u) and Zk(v), which are then fed into a
Multi-Layer Perceptron (MLP). We evaluate our experiments
in terms of Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE), which are defined as follows:

MAE =

∑
o(u,v)∈Ok

∣∣Z>k (u)Zk(v)−Ak(u, v)
∣∣

|Ok|

RMSE =

√√√√ 1

|Ok|
∑

o(u,v)∈Ok

(
Z>k (u)Zk(v)−Ak(u, v)

)2

Note that RMSE emphasizes more on larger errors on the link
prediction task than the MAE metric.

C. Compared Methods

In our experiments we examine the performance of the
following models:
• GraphSage2 [11] is a static graph representation learning

strategy that aggregates existing node representations to
generate representations for unobserved nodes via Ran-
dom Walks.

• DynVGAE [24] is a dynamic Joint-Variational AutoEn-
coder approach that shares weights between consecutive
variational graph AutoEncoders. As there is no available
implementation of DynVGAE, we implemented it from
scratch and we made the source code publicly available3.

• EvolveGCN4 [15] is a dynamic approach that employs
recurrent models between GCNs to capture the graph
evolution.

• DySAT5 [17] is a deep neural network approach with
stacked self-attention layers to capture the graph evolu-
tion.

• VstreamDRLS is the proposed model. For reproduction
purposes we made our source code publicly available.

For all the examined models we tuned the hyper-parameters
based on a grid selection strategy and report the results with
the best configuration. In Section IV-E we study the influence
of the window size w and the dimension d of the node
representations on the performance of each examined model.

D. Performance Evaluation

In Figure 4 we evaluate the performance of the examined
models in terms of MAE and RMSE. We observe that all
models achieve a lower prediction error in the LiveStream-
400 dataset than in the LiveStream-20K dataset. This occurs

2https://github.com/williamleif/GraphSAGE
3https://github.com/stefanosantaris/DynVGAE
4https://github.com/IBM/EvolveGCN
5https://github.com/aravindsankar28/DySAT
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Fig. 4. Performance evaluation in terms of (a)-(b) MAE and (c)-(d) RMSE
in the LiveStream-400 and LiveStream-20K datasets

because the LiveStream-400 graph is more dense than the
graph generated in LiveStream-20K. Due to the less sparse
connections/links over the time steps in LiveStream-400, the
examined graph representation learning approaches achieve
higher performance than in the LiveStream-20K dataset. Com-
pared to the dynamic approaches, GraphSage underperforms
in both datasets, as GraphSage learns node representations
from static graphs ignoring the graph evolution. This indicates
that capturing the graph evolution over the time steps has a
significant impact on the performance of the examined models
in the link prediction task.

The VStreamDRLS model outperforms the baseline strate-
gies demonstrating its ability to better capture the graph evo-
lution when predicting the unobserved links. The second best
model is DySAT in both evaluation datasets. DySAT utilizes a
self-attention mechanism to generate node representations via
stacked self-attention layers, aiming to capture periodical pat-
terns directly on the learned node representations. Instead, in
our model we perform self-attention on the GCN parameters,
that is on the weights between consecutive GCNs. In doing
so, VStreamDRLS attends the graph evolution and makes the
GCN of the last time step learn more accurate node repre-
sentations via the convolutional layers in a live video stream
event, where the graph snapshots significantly differ between
consecutive time steps. Therefore, compared to DySAT our
proposed model achieves 11.8 and 9.1% relative drops in
terms of MAE and RMSE, respectively in the LiveStream-
400 dataset. Similarly, the relative drops in LiveStream-20K
are 11.25 and 11% in terms of MAE and RMSE, respectively.
As RMSE emphasizes more on larger prediction errors than
MAE, the relative drop of the RMSE metric is higher in the
LiveStream-20K dataset than in LiveStream-400. This occurs

https://github.com/williamleif/GraphSAGE
https://github.com/stefanosantaris/DynVGAE
https://github.com/IBM/EvolveGCN
https://github.com/aravindsankar28/DySAT
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Fig. 5. Effect on RMSE when varying (a)-(b) the time window size w and
(c)-(d) the number of dimensions d of the generated node representations.

as the graph in LiveStream-20K evolves more frequently
than the graph in LiveStream-400, as illustrated in Figure 3.
Note that live video streaming events produce graphs that
frequently evolve over the time steps. Our proposed model
still outperforms the baselines in the LiveStream-20K dataset,
reflecting the relatively high performance of our model on the
real-world setting.

