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Abstract

To study the effects of Online Social Network (OSN) activity on real-
world offline events, researchers need access to OSN data, the reliability
of which has particular implications for social network analysis. This re-
lates not only to the completeness of any collected dataset, but also to
constructing meaningful social and information networks from them. In
this multidisciplinary study, we consider the question of constructing tra-
ditional social networks from OSN data and then present a measurement
case study showing how the reliability of OSN data affects social network
analyses. To this end we developed a systematic comparison methodology,
which we applied to two parallel datasets we collected from Twitter. We
found considerable differences in datasets collected with different tools and
that these variations significantly alter the results of subsequent analyses.

Our results lead to a set of guidelines for researchers planning to collect
online data streams to infer social networks.



1 Introduction

Online activities can be associated with dramatic offline effects, such as COVID19
misinformation leading to panic buying of toilet papeIEL online narratives incor-
rectly attributing Australia’s “Black Summer” bushfires to arson amplifying
attention to it in the media [1], and attempts to influence domestic and foreign
politics |2/3]. For researchers to successfully analyse online activity and provide
advice about protection from such events, they must be able to reliably analyse
data from online social networks (OSNs).

Social Network Analysis (SNA) facilitates exploration of social behaviours
and processes. OSNs are often considered convenient proxies for offline social
networks, because they seem to offer a wide range of data on a broad spectrum
of individuals, their expressed opinions and inter-relationships. It is assumed
that the social networks present on OSNs can inform the study of information
dissemination and opinion formation, contributing to an understanding of of-
fline community attitudes. Though such claims are prevalent in the social media
literature, there are serious questions about their validity due to an absence of
SNA theory on online behaviour, the mapping between online and offline phe-
nomena, and the repeatability of such studies. In particular, the issue of reliable
data collection is fundamental. Collection of OSN data is often prone to inac-
curate boundary specifications due to sampling issues, collection methodology
choices, as well as platform constraints.

Previous work has considered the question of data reliability from a sampling
perspective [4H7], biases [8-11] and the danger of making invalid generalisations
using “big data” approaches lacking nuanced interpretation of the data [12}[13].
Analyses of incomplete networks exist [14], but this paper specifically considers
the questions of data reliability for SNA, considering not only the significance
of online interactions to discover meaningful social networks, but also how sam-
pling and boundary issues can complicate analyses of the networks constructed.
Through an exploration of modelling and collection issues, and a measurement
study examining the reliability of simultaneously collected, or parallel, datasets,
this multidisciplinary study addresses the following research question:

How do variations in collections affect the results of social network
analyses?

Our work makes the following contributions:

1. Discussion of the challenges mapping OSN data to meaningful social and
information networks;

2. A methodology for systematic dataset comparison;

3. Recommendations for the use and evaluation of social media collection
tools; and

Thttps://theconversation.com/coronavirus-why-people-are-panic-
buying-loo-roll-and-how-to-stop-it-133115



4. Two original social media datasets collected in parallel, and relevant anal-
ysis codd?}

This paper continues with four sections: 1) challenges obtaining and mod-
elling social networks from OSN data for SNA; 2) systematic parallel dataset
comparison methodology; 3) results from using our methodology in a two-phase
case study; and 4) recommendations for social media researchers and analysts,
and directions for future research.

2 Social networks from social media

Using SNA to explore social behaviours and processes from OSN data presents
many challenges. Most easily accessible OSN data consists of timestamped in-
teractions, rather than details of long-standing relationships, which form the
basis of SNA theory. Additionally, although interactions on different OSNs are
superficially similar, how they are implemented may subtly alter their interpre-
tation. They offer a window onto online behaviour only, and any implications
for offline relations and behaviour are unclear. Beyond modelling and reason-
ing with the data is the question of collection — accessing the right data to
construct meaningful social networks is challenging. OSNs provide a limited
subset of their data through a variety of mechanisms, balancing privacy and
competitive advantage with openness and transparency.

