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Abstract—A particular phenomenon of interest in Retail Eco-
nomics is the spillover effect of anchor stores (specific stores with
a reputable brand) to non-anchor stores in terms of customer
traffic. Prior works in this area rely on small and survey-
based datasets that are often confidential or expensive to collect
on a large scale. Also, very few works study the underlying
causal mechanisms between factors that underpin the spillover
effect. In this work, we analyze the causal relationship between
anchor stores and customer traffic to non-anchor stores and
employ a propensity score matching framework to investigate
this effect more efficiently. First of all, to demonstrate the effect,
we leverage open and mobile data from London Datastore and
Location-Based Social Networks (LBSNs) such as Foursquare.
We then perform a large-scale empirical analysis of customer visit
patterns from anchor stores to non-anchor stores (e.g., non-chain
restaurants) located in the Greater London area as a case study.
By studying over 600 neighbourhoods in the Greater London
area, we find that anchor stores cause a 14.2-26.5% increase
in customer traffic for the non-anchor stores reinforcing the
established economic theory Moreover, we evaluate the efficiency
of our methodology by studying the confounder balance, dose
difference and performance of the matching framework on
synthetic data. Through this work, we point decision-makers in
the retail industry to a more systematic approach to estimate
the anchor store effect and pave the way for further research to
discover more complex causal relationships underlying this effect
with open data.

I. INTRODUCTION

Retail store co-location is a widely studied problem in
the field of Economics [1]–[4]. A particular phenomenon of
interest is the anchor store effect. The idea of an anchor store
originates from large department stores which cover a wide
range of products which causes a spillover of shopper footfall
within its vicinity (i.e., to non-anchor stores). This can occur
due to multitudinous factors including but not limited to the
brand name, consumer awareness of the product prices and
their reduced commute costs per product category. Anchor
stores are advantageous to owners of small businesses and
malls alike as they can leverage the footfall from the anchor
stores’ brand name. Motivated by this, mall owners offer
discounted rents to anchor stores for being their tenants [5].

Previous studies mainly focus on the effect of large anchor
stores in malls on the sales and customer traffic of small

non-anchor tenants [3]. Several works [6], [7] have investi-
gated correlations between the rents paid by both anchor and
non-anchor tenants to the sales. Some other works [8], [9]
have conducted surveys on the prospect that customers in a
neighbourhood will visit a mall given the brand reputation
of its anchor tenants. However, these works only consider
mall-related variables which are insufficient for the study as
later empirical studies [10]–[12] demonstrate the effect of the
entrance of anchor stores on the retail trade at the town level.
Furthermore, Daunfeldt et al. [13] expostulate that these works
employ descriptive statistics to quantify the effects and do
not draw causal conclusions. Still, these works examine the
impact of anchor stores on retail sales, profit margins and
employment. The data for these variables is either under non-
disclosure agreements or cost-ineffective to acquire at a large
scale. This limits the studies to a specific retail brand, ignoring
the other anchor stores in the vicinity.

In this paper, we instead leverage publicly available user
mobility data generated by the location-based social networks
(LBSNs), Foursquare, and census data London Datastore
which covers observational data for 625 neighbourhoods
across Greater London over three years. We then estimate
the causal impact (i.e., change in customer traffic) of the
presence of anchor stores (e.g. Tesco, Sainsbury’s, Waitrose,
Lidl) on non-anchor stores located in the Greater London area
as a case study (Figure 1). In our initial causal analysis, we
focus on non-chain restaurants as a representative example of
non-anchor stores to narrow down the scope of this study.
Yet, our method is generalisable to any other type of non-
anchor store. Furthermore, we go beyond the mall-related
variables and consider several neighbourhood characteristics
that significantly impact customer traffic to retail stores [7].
Additionally, prior works either ignore these variables or fail to
consider their interdependence leading to biased conclusions
on the effect. In contrast, our work mitigates the aforemen-
tioned issue by employing a causality analysis framework
that handles the interdependence between variables before
performing the inference and drawing conclusions. To the best
of our knowledge, this is the first work to leverage data from
LBSNs and employ causal inference to demonstrate the effect
of anchor stores on increased customer traffic to neighbouring
non-anchor stores.
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Overall, the major contributions of this paper are:

• To the best of our knowledge, this is the first work to
employ observational data from an LBSN to perform a
large-scale causal study on this effect with over 1,583
anchor stores and 7,694 non-anchor restaurants in the
Greater London area by observing customer traffic over
three years.

