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Abstract—Network (or graph) sparsification compresses a
graph by removing inessential edges. By reducing the data
volume, it accelerates or even facilitates many downstream
analyses. Still, the accuracy of many sparsification methods,
with filtering-based edge sampling being the most typical one,
heavily relies on an appropriate definition of edge importance.
Instead, we propose a different perspective with a generalized
local-property-based sampling method, which preserves (scaled)
local node characteristics. Apart from degrees, these local node
characteristics we use are the expected (scaled) number of wedges
and triangles a node belongs to. Through such a preservation,
main complex structural properties are preserved implicitly.
We adapt a game-theoretic framework from uncertain graph
sampling by including a threshold for faster convergence (at least
4 times faster empirically) to approximate solutions. Extensive
experimental studies on functional climate networks show the
effectiveness of this method in preserving macroscopic to meso-
scopic and microscopic network structural properties.

Index Terms—Graph sparsification, edge sampling, triads

I. INTRODUCTION

Network science facilitates the study of various complex
systems. Apart from physically (e.g., technological networks)
or conceptually (e.g., social networks) connected entities, time
series data from different contexts can be analyzed by relating
nodes to each other that are correlated in some way. For
example, in climate science, by treating locations on earth as
nodes and establishing edges between nodes according to the
corresponding time series, climate data are represented as net-
works [1] (= graphs, we use both terms interchangeably). The
resulting objects are often referred to as functional networks.

Due to the large size of many real-world networks, down-
stream analyses, such as visualization and structural queries,
can be time-consuming or even prohibitive. A natural solution
often seen in the literature is to discard a large proportion
of possibly redundant edges by sparsification (without the
aggregation of nodes). Under the basic premise of preserving
essential network properties, it allows a faster and sometimes
even more accurate analysis of the available network data [2].

Which properties to preserve with the subgraph resulting
from sparsification, depends on the application context. Theo-
retical work considered, among others, spectral properties such
as eigenvalues [3], requiring the solution of many Laplacian
linear systems. For practical applications, alternative objectives
that can be computed faster are often preferred. Typically, this
happens by sampling the edges to be preserved in the sparser

subgraph G∗ according to some probability distribution. The
simplest one is uniform sampling, which preserves a type of
restricted spectral property with high probability [4]. Other
sampling methods aiming at preserving structural properties
were systematically compared in [2]. The general sampling
process used there contains two primary steps: edge scoring
and filtering. Edge scoring assigns each edge a value that
describes how ‘essential’ it is; filtering then removes all edges
with scores below a certain threshold such that the network is
compressed to a desired ratio.

By preserving degree- and subgraph-based local properties,
one can reconstruct complex properties of a given network [5,
6]. This is also true for functional networks. In particular, it
has been shown for general networks that a node’s importance
correlates with its degree as well as with the number of
triangles and wedges it belongs to [7]. Motivated by this,
we want to sparsify the input graph G such that these three
measures above are preserved in expectation – just scaled
appropriately with the sparsification ratio.

To the best of our knowledge, there is limited work closely
related to this objective. Zeng et al. [8, 9] formulate a similar
approach as an optimization problem, but they preserve only
the expected degrees – which seems overly myopic. Since
triads (connected 3-node-subgraphs) play an important role in
(functional) networks, we thus transfer results from uncertain
graph sampling [10, 11, 12] to network sparsification. In
uncertain graphs, the objective is to sample a representative
instance from the set of all possible instances. We adapt this
idea for sampling edges such that the three desired node
properties above are retained in expectation. Although the
preservation of subgraphs could be extended to larger sizes,
the computational cost can be prohibitive above three [11].

The contributions of this paper are as follows: We propose
a scaled local-property-based (degrees and 3-node subgraphs)
edge sampling, adapted from uncertain graph sampling, for
network sparsification. This new perspective of sparsification
relaxes the dependency on a specific edge-scoring method.
To this end, we adapt a game-theoretic framework [11] and
experiments demonstrate that our focus on scaled local prop-
erties usually leads to a better preservation of more complex
properties than other state-of-the-art sparsification methods.
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TABLE I
LIST OF SYMBOLS.