2.1 Interactions and relationships online

SNA provides concepts and tools to model social networks among actors and
using network-based techniques to study social behaviours and processes [15].
Given the availability, nature and structure of much OSN data, they offer unique
opportunities to apply SNA. Relationships between social network actors must
be stable, though they may be dynamic [16H18]. On social media, accounts can
easily fulfil the role of actors, but precisely what constitutes a relationship is
unclear. A common semi-permanent candidate is the friend or follower rela-
tionship common to most OSNs, but, due to how OSNs present their specific
features to users, each online community develops its own interaction culture.
Therefore, such connections do not necessarily easily translate between OSNs.
Is a Facebook friendship really the same as a follow on Twitter, even if recip-
rocated? And how do each relate to offline friendships?

OSNs offer ways to establish and maintain relations with others. Specific
interactions may be visible to different accounts, intentionally or incidentally (cf.
replying versus using a hashtag). Exploration of these differences may lead to an
understanding of the author’s intent and the identity of the intended audience.
Is replying to a politician’s Facebook post a way to connect directly with the
politician, or is it a way to engage with the rest of the community replying to
the post, either by specifically engaging with dialogue or merely signalling one’s

%https://github. com/weberdc/socmed_sna
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presence with a comment of support or dismay? A reply could be all of these
things but, in particular, it is evidence of engagement at a particular time and
indicates information flow between individuals [19]. Since most interactions
are directed they offer an opportunity to study the flow of information and
influence. On the other hand, although friend and follower connections can
indicate community membership, they obscure the currency of that connection.
Through their dynamic interactions, a user who liked a Star Wars page ten
years ago can be distinguished from one who not only liked it, but posted
original content to it on a monthly basis. Therefore, we specifically focus on
interactions rather than membership relations in this study.

2.2 Social Network Analysis theory

Relationships between individuals in a social network may last for extended
periods of time, vary in strength, and be based upon a variety of factors, not all
of which are easily measurable. Because of the richness of the concept of social
relationships, data collection is often a qualitative activity, involving directly
surveying community members for their perceptions of their direct relations
and then perhaps augmenting that data with observation data such as recorded
interactions (e.g., meeting attendance, emails, phone calls). It is tempting to
believe that this richness should be discoverable in the vast amount of interaction
data available from OSNs, but there are issues to consider:

1. links between social media accounts may vary in type and across OSNs —
it is unclear how they contribute to any particular relationship;

2. what is observed online is only a partial record of interactions in a rela-
tionship, where interactions may occur via other OSNs or online media,
or entirely offline; and

3. collection strategies and OSN constraints may also hamper the ability to
obtain a complete dataset.

Although many interactions seem common across OSNs (e.g., a retweet on Twit-
ter, a repost on Tumblr and a share on Facebook), nuances in how they are
implemented and how data retrieved about them is modeled (beyond questions
of semantics) may confound direct comparison. For example, a Twitter retweet
refers directly to the original tweet, obscuring any chain of accounts through
which it passed to the retweeter [§]. There are efforts to probabilistically re-
generate such chains [20L21], but, in any case, is one account sharing the post
further evidence of a relationship? What if it is reciprocated once, or three
times? What if the reciprocation occurs only over some interval of time? These
questions require careful consideration before SNA can be applied to OSN data.

2.3 Challenges obtaining OSN data

Social media data is typically accessed via an OSN’s Application Programming
Interfaces (APIs), which place constraints on how true a picture researchers can



form of any relationship. Via its API an OSN can control: how much data is
available, through rate limiting, biased or at least non-transparent sampling,
and temporal constraints; what types of data are available, through its data
model; and how precisely data can be specified, through its query syntax. Many
OSN s offer commercial access, which provides more extensive access for a price,
though use of such services in research raises questions of repeatability [8]. This
is done to protect users’ privacy but also to maintain competitive advantage.
Researchers must often rely on the cost-free APIs, which present further issues.
Twitter’s 1% Sample API has been found to provide highly similar samples to
different clients and it is therefore unclear whether these are truly representative
of Twitter traffic [6,[7]. Studying social media data therefore raises questions
about the “the coverage and representativeness” [5, p.17] of the sample ob-
tained and how it therefore “affects the networks of communication that can be
reconstructed from the messages sampled” [5, p.17].