• Based on a propensity score matching framework, we
study the effectiveness of the anchor store effect by con-
sidering neighbourhood characteristics such as population
density, disposable income, and transport accessibility
to further mitigate their confounding effect on customer
traffic to anchor stores and retail restaurants.

• Our results consistently demonstrate a 14.2-26.5% in-
crease in customer traffic in non-anchor stores with more
neighbouring anchor stores, reinforcing the well-known
economic concept. We further evaluate the significance
of these results through several metrics and performance
on synthetic data with known causal effects.

• Based on the findings of this work on the causal relation
between anchor stores and retail restaurants, we elaborate
on how our findings are useful to various beneficiaries.

II. RELATED WORK

We will first review previous works on anchor store effects
and then delve into the background of causality analysis.

Anchor Store Effect. Several works have investigated the
effect of anchor stores in malls on the sales and customer
traffic to non-anchor tenants [3]. [6], [7] study this impact by
finding the correlation between the rents paid by anchor stores
and non-anchor stores and [4] perform regression analysis on
the mall visitor traffic with respect to several independent
variables such as the total area of the commercial centre,
age, number of stores, number of anchor stores and their total
area. [7] suggests that variables beyond the walls of the mall
also affect customer traffic. Consequently, several empirical
studies [10]–[12] demonstrated the effect of the entrance of
anchor stores on retail trade at the town level. For example,
Davidson et al. [10] concluded that total revenues increase in
towns by 41% in Wal-Mart entry towns versus 28% in towns
which Wal-Mart did not enter. Yet, these works do not draw
causal conclusions as they quantify the effect using descriptive
statistics. Hence, Daunfeldt et al. [13] employ a propensity
score matching framework [14] to study the effect of the
entrance of IKEA stores in three municipalities in Sweden and
concluded a 7% increase in revenues to incumbent retailers.

However, these works study the impact of anchor stores
on variables such as revenues, profit margins, wages, etc.
which poses two key limitations: 1) the data is not available
for analytics due to non-disclosure agreements, and 2) The
data collection is laborious and cost-ineffective at a large
scale. These works limit themselves to a specific retail brand,
ignoring the other anchor stores in the vicinity. Thus, in this
work, we study the impact of anchor stores on customer traffic
by employing observational data from an LBSN which allows

us to study the impact of 1,583 anchor stores from several
retail brands on 7,694 restaurants in the Greater London area.

Causality Analysis. To ensure our findings’ robustness
and generalisability, we study the anchor store effect via
causality analysis, a long-standing research area that lies at
the heart of scientific discovery [15]. Randomised controlled
trial (RCT) is a widely accepted approach for performing this
analysis, especially in medicine and biology [16]. However,
it requires randomly assigning experiment subjects to treated
and controlled groups in customised experiments, which is
often expensive and infeasible. Several alternative frameworks
have addressed this by estimating the causal relationships
from observational data, which fall into three categories: 1)
Given the underlying causal diagram of observational data,
causal relation can be estimated with statistical methods, e.g.,
instrumental variables analysis [17], [18]. However, such a
causal diagram requires extensive expert knowledge and is
difficult to validate; 2) Under the assumption that we observe
all the confounding variables, simple regression analysis can
examine the causality in observational data [19], but these
approaches are sensitive to the selected functional forms of
the confounders. Even if we could observe all confounders,
we still face the common support problem where the covariate
space must align across all the subjects. 3) Another angle
is to estimate the result of RCT by matching each treated
subject with a controlled subject that has similar confounding
variables [20]. In this case, the complexity of the common
support problem is limited to the subjects in the matched pair.