Symbol Definition

G = (V,E, p) An undirected network with |V | nodes, |E| edges, and confidence values p : E → (0.95, 1] associated with the edges
p(S) The generic contribution of each edge to form the final sparse structure, by multiplying a scaling factor S ∈ [0, 1]

G∗ = (V,E∗) The final sparse subgraph after edge sampling with |V | nodes, |E∗| edges
G′ = (V,E′) The current subgraph during edge sampling with |V | nodes, |E′| edges
l = 2, 3, w The basic local properties associated with each node to be preserved, i.e., l = 2 for degree, l = 3 for triangles, and/or l = w for wedges
ml(u,G) The possible degree of node u and possible number of triangles and wedges u belongs to based on G
|Ll(u,G)| The maximum possible degree of node u and maximum possible number of triangles and wedges u belongs to based on G

E[ml(u,G)] The expected degree of node u and expected number of triangles and wedges u belongs to based on G
ml(u,G

′) The current degree of node u and current number of triangles and wedges u belongs to based on G′

∆ml(u,G
′) The distance, for node u, between the current local properties ml(u,G

′) based on G′ and the corresponding expectations E[ml(u,G)]

∆ml=2,3,w(G′) The total distance of the current G′ to the expectation, summarized over l = 2, 3, w and over all nodes V

II. PROBLEM DEFINITION

A. Preliminaries

Let G = (V,E, p) be an undirected network, where V is the
set of nodes and E ⊆ V ×V is the set of edges. Let p : E →
(0, 1] be an assigned probability to indicate the confidence
on the existence of an edge. We consider p particularly for
functional networks in this paper, which is why we restrict
the range of p to (0.95, 1]. They are usually constructed in
a statistical manner with high confidences (more details see
Section IV-A) from time series. If p(e) = 1 ∀e ∈ E, then
the constructed network is called deterministic. For the most
common symbols used throughout this work, see Table I.

The sparse network G∗ = (V,E∗) after edge sampling is
a subgraph of G. Both have the same number of nodes as
we do not consider node aggregation. To obtain G∗ in the
desired way, we first need to derive scaled degrees, triangles,
and wedges associated with nodes. The basic idea is that
each edge in G contributes to the emergence of observed
structural properties, such as degree distribution and com-
munity structure. By scaling down the contribution, one can
expect the corresponding properties to be scaled similarly.
To this end, we include a scaling factor S ∈ [0, 1] with
p
(S)
e={u,v} := p(e) × S ∀e ∈ E, which implicitly determines

the ratio of preserved edges after sparsification.
Since now edges are attached with probabilities, G∗ should

eventually conform well with the scaled structural properties
of G in expectation. That is, we can define the expected degree
of a node and the expected number of triangles and wedges the
node belongs to, as the scaled local properties to specifically
indicate the optimization goal. We also note that the expected
number of wedges is often not as important as the (more
prominent) expected number of triangles. Therefore, whether
to preserve both the expected number of triangles and wedges
associated with nodes depends on the application context.

B. Sparsification via scaled local properties

To expand on [8, 9] and to take more than local degrees into
account, we further consider 3-size subgraphs and propose a
normalized definition of network sparsification. The expected

Fig. 1. An example of network sparsification via scaled local-property-
based edge sampling in this work. (a) The original undirected network G
with p(S) = p = 1 (see Section II-A) as the confidence on the existence of
each edge, indicating that each edge fully contributes to the formation of this
network. (b) The scaled contribution is assumed to be p(S) = p× S = 0.7.
For example, the expected degree of A and the expected number of triangles
that A belongs to become E[ml=2(A,G)] = p

(S)
A,B+p

(S)
A,C+p

(S)
A,D+p

(S)
A,E =

2.8 and E[ml=3(A,G)] = p
(S)
A,B×p

(S)
A,C×p

(S)
B,C = 0.343 (see Section II-B),

respectively. (c) The final sparse network G∗ obtained by considering the
scaled node properties in (b) as the optimization objective (see Section II-B)
and by using the adapted heuristic method GST2,3 (see Section III).

degree of a node and the expected number of triangles and
wedges the node belongs to have been defined in the context
of uncertain graphs [11] and can also be applied here.