E. Parameter Analysis

Next, we perform a parameter sensitivity analysis of the
examined models. We first study the effect of the window size
w, that is the number of the previous graph snapshots that are
used to train the examined models. Therefore, at each time
step k, with k = 1, . . . ,K, the examined models exploit the
available information at the graph Gk and the w previous graph
snaphots. We vary the window size w from 1 to 5 by a step
of 1. In this set of experiments we report the average RMSE
over all the time steps for each model. Note that GraphSage is
a static graph representation learning approach which ignores
the previous graph snapshots. Therefore, we omit GraphSage
from this parameter analysis.

On inspection of Figures 5 (a)-(b) we observe that all the
baseline approaches achieve lower RMSE when they learn
node representations using w = 2 previous graph snapshots.
Increasing the window size to w > 2 negatively affects the per-
formance of the baselines, as more graph snapshots introduce
noise to the learning process of their models, provided that
in both evaluation datasets the generated graphs significantly
change over consecutive time steps. In addition, decreasing
the window size to w = 1 prevents the baseline models
from capturing the evolution of the graph more accurately.
Instead, the proposed VStreamDRLS model achieves the best

performance when the window size is equal to w = 3 for both
datasets. Setting a larger time window w in our model than
in the baselines indicates that our VStreamDRLS model is
able to filter out the noise of the fast evolving nodes/edges
over the graph snapshots. As a consequence the proposed
model generates more accurate node representations than the
baselines. As explained in Section III-B, this happens because
our self-attention mechanism captures the evolution of the
graph via the weights of the GCN parameters.

In the next set of experiments presented in Figures 5 (c)-
(d), we examine the influence of the number of dimensions
d of the generated node representations Zk. We observe that
GraphSage requires a high number of dimensions to achieve
a relatively high performance, however, significantly increas-
ing the computational cost when learning the model. In the
LiveStream-400 dataset, the proposed VStreamDRLS model
requires a lower number of dimensions than the second best
method DySAT, that is d = 16 dimensions for VStreamDRLS
and d = 32 dimensions for DySAT. In the LiveStream-20K
dataset, the best configuration for both VStreamDRLS and
DySAT is when setting d = 64. Thus, both the size of the
graph and the vastly evolving behavior in the LiveStream-
20K dataset require a higher number of dimensions of the
node representations than in LiveStream-400.

F. Discussion

Summarizing, our model consistently outperforms the base-
line approaches in both evaluation datasets. In addition, the
proposed VStreamDRLS model learns node representations
using a higher window size w than the baselines. The main
challenge of considering more graph snapshots (larger values
of w) is to filter out the noise of the fast evolving nodes/edges
in a live video streaming event. This is achieved by our model
based on the proposed self-attention mechanism to transfer
the weight parameters between consecutive GCN models.
As a consequence, our model removes the noise during the
learning process of the node representations when the graphs
significantly evolve.

Distributing high-quality live video content is a network
demanding process with enterprise networks having several
bandwidth limitations. Therefore, accurately predicting the
network capacity between viewers is essential for distributing
the video streaming content. This means that achieving low
link prediction errors in terms of MAE and RMSE may offer
to enterprises a solution to improve the user experience by
providing content with significantly high resolution, such as
4K videos [28]. Instead, graph representation learning models
that underperform and provide less accurate network capacity
predictions have negative impact on the performance of video
streaming, as the video content will be erroneously distributed
to viewers at different offices and increase the network traffic
[29]–[32]. Provided that the duration of a real-world live video
streaming event lasts an hour on average, an accurate dynamic
graph representation learning model plays an essential role in
the distribution of a live video streaming event. In practice,
an accurate model can significantly reduce the required time



for each viewer to discover and establish connections with
other viewers, so as to efficiently distribute the live video
streaming content. Moreover, the proposed VStreamDRLS
model is a video streaming technology that can distribute the
video content without a prior knowledge of the enterprise
network. Finally, our solution complies with the GDPR, as
it predicts the network capacity without using any personal
information such as the viewers’ IP addresses.

V. CONCLUSIONS

In this study, we presented a dynamic graph representation
learning model for live video streaming technologies on large
enterprise networks, namely VStreamDRLS. To the best of our
knowledge we are the first who formulated the distribution
of live video streaming events as a problem of dynamic
graph representation learning. A key factor of our model is
to design a self-attention mechanism and transfer the weight
parameters between consecutive GCNs, so as to capture the
graph evolution and produce accurate node representations.
Our experimental evaluation demonstrates the superiority of
our model over other state-of-the-art strategies in two real-
world datasets, generated by real live video streaming events
on enterprise networks. Moreover, we showed that VStream-
DRLS can leverage information from more historical graph
snapshots than the baselines strategies, indicating that our
model is capable of efficiently filtering out the noise, produced
by consecutive graph snapshots with significant differences.
Finally, for reproduction purposes both datasets and the imple-
mentation of our model are publicly available. An interesting
future direction is to study the performance of the proposed
model on evolving social networks, by taking into account
how users emerge and establish connections over time.
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