In this paper, thus design a non-randomised study that
estimates the causal effect of an anchor store with a graphical
propensity score matching algorithm, which falls in the third
category mentioned above.

III. METHODOLOGY

Formally, the goal of this work is to study the effect of
the presence of anchor stores within the neighbourhood of
non-anchor stores on their customer visit patterns. In a causal
study, the units are the basic experimental objects belonging
to a larger collection of the population which in our case are
neighbourhoods in a large city. A highly relevant instance
is the Greater London area where the neighbourhoods are
analogous to its 625 wards1. The presence of the anchor stores
is the treatment denoted by Z, and customer visit patterns
to non-anchor stores, such as non-chain restaurants, is the
outcome denoted by Y .

We perform causality analysis by employing Rubin’s frame-
work of potential outcomes [15] which operates as follows.
Given a set of units U and a set of binary treatment levels
Z ∈ {0, 1}, we are interested in comparing the outcome of
applying each treatment level Y1(u) and Y0(u) for each unit u.
The average treatment effect (ATE) is then E(Y1(u)−Y0(u)).
Yet, the rudimentary problem of causal analysis is that both
the outcomes for a unit cannot be observed, especially in
our context. Therefore, a widely sought-after alternative [21],

1neighbourhoods, units and wards will now be used interchangeably



Fig. 1. Our problem formulation – studying the anchor store effects on non-chain restaurants. The number of anchor stores per restaurant (left) and the number
of tips per restaurant (right) are shown for each neighbourhood in the Greater London area. Data in 2012 are depicted, with the darker colour representing a
higher count of stores/tips per restaurant or vice versa.

[22] is a matching-based approach that determines the effect
of the treatment Z on the outcome Y by comparing pairs
of units with highly similar confounder variables or simply
confounders X . These variables describe certain fundamental
characteristics of the units that have a causal effect on the
treatment and outcome variables themselves. For example,
customer visit patterns to non-chain restaurants (outcome) can
be affected by not only the presence of the anchor stores (treat-
ment) but also by the population density of the neighbourhood
(confounder). Ignoring the effect of confounders is a funda-
mental fallacy in causality analysis. Once the confounders are
known, a similarity of distance metric for two units can be
defined based on their confounders. The final set of matching
M contains highly similar pairs of units (ut, uc) where the
treatment values of the pair are Z(ut) = 1 and Z(uc) = 0 and
no unit appears in more than one pair. The average treatment
effect (ATE) can be computed as

ATE =
1

|M |
∑

(ut,uc)∈M

Y (ut)− Y (uc) (1)

The remainder of this section addresses how we adapt the
matching framework to our problem based on one remark. The
causal framework has been described with binary treatment
levels, i.e. Z ∈ (0, 1). However, the treatment variable takes a
range of values in observational data for our problem and thus
binned into treatment levels or doses as shown in Table I.

A. Matching

This section details a graphical approach to match units
based on confounder similarity. We first construct a fully
connected graph G = (V,E) where the vertices are units. Each
edge (ui, uj , wij) ∈ E has a weight (wij) determined by the
distance metric based on the confounders of the units (ui, uj).
An optimal matching M ⊂ E is achieved by optimising:

argmin
M

1

|M |
∑

(ui,uj ,wij)∈M

wij (2)

where the maximum matching must be determined by the
lowest sum of edge weights. A matching M is called a

maximum matching if it includes the most edges from the
graph, i.e. for every matching M ′ of G, |M | ≥ |M ′|. In a
causal experiment, outcomes are only compared between units
from different treatment groups [20]. This can be achieved
by inducing a new graph G′ = (V,E′) from G by simply
dropping all edges in E where the connected units have the
same treatment level, i.e. E′ = {(ui, uj , wij) ∈ E : zi > zj .