For a given G and a randomly selected node u, all
possible neighbors of u form the set Ll=2(u,G) = {v :
{u, v} ∈ E} with |Ll=2(u,G)| being the degree of u in
G. Given p(S), the corresponding set containing edge con-
tributions is p

(S)
l=2(u,G) = {p(S)

u,v : {u, v} ∈ E}. Simi-
larly, all possible triangles that u belongs to form the set
Ll=3(u,G) = {{u, v, x} : {u, v}, {u, x}, {v, x} ∈ E}. The
maximum possible number of triangles that u can have in
G∗ hence is |Ll=3(u,G)| and we also have p

(S)
l=3(u,G) =

{{p(S)
u,v , p

(S)
u,x, p

(S)
v,x} : {u, v}, {u, x}, {v, x} ∈ E}.

By assuming the independence of edge probabilities [10],
the expected degree of u as well as the expected number
of triangles and wedges that u belongs to (respectively), are
derived using the linearity of expectation as [11]:

E[ml=2(u,G)] :=

|p(S)
l=2(u,G)|∑
i=1

p
(S)
l=2(u,G)i (1)

E[ml=3(u,G)] :=

|p(S)
l=3(u,G)|∑
i=1

3∏
j=1

p
(S)
l=3(u,G)j (2)
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E[ml=w(u,G)] :=
1

2

(
E[ml=2(u,G)2]− E[ml=2(u,G)]

)
− E[ml=3(u,G)]

(3)

where i and j iterate over the members of the sets p
(S)
l=2(u,G)

and p
(S)
l=3(u,G), respectively. An example for the calculation

of Eqs. (1) and (2) is given in Figure 1b. For Eq. (3), if we
let X be a discrete random variable with X = ml=2(u,G) =
{xi|xi ∈ [0, |Ll=2(u,G)|]}, then it represents all possible de-
grees of u during the edge sampling process. To obtain E[X2],
we calculate Pr(X = xi) by using dynamic programming
based on p

(S)
l=2(u,G) [13].

In a sparse subgraph G∗, each node should be as close
as possible to its expected basic local properties. For this, we
define the normalized distance from the current degree (l = 2)
of u and the current number of triangles (l = 3) and wedges
(l = w) that u belongs to in G′, to their expectations:

∆ml(u,G
′) :=

1

|Ll(u,G)|
|ml(u,G

′)− E[ml(u,G)]| (4)

where 1
|Ll(u,G)| is a normalization factor to distinguish the

positions of different nodes. It emphasizes that the sparsifica-
tion by edge sampling is built on top of the original network.
Note that previous studies [8, 9, 10, 11] ignore this factor. We
demonstrate its importance in Section IV-C. The total distance
for a subgraph G′ is therefore defined as:

Definition 1. Given an undirected network G = (V,E, p) and
scaled local properties (on the expected degree of each node
and the expected number of triangles and wedges each node
belongs to) to be preserved, the distance of any subgraph G′ ⊆
G to its overall expectation is:

∆ml=2,3,w(G′) :=
∑
u∈V

∑
l=2,3,w

∆ml(u,G
′) (5)

The network sparsification problem via edge sampling is
therefore defined as:

Definition 2. (Sparsification via scaled local properties).
Given an undirected network G = (V,E, p), find a subgraph
G∗ = (V,E∗) such that:

G∗ := argmin
G′⊆G

∆ml=2,3,w(G′) (6)

By default, this is meant as the argmin for all three
properties together. In our experiments, we will also look
at subsets thereof (degrees and triangles), though. According
to Ref. [10], for l = 2 this problem is a special case of
the closest vector problem, which is NP-hard [14]. As our
problem is a generalization, it is NP-hard, too. We hence
aim at providing heuristic solutions that are fast and accurate
enough for practical purposes.

III. THE GAME-THEORETIC SPARSIFICATION WITH
TOLERANCE (GST)

Parchas et al. [11] proposed a game-theoretic framework
for uncertain graph sampling. It consists of an exact potential

game with convergence to a Nash equilibrium based on best-
response dynamics [15]. We adapt this framework to sparsifi-
cation and include a tolerance factor that allows to terminate
when the progress is below a user-specified threshold.