Empirical studies have compared the inconsistencies between collecting data
from search and streaming APIs using the same or different lists of hashtags.
Differences have been discovered between the free streaming API and the full
(commercial) “firehose” API [4]. There is general agreement in the literature
that the consistency of networks inferred from two streaming samples is greater
when there is a high volume of tweets even when the list of hashtags is differ-
ent [5]. More concerning is the ability to tamper with Twitter’s sample API
to insert messages [10], introducing unknown biases at this early stage of data
collection [9,/11].

Taking a purely “big data” approach can also lead to inappropriate gener-
alisations and conclusions [12}[13]. This is well illustrated, for example, by the
range of motivations behind retweeting behaviour including affirmation, sar-
casm, disgust and disagreement [13]. Similarly, in the study of collective action,
there are important social interactions that occur offline [22]. Furthermore, rely-
ing solely on observable online behaviours risks overlooking passive consumers,
resulting in underestimating the true extent to which social media can influence
people [23].

OSN APIs provide data by streaming it live or through retrieval services,
both of which make use of OSN-specific query syntaxes. Conceptually, therefore,
there are two primary collection approaches to consider: 1) focusing on a user
or users as seeds (e.g., [24,[25]) using a snowball strategy [26] and 2) using
keywords or filter terms (e.g., [2,[3L/25,127]). Focusing on seeds can reveal the
flow of information within the communities around the seeds, while a keyword-
based collection provides the ebb and flow of conversation related to a topic.
These approaches can be combined, as exemplified by Morstatter et al. [25] in
their study of the 2017 German election: an initial keyword-based collection was
conducted for eleven days to identify the most active accounts, the usernames
of which were then used as keywords in a six week collection.

Once a reasonable dataset is obtained, there may be benefit in stripping
junk content included by automated accounts such as bots [28]. The question
of whether to remove content from social bots (bots that actively pretend to be
human) depends on the research question at hand; because humans are easily



fooled by social bots [27], their contribution to discussions may be valid (unlike,
e.g., that of a sport score announcement bot).

3 Methodology

Our initial hypothesis was that if the same collection strategies were used at
the same time, then each OSN would provide the same data, regardless of the
collection tool used. Consequently, social networks built from such data using
the same methodology should be highly similar, in terms of both network and
node level measurements. Our methodology consisted of these steps:

1. Conduct simultaneous collections on an OSN using the same collection
criteria with different tools.

2. Compare statistics across datasets.

3. Construct sample social networks from the data collected and compare
network-level statistics.

4. Compare the networks at the node level.

5. Compare the networks at the cluster level.

3.1 Scope

The scope of this work includes datasets obtained via streaming APIs rather
than those aggregated through progressively expanding searches, such as fol-
lower networks. Such collections (especially follower networks) often require
data that is prohibitive to obtain, is immediately out of date, and provides no
real indication of strength of relationship, as discussed in Section Addi-
tionally, in the absence of a domain-focused research question, no particular
accounts would make sensible seeds, so we rely on keyword-based collections.

3.2 Data collection

Twitter was chosen as the source OSN due to the availability of its data, the
fact that the data it provides is highly regular [6], and because it has similar
interaction primitives to other major OSNs. In the interests of comparing a
proprietary collection tool with a baseline two tools were chosen:

Twarcﬂ is an open source library which wraps Twitter’s API, and provided
the baseline.

RAPID (Real-time Analytics Platform for Interactive Data Mining) |29] is
a social media collection and data analysis platform for Twitter and Reddit. It
enables filtering of OSN live streams, as well as dynamic topic tracking, meaning
it can update filter criteria in real time, adding terms popular in recent posts
and removing unused ones.

Shttps://github.com/DocNow/twarc
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Both tools facilitate filtering Twitter’s Standard live streanﬂ with keywords,
providing datasets of tweets as JSON objects.

3.3 Constructing social networks

A social network is constructed from dyads of pair-wise relations between nodes,
which in our case are Twitter accounts. The node ties denote intermittent re-
lations between accounts, inferred from observed interactions [17,/18]. Here,
we consider three social networks built from interaction types common to many
OSNs: ‘mention networks’, ‘reply networks’, and ‘retweet networks’ (e.g., retweets
are analogous to Facebook shares or Tumblr reposts, and replies analogous to
comments on posts on Reddit). We define a social network, G=(V, E), of ac-
counts u € V linked by directed, weighted edges (u;,u;) € E based on the
criteria below.