B. Propensity Score

An appropriate choice of distance metric is paramount
for the quality of the matching. While euclidean distances
appear as obvious choices, they do not scale well with the
dimensionality of the confounders and there will be non-
uniform confounder distributions within the disjoint vertex sets
which not ideal. An alternative metric called propensity score
resolves this [14], which is defined as the probability that a unit
receives a particular treatment level given the confounders. The
propensity score function outputs the probability distribution
for each treatment level, hence the dimensionality is more
controlled compared to the dimensionality of the confounders.
Joffe and Rosenbaum [23] show that the propensity score must
satisfy the balancing property P (X = X(ui)|e(X(ui)), Z =
z) = P (X = X(ui)|e(X(ui)), Z = z′) for all combinations
of treatment levels (z, z′) where e is the propensity score
function. This is certainly the case when the propensity score
is described using the McCullagh’s ordered logit model [24]

log

(
P (zi >= d)

P (zi < d)

)
= θd + βTxi (3)

where βTxi is the propensity score for unit uiand d is
the treatment level. The parameter βT is estimated using
maximum likelihood to give the estimate β̂T . The propensity
score can now be incorporated into the edge weights of
the graph. To further incentivise the matching algorithm to
pair units with the maximised difference in treatments in
the multiple treatment level case, their treatments are also
integrated into the weights. The distance metric is thus

wij =
(β̂Txi − β̂Txj)

2 + ε

(zi − zj)2
(4)
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Fig. 2. Hierarchy of Foursquare venue categories. Original hierarchy has five
levels and more categories in each level but only two are shown.

where ε is a very small positive real number put into place
to mitigate the edge case where the confounders of two units
are the same which invalidates the edge with a zero weight.
With the graph and its edge weights now defined, the optimal
matching M is found using a weight version of the Edmond’s
Blossom algorithm [25] which optimises Equation 2. Finally,
the average treatment effect is calculated as follows

ATE =
1

M

∑
(ui,uj ,wij)∈M

yi − yj
zi − zj

(5)

IV. DATASETS

This section contextualises our problem by describing the
observation data collected and defining all the variables. The
datasets were obtained from the following two sources:

London Datastore2. The Greater London Authority main-
tains an open data-sharing portal that contains census data for
each neighbourhood including statistics such as demograph-
ics, employment, housing and transportation. The portal also
provides neighbourhood boundaries in the GeoJSON format.

Foursquare. The venue and tip data for the retail stores
were obtained through the LBSN platform Foursquare. Col-
lected by Chen et al. [26], the dataset consists of 19 million
tips for 13 million venues from around the world. Each venue
includes information such as the venue ID, name, location and
time of account creation. Venues are also assigned categories
such as “Restaurants”, “Bank”, and “Pharmacy” and these
categories have a hierarchical structure as depicted in Figure
2. Tips are timestamped texts written by users for venues.

Since the geography of our problem is limited to the Greater
London area, we initially filtered venues using the country
code field to shortlist all the venues that belong to the United
Kingdom. This significantly reduces the number of venues
from over 13 million to 272,079. These venues were assigned
to neighbourhoods based on whether any of the neighbourhood
boundaries enclosed their location (given by latitude and
longitude). The unassigned venues are consequently not in
London and were discarded.

For reliability of results, the experiment is repeated thrice
each year from 2011 to 2013. The treatment must temporally
precede the outcome to measure the causal effect. Hence, the
treatment and outcome are measured at the beginning and the
end of the year respectively for each neighbourhood.