The basic idea is that each edge e = {x, y} ∈ E in a given
G is modeled as a player involved in an exact potential game.
In this game, the gain change in the individual cost function
is reflected in a global potential function. Specifically, each
edge decides whether to be preserved (binary states: 1 for
preservation) in the final sparse graph G∗. Suppose that the
decision of e changes the current G′ = (V,E′) into G′′ =
(V,E′′); the current state of e is updated only if this leads to
a positive gain change (g(e) > 0), which is defined as [11]:

g(e) :=
∑
u∈V

∑
l=2,3,w

(∆ml(u,G
′)−∆ml(u,G

′′)), (7)

where the sum of ∆ml(u,G
′) is the gain (or the distance to the

overall expectation) of e by retaining its current state, while
the sum of ∆ml(u,G

′′) is the gain of e by changing its state.
The result is the overall gain change resulting from the global
potential function where each node u ∈ V is involved. Recall
that we consider basic local properties: degrees and 3-node
subgraphs (wedges and triangles). Only a limited number of
nodes are therefore affected by a change in e in Eq. (7). These
nodes include x, y, and common neighbors of x and y in G′,
forming a set we denote as L(e). Therefore, as proved in [11],
Eq. (7) is equivalent to:

g(e) :=
∑

v∈L(e)

∑
l=2,3,w

(∆ml(v,G
′)−∆ml(v,G

′′)) (8)

which represents the change of the individual cost function.
The equivalence of Eqs. (7) and (8) ensures that this game
is an exact potential game. The best-response dynamics –
that each edge repeatedly changes its state based on the
decisions of all others – on the exact potential game guarantees
the convergence to a Nash equilibrium [15]. That is, if the
corresponding algorithm models this process, it will terminate.

Algorithm 1 presents the pseudocode of GST, which models
such an exact potential game. We emphasize again that al-
though we consider by default the preservation of the expected
number of wedges (l = w) in GST, empirical studies still need
to compare two cases: with and without l = w. The inputs
include an undirected network G and two important values,
the tolerance T for early termination and the scaling factor
S for sparsification. Stage I (lines 1-5) computes the expected
local properties based on G and S. The computation of Eqs. (1)
and (2) are parallelized since they need only local information.
Stage II initializes the current subgraph G′ with the entire set
E in line 6. The ml(u,G

′) in line 8 are therefore exactly the
same as |Ll(u,G)| for l = 2, 3, w. Lnew represents the set of
all affected nodes and is initialized with the entire set V . We
include another array Gain[|V |] for recording ∆ml=2,3,w(G′)
during iterations. Starting from line 10, the algorithm proceeds
in rounds. In each round, given an edge e incident to a node
in L, it first finds all affected nodes in G′ by the decision of e.
That is, L(e) includes x, y, and common neighbors of x and
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Algorithm 1: Game-theoretic sparsification with toler-
ance (GST)

Input: An undirected network G = (V,E, p), tolerance factor
T = 0.01, scaling factor S ∈ [0, 1]

Output: G∗ = (V,E∗)
// Stage I (The expected basic properties)

1 p(S) ← p× S
2 for u ∈ V do in parallel
3 Compute Eqs. (1) and (2), |Ll=2(u,G)|, and |Ll=3(u,G)|
4 for each u ∈ V do
5 Compute Eq. (3) and |Ll=w(u,G)|

// Stage II (Sparsification)
6 E′ ← E
7 for u ∈ V do in parallel
8 ml(u,G

′)← |Ll(u,G)| (l = 2, 3, w, respectively)

9 Lnew ← V ; Gain[|V |]← 0; r ← 0
10 repeat
11 L← Lnew; Lnew ← ∅
12 for each e = {x, y} ∈ E incident (in G) to a node in L do
13 L(e)← {x, y} ∪ {u ∈ V : {u, x} ∈ E′ ∧ {u, y} ∈ E′}
14 Compute g(e) by Eq. (8)
15 if g(e) > 0 then
16 if e ∈ E′ then
17 E′ ← E′ \ {e}; Lnew ← Lnew ∪ L(e)

18 else
19 E′ ← E′ ∪ {e}; Lnew ← Lnew ∪ L(e)

20 r ← r + 1; Gain[r]← ∆ml=2,3,w(G′)
21 until r ≥ 2 and Gain[r − 1]−Gain[r] ≤ T
22 return E∗ ← E′

y in G′. Then, it computes g(e) induced by assuming that e
changes its current state. If e ∈ E′ and the removal of e leads
to a positive g(e), then e changes from 1 to 0. If e /∈ E′ and
the preservation of e gives a positive g(e), then e switches
from 0 to 1. The iteration stops based on the progress in the
gain in relation to the threshold T .