Mention Networks. Twitter users can mention one or more other users
in a tweet. In a mention network, an edge (u;, u;) exists iff u; mentions u; in a
tweet, and the weight corresponds to the number of times u; has mentioned u;.

Reply networks. A tweet can be a reply to one other tweet. In a reply
network, an edge (u;,u;) exists iff u; replies to a tweet by u;, and the weight
corresponds to the number of replies u; has made to u;’s tweets.

Retweet networks. A user can repost or ‘retweet’ another’s tweet on their
own timeline (visible to their followers). Though retweets are not necessarily
direct interactions [§], they can be used to determine an account’s reach. In a
retweet network, an edge (u;,u;) exists iff u; retweets a tweet by u;, and its
weight corresponds to the number of u;’s tweets u; has retweeted.

Examining networks built from the same dataset, replies (Figure are the
least common of the three interaction types, and all are dominated by a single
large component. Mention networks exhibit relatively high cohesiveness. The
similarity between retweets (Figure and mentions (Figure is because the
data model of a retweet includes a mention of the retweeted account.

Other network types can be constructed based on direct or inferred relations,
including shared use of hashtags or URLs, reciprocation or minimum levels
of interaction, or friend/follower connections. As our focus is on the social
relationships implied by direct interactions we will focus only on the above
three types of network construction here, however similar issues will certainly
arise in other applications, e.g., narrative analysis [30].

3.4 Analyses
3.4.1 Dataset statistics

To compare the parallel datasets we examined the following features:
Absolute counts: accounts, tweets, retweets, quotes, replies, URLs, hashtags,
and mentions; and

“https://developer.twitter.com/en/docs/tweets/filter-realtime/overview
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(a) Mentions. (b) Replies. (c) Retweets.

Figure 1: Sample networks of accounts built from 5 minutes of Twitter
data. Nodes may appear in one or more networks, depending on their be-
haviour during the sampled period. The diagrams were constructed with visone
(https://visone.info).

Highest counts: tweeting account, mentioned account, retweeted tweet, replied-
to tweet, used hashtags, and used URLs.

Based on these figures, we account for major discrepancies, which can guide
post-processing (e.g., spam filtering).

3.4.2 Network statistics

The following network statistics are used to assess differences in the constructed
networks: number of nodes, edges, average degree, density, mean edge weight,
component count and the size and diameter of the largest, Louvain cluster
count and the size of the largest, reciprocity, transitivity, and maximum k-cores.

3.4.3 Centrality values

Centrality measures offer a way to consider the importance of individual nodes
within a network. The centrality measures considered here include: degree cen-
trality, indicating how many other nodes one node is directly linked to; between-
ness centrality, referring to the number of shortest paths in the network that
a node is on and thus to what degree the node acts as a bridge between other
nodes; closeness centrality, which provides a sense of how topologically close
a node is to the other nodes in a network; and eigenvector centrality, which
measures how connected a node is to other highly-connected nodes.

Only centrality measures for mention and reply networks are considered, as
edges in retweet networks are not direct interactions [§].

Given the set of nodes in each corresponding pair of networks is not guaran-
teed to be identical, it is not possible to directly compare the centrality values
of each node, so instead we rank the nodes in each network by the centrality
values, take the top 1,000 from each list, further constrain the lists to only
the nodes common to both lists, and then compare the rankings. We initially
compare the rankings visually using scatter plots, where a node’s rank in the
first and second list is shown on the x and y axes, respectively. A statistical



measure of the similarity of the two rankings (of common nodes) is obtained
with the Kendall 7 coefficient. A 7 score of 0.4 is considered to indicate reason-
able similarity [32]. We also calculate Spearman’s p coefficient as a confirmation
measure.

3.4.4 Cluster comparison

The final step is to consider the clusters discoverable in the mention, reply and
retweet networks and compare their membership. We first compare the distri-
bution of the sizes of the twenty largest Louvain clusters [31] visually (chosen
because it works well with large and small networks [33]).