2https://data.london.gov.uk/dataset/lsoa-atlas

A. Treatment

The treatment variable must measure the presence of anchor
stores which are defined as large retail chains with a brand
name [1]. Hence, a list of global brand names was developed
from all the values to the ‘brand’ key from OpenStreetMaps 3

and the names from the ‘chains’ field in Foursquare 4. The
venues in Greater London are labelled as anchor stores if their
name is present in the brand name list and have the first level
category of ‘Shop & Service’. Only anchor stores that started
before the year of the experiment are counted. The treatment
variable for each neighbourhood is the number of anchor stores
per restaurant (hence Z ∈ R+). To utilise the propensity score
described earlier, the treatment values are discretised into three
treatment levels. Since there is no significant literature on
choosing the number of treatment levels, we intuitively set it
to three for two reasons (1) The number of levels dictates the
dimensionality of the propensity score which must be set low;
(2) Around 33% of the neighbourhoods do not have anchor
stores (i.e. treatment level is 0). Hence, we split the remainder
of the neighbourhoods into two groups yielding three different
treatment levels so that each level consists of roughly 33% of
the neighbourhoods. Table I shows the treatment value ranges
for each treatment level.

B. Outcome

The outcome variable must measure the customer visit
patterns in restaurants in the Greater London area. Foursquare
provides two types of customer activities at the venues: check-
ins and tips. Since a prior study [27] indicated that 75%
of the check-ins are fake, we use tips following [28]. Tips
provide a better proxy of customer visits because they must
write a text on the platform regarding the venue which
serves as a verification of their visit. The restaurants within
each neighbourhood are determined using the second-level
categories containing the term ‘Restaurant’ for venues. Among
restaurants that started before the year of the experiment, the
number of tips posted on them during the year is counted. It
is also ensured that the non-anchor restaurants do not belong
to a retail chain or brand name. Finally, the outcome variable
for each neighbourhood is the number of tips per restaurant.

TABLE I
TREATMENT LEVEL RANGES IN NO. OF ANCHOR STORES PER

RESTAURANT IN A NEIGHBOURHOOD

year / treatment level 0 1 2
2011 ≤ 0.000 ≤0.250 >0.250
2012 ≤0.000 ≤0.228 >0.228
2013 ≤0.000 ≤0.223 >0.223

Table II summarises the top 10 second-level categories and
anchor brands. Grocery stores are the most common type of
anchor store which is consistent with the literature [1], [8]
which confirmed that large departmental stores traditionally
served as anchor stores. We observe that apparel stores, elec-
tronics and pharmacies are also gaining attention as anchors.

3https://taginfo.openstreetmap.org/keys/brand#values
4https://developer.foursquare.com/docs/build-with-foursquare/chains/



TABLE II
TOP 10 ANCHOR STORE CATEGORIES AND BRANDS BY PERCENTAGE OF

STORES IN GREATER LONDON TILL 2013

Category % stores Brand % stores
Grocery Store 23.67 Tesco 14.01
Clothing Store 14.98 Boots 5.59
Pharmacy 6.43 Sainsbury’s 5.54
Convenience Store 5.33 Co-op Food 3.75
Bookstore 4.27 WHSmith 3.29
Electronics Store 3.08 Iceland 2.54
Hardware Store 2.90 Argos 2.36
Shoe Store 2.80 Superdrug 2.25
Office Supplies 2.57 Marks & Spencer 2.08
Women’s Store 2.48 TK Maxx 1.90

C. Confounding Variables

The selection of confounders is crucial to propensity score
matching as described earlier and requires domain knowledge
of the retail industry. In our context, confounding variables
must be key factors for site selection that impact the success
of the retail stores and restaurants. To this end, we consult
several papers [13], [29], [30] and employ 15 confounders
from the following categories for each neighbourhood:

Population and Age. Retail stores not only seek populated
neighbourhoods but also target customers of a particular
demographic. This is captured by three variables measuring
population for age groups of (i) 0-15, (ii) 16-64 (iii) 65+.

Education. Education plays an important role in determin-
ing the living standard and availability of skilled labour pool
which is measured using the Average GCSE point scores.

Housing. The standard of living is also reflected through
affordable housing accounted for by the following variables
(i) median house price, (ii) number of dwellings (iii) the
percentage of dwellings sold during the year.

Employment. The reason for including employment-related
variables is two-fold. Employment indicators not only suggest
the availability of the labour pool but also potential customers
with disposal income. This is reflected by the following three
variables: (i) number of full-time (ii) number of part-time
employees (iii) their mean income.