Regarding (sequential) time complexity, we note for Stage
I that computing Eq. (1) takes O(|E|) time. When computing
triangles, we use a merge-based intersection operation between
u and each of its neighbors, since each node already has
a sorted neighbor set. Computing Eq. (2) therefore takes
O(dmax|E|) time in total, where dmax = max{|Ll=2(u,G)| :
u ∈ V } is the maximum (possible) degree in G. According
to [16], an even tighter bound is O(a(G)|E|), with a(G)
being the arboricity of G. Computing Eq. (3) via dynamic
programming also takes O(dmax|E|) time. Hence, the total
time complexity of Stage I is O(dmax|E|).

Stage II depends mostly on the time spent on the repeat-
loop. Finding L(e) involves a linear-time intersection opera-
tion with O(dmax) time each for two already sorted neighbor
sets. For similar reasons as in Stage I, the for-loop takes
O(dmax|E|) time (per iteration of the repeat-loop). Stage
II therefore needs O(rdmax|E|) in total, where r is the
number of iterations of the repeat-loop. Thus, in total, the
time complexity of Algorithm 1 is O(rdmax|E|). We show
in Section IV-B how the tolerance threshold T affects the
convergence positively. Moreover, we present in Section IV-D
the empirical running times of both stages.

IV. APPLICATIONS TO CLIMATE DATA

We assess the performance of GST by answering the
following three questions in Secs. IV-B, IV-C, and IV-D,
respectively:
Q1: How well does GST generate a sparse G∗ preserving

scaled local properties?
Q2: How well does GST generate a sparse G∗ preserving non-

local / complex properties?
Q3: How is the running time of GST?

A. Experimental settings

(1) Climate data sets. Our particular focus on climate data
is mainly driven by studies of complex climate phenomena
using complex networks during the last two decades. The re-
constructed functional climate networks can be large especially
when a high spatial resolution is considered. Four functional
networks are summarized in Table II. If p = 1, then the
corresponding networks are completely deterministic:
• Glo ERA5SP: we use the time series of daily surface

level pressure (SP) within the June-July-August season
from 1998 to 2019 from ERA5 reanalysis data [17], with
the global spatial resolution of 1◦ × 1◦. The functional
network reconstruction process is adapted from [18]
by viewing grid points as nodes and using Spearman
correlation as the similarity between time series.

• Glo ERA5ST: it is the same as Glo ERA5SP, but using
daily surface level temperature (ST) [17].

• Glo TRMM: we consider the observational data of global
precipitation from Tropical Rainfall Measuring Mission
3B42v6 product (TRMM) [19]. Time series represent the
daily rainfall sums within the June-July-August season
from 1998 to 2019 with a spatial resolution of 1◦×1◦. As
precipitation data are spiking series, we adopt event syn-
chronization (ES) as a nonlinear similarity measure [20].
By treating grid points as nodes, the reconstruction pro-
cess is the same as in [1].

• ASM TRMM: it is the same as Glo TRMM, but focuses
on a relatively small region, i.e., the Asian summer
monsoon (ASM) region, instead of the global scale.

(2) Baselines. We compare GST with four baselines. Zeng
et al. [8, 9] studied preserving the expected degree of each
node and adapted two approximate methods similar to those
in uncertain graph sampling [11]. Parchas et al. [11] concluded
that among all approximate methods they proposed, the game-
theoretic framework generates better representative instances.

TABLE II
CHARACTERISTICS OF DATA SETS

Network Nodes (|V |) edges (|E|) |E|
|V | Edge confidence (p)

Glo ERA5SP 7,320 593,736 81.11 1
Glo ERA5ST 7,320 882,102 120.51 1
Glo TRMM 36,000 2,139,214 59.42 [0.99, 1]

ASM TRMM 20,000 1,771,609 88.58 [0.99, 1]
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We directly adapt this framework for network sparsification.
In particular, GST2 preserves only the scaled degrees and cor-
responds to [8, 9]. Therefore, the first comparison is between
GST2 and our extensions GST2,3/GST2,3,w, where 3 and w
denote 3-node subgraphs (triangles and wedges, respectively)
associated with each node (see Section IV-B). Other three
well-known sampling methods are local degree (LD) [2], local
jaccard similarity (LJS) [21], and random edge (RE) [4] (see
Section IV-C). We choose them due to their effectiveness
in preserving the overall connectivity (by LD), community
structure (by LJS), and spectral property (by RE), at least
in non-functional networks. They have been systematically
compared in [2] and implemented in NETWORKIT [22], a tool
suite for scalable network analysis.