We use the Adjusted Rand index [34] to compare membership. This con-
siders two networks of the same nodes that have been partitioned into subsets.
When considered in pairs, there are nodes that appear in the same subset in
both partitions (a), and there are (many) pairs of nodes that do not appear in
the same subsets in either partition (b), and the rest appear in the same subset
in one of the partitions but not in the other. Defining the total of possible
pairings of the n nodes (%) as ¢, the Rand index, R, is simply R = “7“7.
The Adjusted Rand index (ARI) corrects for chance and provides a value in the
range [—1,1] where 0 implies that the two partitions are random with respect
to one another and 1 implies they are identical.

4 Experiment

4.1 Data collection

To obtain a moderately active portion of activity, we collected data from Twit-
ter’s Standard live streanﬂ relevant to an Australian television panel show that
invites its viewers to participate in the discussion liveﬂ A particular broadcast
in 2018 was chosen due to the expectation of high levels of activity given the
planned discussion topic. As a result, the filter keywords used were ‘qandaﬂ and
two terms that identified a panel member (available on request). We collected
two parallel datasets:

Part 1: Four hours starting 30 minutes before the hour-long programme,
to allow for contributions from the country’s major timezones; and

Part 2: From 6am to 9pm the following day, capturing further related online
discussions.

Twarc acted as the baseline collection as it provides direct access to Twitter’s
API, while RAPID was configured to use co-occurrence keyword expansion [29),
meaning it would progressively add keywords to the original set if they appeared
sufficiently frequently (five times in ten minutes). This expanded dataset was

5All data were collected, stored, processed and analysed according to two ethics protocols
#170316 and H-2018-045, approved by the University of Adelaide’s human research and ethics
committee.

SThe Australian Broadcasting Commission’s “Q&A” observes #QandA.

"The ‘#’ was omitted to catch mentions of ‘@Qganda’, the programme’s Twitter account.



referred to as ‘RAPID-E’ and was filtered back to just the tweets containing
the original keywords (and labelled ‘RAPID’) for comparison with the ‘Twarc’
dataset. We expected the moderate activity observed would not breach rate
limits, and thus RAPID should capture all tweets captured by Twarc. This was
not the case (Table [T).

Table 1: Summary dataset statistics.

Dataset All' Unique Retweets All Unique

Tweets Tweets Accounts  Accounts

Part 1 Twarc 27,389 11,481 14,191 7,057 2,090
(20:00-00:00) RAPID 15,930 22 8,744 4,970 3
RAPID-E 17,675 1,767 9,767 5,547 527

Part 2 Twarc 15,490 4,089 10,988 5,799 1,128
(06:00-21:00) RAPID 11,719 318 8,051 4,708 37
RAPID-E 23,583 12,180 13,679 8,854 4,007

4.2 Comparison of collection statistics

The first striking difference between the datasets was the number of tweets
collected and the effect on the number of contributors (Table [I). RAPID col-
lected fewer tweets by fewer accounts, but the datasets were close to subsets of
the Twarc datasets. Between 26% and 42% of the tweets collected by Twarc
were missed by RAPID, but the proportion of retweets in each part is similar
(52% and 55% for Part 1 and 69% and 71% for Part 2). In both parts, very
few accounts appear in only the RAPID collections. Discussions with RAPID’s
developers revealed it dumps tweets that miss the filter terms from the tex-
tual parts of tweets (e.g., the body, the author’s screen name, and the author’s
profile description). The extra tweets RAPID collected were relevant and in En-
glislﬁ (based on manual inspection) but posted by different accounts (unique to
RAPID-E). Of the tweets that RAPID collected which contained the keywords,
they were posted by almost the same accounts as Twarc, but simply did not
contain the same tweets.

The benefit of topic tracking via keyword expansion is yet to be strongly
evaluated, but this study indicates there are benefits (relevant tweets) as well
as costs (missed matching tweets). The rest of this analysis explores how much
of a difference it makes with regard to SNA.