Business Accessibility. This category measures the ability
of customers to pay a visit to the retail store or restaurant.
Tayeen et al. [30] suggest that the availability of transportation
access and low crime rate are relevant variables. These are
measured by the average public transport accessibility score
(PTAL) and the total crime rate in the datastore.

Tourism. Several customers are attracted to a restaurant’s
neighbourhood not only because of the presence of anchor
stores but also its tourism significance. According to Tayeen
et al., [30], the tourism significance of a neighbourhood is
captured based on the counts of four types of attractions: (i)
tourist locations (ii) rivers, lakes and reservoirs (iii) parks.
These are measured by counting venues in Foursquare with
corresponding categories in each neighbourhood of London.

V. RESULTS

This section presents the results of the experiments. We first
match the neighbourhoods based on their propensity scores.

Fig. 3. Correlation analysis between the treatment and outcome variables.

TABLE III
COUNTS OF DOSE LEVELS BETWEEN MATCHED PAIRS OF (LOW DOSE,

HIGH DOSE) UNITS.

year / dose pair (0, 1) (1, 2) (0, 2)
2011 103 38 119
2012 93 66 121
2013 97 80 113

We then evaluate the propensity score matching through three
metrics namely: dose difference, confounder balance and per-
formance on a synthetic dataset [31]. We finally compare the
outcome of all matched pairs of neighbours and quantify the
effect of anchor stores on customer traffic in Greater London.

A. Correlation Analysis

To obtain an initial insight, we plotted the number of
stores per restaurant (i.e. treatment) against the number of
tips per restaurant (i.e. outcome) which is shown in figure 3.
The spearman correlation [32] is utilised to measure the
correlation between the two variables. A small but significant
positive correlation is observed between the treatment and
outcome variables across all three years. Although premature,
the results suggest that a higher number of anchor stores in
a neighbourhood correlate with an increase in the number of
tips to restaurants. Yet, the results from the following sections
will establish a causal relationship between the two variables.

B. Dose Difference

The dose difference exposes the efficacy of a specific
aspect in the matching method: maximising the difference in
treatment levels between matched pairs. This mitigates the
influence of noise when calculating the average treatment
effect. The matrix plots, as shown in Table III, depict the
distributions of doses in matched pairs for the three years
(i.e., 2011, 2012 and 2013). The rows represent the treatment
received by a unit at a higher level compared to its match. The
column represents the treatment level of the unit at a lower
level than its counterpart. The treatment difference is two
levels for 45.8%, 43.2% and 39.0% of the pairs in 2011, 2012
and 2013 respectively. While the remainder of the percentages
reflects the pairs with a treatment level difference of one.

C. Confounder Balance

The matching algorithm is also evaluated for its effective-
ness to pair units with high confounder similarity. Table IV



TABLE IV
THE AVERAGE CONFOUNDER VALUES BETWEEN HIGH AND LOW DOSE

UNITS AMONG MATCHED PAIRS IN 2013.

high low t-test p-value
% of dwellings sold 3.29 3.22 0.79 0.43
Aged 0-15 2739.14 2647.41 1.32 0.19
Aged 16-64 9526.72 9216.72 1.81 0.07
Aged 65+ 1521.03 1517.41 0.09 0.93
Average GCSE scores 350.91 349.30 1.09 0.28
Average PTAL score 3.93 3.78 1.33 0.18
Mean Income 53676.62 52758.07 0.65 0.52
Median House Price 391187.98 375510.38 0.78 0.43
No. of Full-time employees 6179.66 5147.93 0.68 0.50
No. of Part-time employees 2206.21 1871.72 1.06 0.29
No. of dwellings 5639.12 5445.98 1.99 0.05
No. of lakes & rivers 0.14 0.13 0.19 0.85
No. of parks 1.19 1.16 0.23 0.82
No. of tourist locations 1.31 1.67 -0.69 0.49
Total crime rate 98.77 90.65 0.94 0.35