(3) Evaluation metrics. For Q1, we analyze the extent to
which the expected degree and the expected number of 3-node
subgraphs associated with each node are preserved, even when
bearing some loss with the inclusion of a tolerance threshold T
in GST. The four measures below are used (see Section IV-B):
• Node-wise distance distribution: ∆2,3,w(G∗) =

∆ml=2(u,G∗) + ∆ml=3(u,G∗) + ∆ml=w(u,G∗).
It represents the summarized overall distance of the
local properties (degrees, triangles, and wedges) for
each node in the generated G∗ to the expectation.
Hence, ∆2,3,w(G∗) is a sequence of length |V |. The
minimization of the sum of ∆2,3,w(G∗) over all nodes
corresponds to the objective of Eq. (6).

• Mean distance: ∆2,3,w(G∗) = 1
|V |
∑|V |

1 ∆2,3,w(G∗).
• Convergence of mean distance: ∆2,3,w(G′) =

1
|V | (∆ml=2(u,G′) + ∆ml=3(u,G′) + ∆ml=w(u,G′)).
This measure is designed for convergence analysis, since
it is based on the current G′ (at line 20 of Algorithm 1)
instead of G∗.

• Cumulative time: total time spent until the current iter-
ation (lines 10-25 in Algorithm 1), also for empirical
convergence analysis.

For Q2, the following property queries are considered:
macroscopic: the global clustering coefficient and largest con-
nected component; mesoscopic: community structure and be-
tweenness centrality; microscopic: degree and local clustering
coefficient. Both mesoscopic and microscopic queries have
been applied in functional climate network analysis [1, 18].
In particular, computing the exact betweenness values is in
practice very expensive for the unsparsified network. There-
fore, we use ApproxBetweenness from NETWORKIT [22] with
a guarantee that the error is no larger than 0.01, with a
probability of at least 0.9. Measures used to estimate the
similarity between the properties calculated from G∗ and G
are (see Section IV-C):
• Average Deviation [2]: we analyze the deviation of the

macroscopic properties in G∗ from those in G, because
these properties are single-valued representations.

• Average Adjusted rand index (ARI) [23]: this one is
particularly used for giving the similarity between two
clusterings obtained based on the final sparse network

G∗ and the original network G, respectively.
• Average Spearman rank correlation coefficient [2]: micro-

scopic properties are node-wise representations, therefore
similarities are estimated using correlation with a signif-
icance level of P < 0.01.

The estimation process is as follows. Taking the comparison
between GST2,3(T = 0.01) and LD as an example, we first
generate 100 sparse networks G∗ for a given G, based on
GST2,3(T = 0.01). Then, another 100 sparse networks, say
LDG∗ , are created by using LD with the preservation ratio
of edges calculated based on the edge ratio between G∗ and
G. Assuming the query on community structure, we apply
the parallel Louvain method [24] from NETWORKIT [22] to
G, G∗, and LDG∗ , respectively. We then compute the ARI
between the highest-quality (out of 100 repeated runs) commu-
nity structures obtained from G and each G∗; the same process
is applied to G and each LDG∗ . One can notice that it is hard
to ensure that one edge sampling method outperforms the rest
for all of these property queries. Therefore, we need additional
measures summarizing all queries, instead of checking them
one by one (see Section IV-C):

• Ranking distribution: for each given scaling factor S, each
query task gives a ranking between GST, LD, LJS and
RE, from 1 to 4. We summarize all rankings of each
method for different S and property queries.

• Mean ranking: the mean of all rankings of each method.

For Q3, to give a fair comparison between GST, LD, LJS,
and RE (see Section IV-D), we choose a single-threaded
environment without parallelization. The comparison shows
the average running time over 100 runs.

B. Basic property preservation

We show the distribution of ∆2,3,w(G∗) using boxplots and
∆2,3,w(G∗) in Figures 2, 3, 4 and 5. The preservation scenar-
ios which include 3-node subgraphs (triangles and wedges) are
highlighted with hatches (see GST2,3 and GST2,3,w). Regard-
ing Q1, we conclude that preserving both the expected degrees
and the expected number of 3-node subgraphs generates sparse
structures closer to the expectation than only considering
degrees. This fact holds even when the tolerance is set to
T > 0. From here on we focus only on GST2,3 and GST2,3,w.