Table [2] reveals that although feature counts vary significantly, many of the
most common values are the same (e.g., most retweeted tweet, most mentioned
account, most used hashtags). Many are approximately proportional to corpus

8Sometimes short or obscure filter terms, like ‘qanda’, have meanings in non-target lan-
guages.
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Table 2: Detailed dataset statistics.

Part 1 Part 2
RAPID Twarc | RAPID Twarc |
Tweets | 15,930 27,389 | 11,719 15,490 |
Quotes 325 1,203 498 1,232
Replies 1,446 2,067 1,715 1,731
Tweets with hashtags 10,043 15,591 3,912 3,961
Tweets with URLs 2,470 4,029 3,106 4,074
Most prolific account Account a;  Account a; | Account as  Account as
Tweets by most prolific account 103 146 57 68
Most retweeted tweet Tweet ty Tweet ty Tweet to Tweet to
Most retweeted tweet count 260 288 385 385
Most replied to tweet Tweet t3 Tweet t3 Tweet t4 Tweet t4
Most replied to tweet count 55 121 58 58
Tweets with mentions 11,314 18,253 10,472 13,514
Most mentioned account Account a4  Account ayg | Account ay  Account ay
Mentions of most mentioned account 2,883 3,853 2,753 2,752
Hashtags uses 15,700 23,557 7,672 7,862
Unique hashtags 1,015 1,438 960 1,082
Most used hashtag #qanda #qanda #qanda #qanda
Uses of most used hashtag 10,065 15,644 2,545 2,549
Next most used hashtag #auspol #auspol Fauspol F#auspol
Uses of next most used hashtag 1,381 2,103 1,652 1,349
URLs uses 913 1,650 1,602 2,411
Unique URLs 399 560 658 790
Uses of most used URL 49 128 71 81

size (Twarc is 1.72 and 1.32 times larger than RAPID for Parts 1 and 2, re-
spectively), but with notable exceptions and no apparent pattern. Some values
are remarkably similar, despite the size of the corpora they arise from being so
different. For example, Twarc picked up nearly 8,000 more hashtag uses than
RAPID in Part 1, but fewer than 200 more in Part 2. Both Part 1 datasets
have the top ten hashtags, in slightly different order. Approximately 5,000 of
the extra hashtag uses are of ‘#qanda’. In Part 2, again, the top ten hashtags
are nearly the same, but this time the usage counts are similar, except for ‘#aus-
pol’ being used 22% more often in RAPID (1,652 times compared with 1, 349),
which would account for the overall difference of 190 uses when combined with
the noise of lesser used hashtags.

4.3 Comparison of network statistics

Given the differences in datasets, we expect differences in the derived social
networks (Tables [3| and {4 [14]. Each network is dominated by a single large
component, comprising over 90% of nodes in the retweet and mention networks,
and around 70% in the reply networks. The distributions of component sizes ap-
pear to follow a power law, resulting in corresponding high numbers of detected
clusters.

Structural statistics like density, diameter (of the largest component in dis-
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Table 3: Part 1 network statistics.

RETWEET MENTION REPLY

RAPID Twarc ‘ RAPID Twarc ‘ RAPID Twarc
Nodes 3,234 4,426 4,535 6,119 1,184 1,490
Edges 7,855 12,327 | 13,144 19,576 1,231 1,631
Average degree 2.429  2.785 2.898  3.199 1.040  1.095
Density 0.001  0.001 0.001  0.001 0.001  0.001
Mean edge weight 1.113 1.151 1.268 1.300 1.175 1.267
Components 74 95 86 108 164 192
Largest component 3,061 4,115 4,326 5,819 829 1,081
- Diameter 12 12 10 11 15 15
Clusters 93 115 109 134 186 219
Largest cluster 318 540 731 1,348 169 229
Reciprocity 0.004  0.007 0.025  0.025 0.106  0.099
Transitivity 0.026  0.034 0.065  0.063 0.024  0.021
Maximum k-core 11 14 13 16 2 3