TABLE V
DISTRIBUTION OF TREATMENT EFFECTS ACROSS THREE YEARS.

year ATE min 25% 75% max
2011 0.13 -5.10 -0.50 0.75 9.53
2012 0.19 -3.33 -0.33 0.56 4.95
2013 0.16 -5.60 -0.38 0.58 35.48

shows the average confounder values for units with higher
and lower treatment levels in each pair for the year 2013
(other years also hold similar results). The independence t-test
was performed to realise the significance of the confounder
similarity. For every confounder variable, the null hypothesis
that its average value in high treatment units of each pair
is identical to the average value in low treatment units of
each pair cannot be rejected (i.e., the confounder values are
highly similar between paired units). Furthermore, the absolute
value of the test statistic is less than 1 for most confounders
suggesting a significant confounder similarity between the
matched pairs of high and low treatment levels.

D. Treatment Effect

Now that it has been established that high treatment units
and low treatment units have been sampled from almost identi-
cal populations, the average treatment effect is now computed.
Table V shows the average treatment effects calculated across
all three years. The ATE, in this case, indicates the change
in the number of tips per anchor store across all restaurants
in the store’s neighbourhood. An ATE value of zero implies
no effect. Each anchor store in the neighbourhood caused an
average increase between 0.05 and 0.15 tips to all restaurants
in the neighbourhood. On average, this amounts to a 14.2-
26.5% increase in tips per restaurant between the matched
neighbourhoods per year. Moreover, for all three years, ATE
is positively skewed suggesting that anchor stores in a neigh-
bourhood cause customer traffic to non-anchor restaurants.

E. Synthetic Dataset

An effective way to evaluate the propensity score matching
with known outcomes is to develop a synthetic dataset, fol-
lowing several works in this area [22], [33], [34]. However,
rather than developing an entirely random dataset, we generate

the synthetic data with supervision from observed data. In
essence, the influence of confounders on the treatment and the
outcome as well as the treatment’s influence on the outcome
is modelled. Hence, the true causal effect of the treatment is
known beforehand. Then, the matching method’s efficacy to
recover the true effect can be evaluated.

To achieve this, we first generate N units by generating
confounders for each unit. The confounders are generated by
modelling each confounder’s distribution and sampling from
it N times. Based on the distributions of the confounders from
the observed data as shown in Figure 4, it can be discerned that
truncated normal distribution is used to model the confounders
except for the number of full-time and part-time employees
and the three tourism variables which follows the exponential
distribution. Maximum likelihood estimation was utilised to
determine the parameters of the distributions.

Then, two functions are modelled: fZ(xi) generates the
treatment given the confounders, while fY (zi, xi) generates
the outcome given the confounders and treatment. Based on
the distributions of treatment and outcomes as depicted in
figure 5, exponential distribution can model the treatment as:

fZ(x) = P (Z = z|xi) =

{
1

f(xi)
e

z
f(xi) , z ≥ 0

0, z < 0
(6)

f(xi) =

∑
p xip

η
(7)

The truncated normal distribution is used to determine the
outcome for each unit:

fY (zi, xi) = Yi ∼ Norm

(
α
∑
p

xip + β
∑
p

xip

)
+γzi (8)

α, β and η are tuned until the range of values matches those
of the observed data. γ represents the value of the ground
truth average treatment effect. Figure 5 shows the treatment
and outcome distributions for the observational and synthetic
datasets are highly similar when these parameters are tuned.

The synthetic data was generated for four values of average
treatment effect. A total of 6250 units were generated for each
treatment effect, while the matching was run on 10 batches
of 625 units. The treatment effects values include large and
small positive and negative values. Table VI summarises the
results. The estimated ATEs from synthetic data are highly
similar to the ground truth ATEs. While the treatment effects
take a range of values across all cases, at least 75% of
effects are positive effects in most cases. This is consistent
with the results obtained from the real data. We also observe
that the matching performs well on larger ground truth ATE
compared to the lower values as the difference between true
and estimated ATE is large for smaller ATE values. This
suggests that one must take a cautious stance when interpreting
the results with real data in Table 6.