As for the convergence and cumulative time of GST, due
to limited space, we show the result for Glo ERA5SP as
an example in Figure 6; results for the other three networks
are similar to this one. When the tolerance T = 0.01 is
empirically given, the convergence of ∆2,3,w(G′) strictly
follows the convergence trajectories of T = 0, as it should
be. The final running times of GST2,3(T = 0.01) and
GST2,3,w(T = 0.01) (blue circles) are at least 4 times faster
than that of GST2,3(T = 0) and GST2,3,w(T = 0) (blue
triangles). More importantly, the qualities of the final sparse
structure by T = 0.01 (the last black circles) are still quite
close to those of T = 0 (the last black triangles).
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Fig. 2. The distribution (left y-axis) and mean (right y-axis) of ∆2,3,w(G∗)
based on G∗, versus different preservation scenarios for Glo ERA5SP.
Boxplots show how close 0%, 25%, 50%, 75% and 95% nodes are to their
expected local properties (2, 3, and w for degrees, triangles, and wedges,
respectively). The suffixes of GST represent the local properties chosen to
be preserved. (a) GST(S=0.2, T = 0). (b) GST(S=0.2, T = 0.01). (c)
GST(S=0.9, T = 0). (d) GST(S=0.9, T = 0.01). (a) and (b) produce
a sparser structure due to a smaller S. This figure indicates the benefit of
preserving both the expected degree of each node and the expected number
of 3-node subgraphs each node belongs to.

Fig. 3. Same as Figure 2 but for Glo ERA5ST.

Fig. 4. Same as Figure 2 but for Glo TRMM.

Fig. 5. Same as Figure 2 but for ASM TRMM.

Fig. 6. The convergence (∆2,3,w(G′)) and cumulative time of GST
base on the current G′, versus the number of iterations r for
Glo ERA5SP. (a) GST2,3(S=0.2). (b) GST2,3(S=0.9). (c) GST2,3,w(S=0.2).
(d) GST2,3,w(S=0.9). Only GST2,3 and GST2,3,w are given here since
Figures 2, 3, 4 and 5 confirme the better performance when 3-node subgraphs
(triangles and wedges) are considered for preservation. This figure indicates
the inclusion of the tolerance factor T = 0.01 (blue circles) facilitates (at
least 4 times faster) the convergence of GST while guaranteeing the quality
of the final sparse structure close to T = 0 (black circles).

Fig. 7. Comparisons between GST2,3(T = 0.01), LD, LJS and RE on
six structural queries for Glo ERA5SP. Each scaling factor on the x-axis is
attached with the exact ratio of preserved edges in brackets. The GST2,3(T =
0.01) is highlighted in red. This figure indicates that there is no single method
that performs better for all of these queries.
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Fig. 8. The ranking distribution and mean ranking of GST (GST2,3(T =
0.01) and GST2,3,w(T = 0.01)), LD, LJS and RE, summarized over six
property queries for four networks. (a) and (b) Glo ERA5SP. (a) is also
the summarized rankings of Figure 7. (c) and (d) Glo ERA5SP. (e) and (f)
Glo TRMM. (g) and (h) ASM TRMM. For each network, the best sampling
method is highlighted with hatches and the red dash line is the median of
the ranking distribution. This figure indicates that the overall performance of
GST by preserving both scaled degrees and 3-node subgraphs is better than
filtering-based approaches LD, LJS, and RE.

Fig. 9. The ranking distribution and mean ranking of GST2,3(T = 0.01)
and UNGST2,3(T = 0) (the unnormalized version by removing 1

|Ll(u,G)|
from Eq. ( 4), summarized over six structural queries for Glo ERA5SP. GST is
highlighted with hatches in boxplots and the median of the ranking distribution
is shown with red dash lines. This figure indicates the necessity of including
a normalization factor for better performance.

