
RRAM-VAC: A Variability-Aware Controller for
RRAM-based Memory Architectures

Shikhar Tuli, Marco Rios, Alexandre Levisse and David Atienza
Embedded System Laboratory (ESL), Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.

alexandre.levisse@epfl.ch

ABSTRACT
The growing need for connected, smart and energy efficient de-
vices requires them to provide both ultra-low standby power and
relatively high computing capabilities when awoken. In this con-
text, emerging resistive memory technologies (RRAM) appear as
a promising solution as they enable cheap fine grain technology
co-integration with CMOS, fast switching and non-volatile storage.
However, RRAM technologies suffer from fundamental flaws such
as a strong device-to-device and cycle-to-cycle variability which
is worsened by aging, forcing the designers to consider worst case
design conditions. In this work, we propose, for the first time, a
circuit that can take advantage of recently published Write Ter-
mination (WT) circuits from both the energy and performances
point of view. The proposed RRAM Variability Aware Controller
(RRAM-VAC) stores and then coalesces the write requests from the
processor before triggering the actual write process. By doing so,
it averages the RRAM variability and enables the system to run
at the memory programming time distribution mean rather than
the worst case tail. We explore the design space of the proposed
solution for various RRAM variability specifications, benchmark
the effect of the proposed memory controller with real application
memory traces and show (for the considered RRAM technology
specifications) 44 % to 50 % performances improvement and from
10% to 85% energy gains depending on the application memory
access patterns.

KEYWORDS
Non-Volatile Memories, RRAM, Memory Controller, Resistive Mem-
ories, Edge Computing
ACM Reference Format:
Shikhar Tuli, Marco Rios, Alexandre Levisse andDavid Atienza. 2019. RRAM-
VAC: A Variability-Aware Controller for RRAM-based Memory Architec-
tures. In xxxx. ACM, New York, NY, USA, 6 pages. https://doi.org/xxxx

1 INTRODUCTION
The ever-increasing number of Internet of Things devices present
in our lives is forcing a shift in the computational paradigm. In-
stead of centralizing the processing in big data centers, modern
applications are seeking to compute the data locally on the edge in
order to improve latency, energy efficiency, privacy and security.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASP-DAC’20, Jan. 13-16, 2020, Beijing, China
© 2019 Copyright held by the owner/author(s).
ACM ISBN xxxx.
https://doi.org/xxxx

From that perspective, the market of connected health monitor-
ing is a good candidate as it features a large amount of critical
data which must be computed precisely, timely and efficiently. In
that context, Wireless Body Sensor Node (WBSNs) are expected
to switch from a zero-leakage idle deep-sleep mode (which can
happen more than 90% of the device lifetime) to a relatively high
performances computation phase during which, in order to mitigate
the leakage power, all the computation must be performed timely.
From that perspective, emerging Resistive Random Access Memory
(RRAM) technologies appear as a good fit, thanks to, compared to
eflash technologies, their cheap and easy technology co-integration
within CMOS process, their fast switching capabilities and low
voltage operation [3, 6, 15, 16]. However, their drawbacks can only
be slightly mitigated by device engineering and must be solved by
design. For instance, device-to-device and cycle-to-cycle temporal
variability may lead to extremely dispersed programming times
(several decades [11]) and can only be managed by the use of Write
Termination (WT) circuits [2, 8, 11]. Although these works focus
on energy reduction, they do not propose any solution for the per-
formances improvements that could be enabled by such circuits
(i.e., these solution force the system to run at the worst case mem-
ory frequency) and mainly focus on circuit considerations. In this
work, we propose the concept of RRAM Variability-Aware Con-
troller (RRAM-VAC). The RRAM-VAC stores the write requests (i.e.
data and addresses) from the processor and coalesces them before
writing them to memory. By doing so, it averages the programming
time and can theoretically improve the performances from the
worst case programming time down to the average programming
time of the distribution. In this context, it could enable substantial
static energy gains. We validate the RRAM-VAC functionality by
implementing a behavioral model and explore its functionality with
realistic technology and circuit assumptions. Then we benchmark
system-level gains by simulating it with memory traces fromWBSN
applications and comparing it to a reference case without WT and
RRAM-VAC. The contributions of the paper are as follows:

• We propose the concept of RRAM-VAC controller and vali-
date its functionality through a behavioral model supported
by accurate RRAM technology and circuit assumptions.

• We explore the design space of the RRAM-VAC and propose
a sizing methodology for various parameters such as the
operating frequency and the RRAM variability parameters.

• We simulate the RRAM-VAC controller with realistic mem-
ory traces from WBSN applications and show that for the
considered technology assumptions it enables up to 50% per-
formance improvement and from 10 to 85% energy reduction
depending on the application memory access patterns.

The rest of the paper is organized as follows. Section 2 includes a
general background on RRAM technology, architecture and writing

https://doi.org/xxxx
https://doi.org/xxxx

ASP-DAC’20, Jan. 13-16, 2020, Beijing, China Shikhar Tuli, Marco Rios, Alexandre Levisse and David Atienza

circuitry. Section 3 presents the proposed RRAM-VAC architecture.
Section 4 presents the experimental setup used for the simula-
tions. Section 5 presents a design space exploration and shows
performance and energy gains enabled by the RRAM-VAC. Finally,
Section 6 concludes the paper.