Based on the results from correlation analysis and match-
ing, we observe that neighbourhood characteristics have a



Fig. 4. Confounder distributions from observational data

Fig. 5. Top: true treatment and outcome distributions, Bottom: generated
treatment and outcome distributions

TABLE VI
TREATMENT EFFECTS FOR SYNTHETIC DATA GENERATED USING VARIOUS

GROUND TRUTH AVERAGE TREATMENT EFFECTS.

ATE est. ATE min 25% 75% max
0.25 0.22 -57.11 -0.84 1.22 48.52
1.50 2.06 -74.76 0.52 2.57 1430.55
4.00 4.14 -41.69 3.03 5.12 170.27

10.00 9.80 -71.70 8.92 11.02 60.46

significant impact on the presence of anchor stores and their
subsequent causation of increased customer visitation to non-
anchor stores. The positive treatment effects observed across
all three years reinforce previous work in Economics on
the anchor store effect. This consistency in results with the
literature and the performance across the presented evaluation
metrics reveal the viability of applying causal inference to

investigations delving into the retail industry.

VI. DISCUSSION AND FUTURE WORK

The above findings lead us to discuss the implications and
provide practical application scenarios for researchers, small
business owners, mall developers, and mall managers. A few
examples are as follows.
(I1) Non-anchor stores can utilise the causal analysis for site

selection decisions by targeting neighbourhoods with
significant anchor store effects. For instance, they can
compare the customer traffic between current and new
locations based on the anchor store presence.

(I2) Similarly, The low dose units in matched pairs with
a dose difference serve as future location recommen-
dations to anchor stores and mall developers as they
demonstrate similar neighbourhood conditions to the
high dose counterparts with lower competition.

(I3) Mall managers can derive the value of their malls from
the anchor store effects in their neighbourhoods and
develop lucrative rental contracts for their tenants.

Nonetheless, there are limitations in our work which must
be mentioned along with potential future works.

Unknown Confounding Variables. In our analysis, we
took into account 15 confounding variables of 6 different
aspects. Nevertheless, there may still exist several variables
with confounding effects for example various social events
that impact customer traffic to anchor and non-anchor stores
alike. As pointed out in [31], uncertainty pertains to whether
all confounding variables have been explored. A systematic
approach to solving this challenge remains an open problem.

Data Availability. The dataset studied is bottlenecked by
time and space due to the limited data availability. The census



data below annual granularity and for other cities has been
challenging to find. Also, the dataset only covers three years,
limiting our analysis to the period from 2011 to 2013. The
geography and time in our study are discretised by neigh-
bourhood and year respectively, which might be too broad.
It is worthwhile to employ causal modelling like Granger
Causality [35] to leverage spatiotemporal properties of LBSNs
and study this effect at a more fine-grained level [36], [37].

VII. CONCLUSION

In this paper, we adopted a causal approach and quan-
titatively demonstrated the anchor store effect. Contrary to
previous work in this area that perform studies on confidential
datasets, we employed publicly available data from an LBSN
and a government’s data-sharing portal making our study more
cost-effective. Additionally, we employed a causal analysis
framework based on propensity score matching to mitigate
the bias induced by confounding effects between variables
that impact customer traffic to anchor stores and non-anchor
stores. As a case study, we applied this framework to over 600
neighbourhoods in the Greater London area and concluded
that the anchor stores cause an increase of 14.2-26.5% tips
per year to non-anchor stores within their neighbourhoods.
Furthermore, we performed extensive evaluations that demon-
strated the framework’s high matching quality and resilience
to noise through experiments on synthetic datasets with known
treatment effects.

Though we have realised a causal relation in its simplest
form between two variables (i.e. treatment and outcome), we
hope that further investigations will be undertaken to discern
more complex causal mechanisms in Retail Economics.
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