connected networks), reciprocity and transitivity may offer insight into social
behaviours such as influence and information gathering. The high component
counts in all networks lead to low densities and correspondingly low transi-
tivities, as the potential number of triads is limited by the connectivity of
nodes. That said, the largest components were consistently larger in the Twarc
datasets, but the diameters of the corresponding largest components from each
dataset were remarkably similar, implying that the extra nodes and edges were
in the components’ centres rather than on the periphery. This increase in in-
ternal structures improves connectivity and therefore the number of nodes to
which any one node could pass information (and therefore influence) or, at least,
reduces the length of paths between nodes so information can pass more quickly.
The similarities in transitivity imply the increase may not be significant, how-
ever, with networks of these sizes. Reciprocity values may provide insight into
information gathering, which often relies on patterns of to-and-fro communi-
cation as a person asks a question and others respond. Interestingly, the only
significant difference in reciprocity is in the Part 1 retweet networks, with the
Twarc dataset having a reciprocity nearly double that of the RAPID dataset
(though still small). The Twarc dataset includes 60% more retweets than the
corresponding RAPID dataset and 40% more accounts (Table [I)), which may
account for the discrepancy. Given the network sizes, the reciprocity values in-
dicate low degrees of conversation, mostly in the reply networks. Interestingly,
mean edge weights are very low (1.3 at most), implying that most interactions
between accounts in all networks happen only once, despite these being corpora
of issue-based discussions.

Next we look at two major categories of network analysis: indexing, for the
computation of node-level properties, such as centrality; and grouping, for the
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Table 4: Part 2 network statistics.

RETWEET MENTION REPLY

RAPID Twarc ‘ RAPID Twarc ‘ RAPID Twarc
Nodes 3,094 4,591 5,198 6,205 1,492 1,507
Edges 7,344 10,110 | 14,802 18,184 1,560 1,576
Average degree 2.043  2.202 2.848 2931 1.046  1.046
Density 0.001  0.000 0.001  0.000 0.001  0.001
Mean edge weight 1.096 1.087 1.245 1.222 1.099 1.098
Components 118 176 123 179 196 201
Largest component 3,308 4,085 4,854 5,612 1,073 1,080
- Diameter 12 11 10 10 15 15
Clusters 138 197 158 210 221 226
Largest cluster 471 727 1,090 1,513 122 123
Reciprocity 0.004  0.004 0.024  0.025 0.072  0.071
Transitivity 0.027  0.026 0.084  0.079 0.016  0.016
Maxmium k-core 9 10 11 14 3 3

computation of specific groups of nodes, such as clustering.

4.4 Comparison of centralities

Centrality measures can tell us about the influence an individual has over their
neighbourhood, though the timing of interactions should ideally be taken into
account to get a better understanding of their dynamic aspects (e.g., [35]).
If networks are constructed from partial data, network-level metrics (e.g., ra-
dius, shortest paths, cluster detection) and neighbourhood-aware measures (e.g.,
eigenvector and Katz centrality) may vary and not be meaningful [14].

We compare centralities of corresponding networks using scatter plots of
node rankings, as per Section (Figure . The symmetrical structures come
from corresponding shifts in order: if an item appears higher in one list, then it
displaces another, leading to the evident fork-like patterns. There is consider-
able variation in most centrality rankings for both mention and reply networks
in Part 1 (Figure but much less in Part 2 (Figure 2b)). Furthermore, the
relatively few common nodes in Part 1’s Twarc mention networks (521 to 585)
and greater edge count (Tables [3)) could indicate that the extra edges signifi-
cantly affect the node rankings. However, Part 2’s Twarc mentions networks
also had many more edges, but many more nodes in common (approximately
900). Thus it must have been how the mentions were distributed in the datasets
that differed, rather than simply their number. It is not clear that Part 1’s four
hour duration (¢f. Part 2’s 15 hours) explains this. Instead, if we look at the
11,480 tweets unique to Twarc in Part 1 (¢f. fewer than 4,000 are unique to
Twarc in Part 2, Table, only 622 are replies, whereas 6,915 include mentions.
There are also 34% more unique accounts in the Part 1 Twarc dataset, but only
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Figure 2: Centrality ranking comparison scatter plots of the mention and reply
networks built from the Q&A Parts 1 and 2 datasets. In each plot, each point
represents a node’s ranking in the RAPID and Twarc lists of centralities (com-
mon nodes amongst the top 1,000 of each list). The number of nodes appearing
in both lists is inset. Point darkness indicates rank on the z axis (darker =
higher).