C. Complex property preservation

As for property queries, how to compare the similarity
estimates obtained for different queries is not obvious, as
mentioned in Section IV-A. We therefore give such a similarity
result only for Glo ERA5SP as an example in Figure 7,
and focus on overall rankings in Figure 8. In Figure 7,
GST2,3(T = 0.01) and GST2,3,w(T = 0.01) are quite
good at preserving degrees (see Figure 7c), which can be
expected due to the explicit preservation of scaled degrees.
Although Hamann et al. [2] concluded that LD is best for
preserving the overall connectivity of a network, we here see
from Figures 7a and 7b that LJS is even better. This should
be due to different network structures in different domains.
They use mostly social networks, while we focus on functional
climate networks. Another noteworthy point is that for a
given scaling factor S, only similarity estimates of community
structure show a slightly larger variance. This suggests the
stability of all these sampling methods applicable for practical

Fig. 10. The running times of GST, LD, LJS and RE. For each network, GST
chooses the best preservation scenario based on Figure 8. (a) Glo ERA5SP
with GST2,3(T = 0.01). (b) Glo ERA5ST with GST2,3(T = 0.01). (c)
Glo TRMM with GST2,3,w(T = 0.01). (d) ASM TRMM with GST2,3(T =
0.01). Clearly, Stage II dominates the running time of GST. This figure
indicates that in spite of a higher running time, GST can be applied to large-
scale networks.

scenarios. Still, comparing different queries in Figure 7 is not
conclusive due to the diverse performance of the different
methods. We thus summarize Figure 7 in Figure 8a by using
their rankings.

In Figure 8a, GST2,3(T = 0.01) ranks first in the com-
parisons of both median (red dash lines) and mean (blue
dots) rankings. From Figure 8, one can conclude that, for
a given G, a good performance of GST2,3(T = 0.01) does
not guarantee that GST2,3,w(T = 0.01) also has a similarly
good performance. For example, GST2,3(T = 0.01) works
better for Glo ERA5SP, Glo ERA5ST, and ASM TRMM,
while GST2,3,w(T = 0.01) is better for Glo TRMM and
ASM TRMM. We conjecture that this is due to the diversity
of different network structures, as we expected in Secs. II-A
and III. Nonetheless, either one of our two methods is always
the best. Thus, preserving both scaled degrees and 3-node
subgraphs yields a sparser graph that better preserves complex
properties overall. This answers Q2.

We also compare GST2,3(T = 0.01) with UNGST2,3(T =
0) to verify the necessity of including a normalization factor

1
|Ll(u,G)| in Eq. (4), where UNGST2,3(T = 0) is an unnormal-
ized version of GST by removing from Eqs. (4) and (8) this
normalization factor. The same estimation process based on
the above six property queries is adopted and the summarized
rankings are shown in Figure 9. UNGST2,3(T = 0) proceeds
until the final convergence instead of early convergence, since
T = 0. GST2,3(T = 0.01) still generates sparse networks with
a higher similarity to the original Glo ERA5SP properties.
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D. Running times

To answer Q3, we compare the running times of GST,
LD, LJS and RE in Figure 10. Taking G = Glo ERA5SP
as an example, GST2,3(T = 0.01) is chosen as the sampling
method based on Figure 8a. For each given scaling factor S,
GST2,3(T = 0.01) generates 100 sparse subgraphs G∗. We
calculate the average and deviation of running time for both
stages of Algorithm 1. The edge ratio between G∗ and G is
used for the initialization of LD, LJS, and RE, further to obtain
the corresponding running time.

According to [2], the running times of LD and LJS are
slightly slower than RE, which only takes linear time in the
number of edges. The running time of GST mainly depends
on the number of iterations r in Stage II, even with a tolerance
factor T included for early termination. In Figure 10, GST is
therefore roughly 19, 12, and 90 times slower than LD, LJS,
and RE, respectively. Nonetheless, GST is still applicable to
large-scale networks.

V. CONCLUSION

In summary, we proposed a different perspective (by pre-
serving scaled local node characteristics) from the general
filtering-based sampling methods for network sparsification.
Our empirical studies on functional climate networks verify
that the proposed method generates sparse subgraphs that
preserve the overall similarity to the original network in a
considerably better way.

As future work, we will further study the robustness of this
method in other network application scenarios as well as for
synthetic data. Which preservation of 3-node subgraphs (l =
2, 3 or l = 2, 3, w) one should choose for best results on a
wide range of unknown data sets remains as another issue not
fully settled yet.
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