19% more in the Part 2 Twarc dataset (Table . Each mention refers to one of
these accounts and forms an extra edge in the mention network, thus altering
the network’s structure and the centrality values of many of its nodes; this is
likely where the variation in rankings originates.

The Kendall 7 and Spearman’s p coefficients were calculated comparing the
corresponding lists of nodes, each pair ranked by one of the four centrality mea-
sures (Figure . Although somewhat proportional, it is notable how different
the coefficient values are, especially in Part 2. While Twarc produced more
tweets than RAPID (Table , and more unique accounts, the corresponding
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Figure 3: Centrality ranking comparisons using Kendall 7 and Spearman’s p
coefficients for corresponding mention and reply networks.

mention and reply node counts are not significantly higher (Tables and . In
fact, the node counts in the Part 1 reply networks are correspondingly lower
than in the Part 2 reply networks, even though both Part 2 datasets were
smaller. Edge counts in the mention networks were very different (Twarc had
many more) but were quite similar in the reply networks.

The biggest variation was in the mention networks from Part 1 (Figure
and Table 7 due to the large number of extra mentions from Twarc. It is
notable that the Kendall’s 7 was low for all mention networks (Figure [3)), espe-
cially for degree and closeness centrality. It is worth noting the minor differences
in the degree and immediate neighbours of nodes impacts degree and closeness
centralities significantly, and, correspondingly, their relative rankings. In con-
trast, rankings for betweenness and eigenvector centrality, which rely more on
global network structure, remained relatively stable.

4.5 Comparison of clusters

We finally compare the networks via largest clusters (Figure [4]). The reply
network clusters are relatively similar, and the largest mention and reply clusters
differ the most. The ARI scores confirm that the reply clusters were most similar
for Parts 1 and 2 (0.738 and 0.756, respectively), possibly due to the small size
of the reply networks. The mention and retweet clusters for Part 2 were more
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similar than those of Part 1 (0.437 and 0.468 compared to 0.320 and 0.350),
possibly due to the longer collection period. In Part 1, there is a chance the
networks are different due to RAPID’s expansion strategy. Changes to filter
keywords may have collected posts of other vocal accounts not using the original
keywords, at the cost of the posts which did.
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Figure 4: The largest retweet, mention and reply clusters.

5 Conclusion

RAPID and Twarc provided very different views of the Q&A Twitter discus-
sion. This manifested as variations in collection statistics, and network-level
and node-level statistics for various social networks built from the collected
data. The extra tweets collected by Twarc appear to have resulted in more
connections in the largest components. This may affect analysis of diffusion, as
reachability correspondingly increases. Deeper study of reply content is required
to inform discussion patterns.

How reliable social media can be as a source for research without deep knowl-
edge of the effects of collection tools on analyses is an open question. If a tool
adds value through analytics, what is the nature of the effect? This paper
provides a methodology to explore those effects.

We recommend the following to those using OSN data:

e Be aware of tool biases and their effects.

e Take care to specify filtering conditions with keywords that capture rele-
vant data and avoid irrelevant data. Beware of short terms and ones that
are meaningful in non-target languages.

e Check the integrity of data. We observed gaps in another case studies
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due to connection failures as well as the appearance of duplicate tweets,
identical in data and metadata.

Key for future social media research is to develop processes for repeatable
analysis. Currently, OSN terms and conditions often hamper researchers ex-
changing datasets, so new techniques cannot easily be evaluated on the same
data, raising questions of fair comparison.

Finally: Does it matter? As long as a researcher makes clear how they
conducted a collection and using what tools and configuration, does it not still
result in an analysis of behaviour that occurred online? Answer: It very much
depends on the conclusions being drawn. Yes, the collection represents real ac-
tivity that occurred, but it may not be complete, and conclusions drawn from
it may be unintentionally misinformed and lacking in nuance. Variations in
collections may affect centrality analyses and mislead influential account identi-
fication, which, depending on who uses the results of these analyses, may waste
effort attending to the wrong topics and/or accounts. A firm understanding of
the data and how it was obtained is therefore vital.
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