2 BACKGROUND
2.1 RRAM Technologies for Embedded Devices
With the widespread of Internet of Things connected Edge devices,
requirements in terms of price per device and energy efficiency
have been rising. In this context, new Resistive Memory (RRAM)
technologies have been proposed to replace regular eflash tech-
nologies and are already at the product maturity [7, 10, 14]. RRAM
technologies rely on the non-volatile variation of the resistivity of a
thin insulating layer between Low and High Resistance States (LRS,
HRS). This effect is achieved through various mechanisms such as
(i) a conductive ions migration inside an insulating layer (Resistive
RRAM - ReRAM) [6, 16], (ii) a phase change inside a chalcogenide
material (Phase Change Memories - PCM) [15] or (iii) a spin modifi-
cation in a magnetic tunnel junction (Magnetic Memories - MRAM)
[3]. Their cheap and easy technology co-integration with CMOS,
low programming voltages (1 to 3V) and fast switching capabilities
(tens to hundred of ns)) triggered the motivation to abandon eflash
beyond the 28nm node technology. Embedded RRAM memory ar-
rays are usually constituted of 3-terminals 1 Transistor - 1 RRAM
bitcells, controlled by a WordLine (WL), and SourceLine (SL) and
and BitLine (BL). Read and write operations are controlled from
the BL and SL thanks to specialized circuits named Sense Amplifier
(SA) for read and Write Amplifier (WrA) for write. Read and write
operation in RRAM-based array are highly asymmetric : one way
of performing read is by pre-charging the BL and discharging it
through the RRAM bitcell. Then the resulting BL voltage is ampli-
fied and read-out by the SA. On the other hand, write operations are
performed by applying a high enough voltage programming pulse
and limiting the current. In that context, read operations are mainly
dynamic power plus the SA overhead while write operations fea-
ture high static consumption leading to one operation being more
energy hungry than the other.

2.2 Write termination circuits
Due to the complex underlying physics, RRAM technologies, as
a whole, suffers from a high device-to-device and cycle-to-cycle
variability [3, 16]. This effect is particularly true in filamentary
RRAM technologies due to the stochastic nature of ions movement
inside the insulator [11]. In this context, usual write methods, sim-
ply consist in applying a long-enough programming pulse to cover
the complete distribution of programming time [11]. To overcome
this issue, Write Termination (WT) WrA circuits have been pro-
posed [2, 8, 11], they consist of a dynamic detection of the current
flowing through the RRAM and feature a detection mechanism stop-
ping the write operation when the current crosses a given threshold.
These solution come in addition to already widely reported write-
verify solutions that consists in checking the state of the RRAM
after a complete programming pulse and restarting if needed [7, 14].
However, for all these solutions, while the programming energy

Read
Bu�er

Memory
Controller

RRAM-VAC

μP RRAM

Wait
Bu�er

�nish

“Locked”
batch

Figure 1: Proposed RRAM-VAC controller block diagram
with detailed sub-blocks

can be cut drastically, there are no reported solutions taking ad-
vantage of the temporal variability to enhance the performances
of embedded systems. In this work, we thereby propose a specific
memory controller which enables both energy and performance
improvements for RRAM-based embedded devices: the RRAM-VAC.

3 RRAM-VAC ARCHITECTURE
This section presents the RRAM-VAC architecture, describes its
functionality and discusses area and energy considerations.

3.1 Functional Description
In this work, we propose the RRAM Variability-Aware Controller
(RRAM-VAC). Figure 1 shows a detailed block diagram of the RRAM-
VAC. It relies on the following blocks : (i) a modified memory con-
troller, (ii) await buffer and (iii) a read buffer. The memory controller
has two tasks: (i) it routes the memory requests from the processor
to the wait Buffer, read buffer or to the RRAM macro. (ii) Schedule
the programming operations from the wait buffer to the RRAM
memory block. Memory request coming from the processor (read
or write) are stored in the wait buffer if they are write requests
and in the read buffer if they are read requests. The RRAM-VAC
relies on a concept named "Write Coalescing" that we extensively
describe Section 3.2.

3.1.1 Write operations. When the wait buffer contains enough
write requests, these requests are locked and considered as what is
called a batch. Then, the batch is written to the RRAM whenever it
is filled. The write requests from the batch are written to the RRAM
memory using the Write Coalescing method. As several versions
of the same data could be present inside the RRAM-VAC, to satisfy
data coherence, we define the following data validity hierarchy:
the wait buffer contains the latest version of the data. Any request
which is not contained inside the wait buffer is transferred to the
RRAM memory. From a more detailed perspective, while both read
and write requests can be catched by the wait buffer, once the batch
is locked, it can only catch read requests.Write requests to a locked
batch have to be considered as new entries inside the wait buffer.
From that perspective, the RRAM-VAC behaves as a small cache and
can avoid sequential access to the same address that would induce
an early aging of the memory. It also improves the performances

RRAM-VAC: A Variability-Aware Controller for
RRAM-based Memory Architectures ASP-DAC’20, Jan. 13-16, 2020, Beijing, China

(a) (b)

�nish status

�nish status

Figure 2: (a) Sequence of 8-bits words written to RRAM in a
worst case condition. (b) Same words programmed to RRAM
using the proposed RRAM-VAC circuit

and energy consumption of such operations, as read and write
operations to a buffer are faster and less energy hungry than read
and write operations in RRAM. At the end of a computation phase,
the batch is written to the RRAM even when it is not full.

3.1.2 Read operations. An incoming read request is first issued
to the wait buffer. If the corresponding address is not present, it
is issued to the RRAM memory. While the batch is written to the
RRAM memory, the next read request is stored inside the read
buffer and is performed when the memory is available. During that
time, the processor execution is stalled until the RRAM memory is
available again. This effect is discussed in Section 5.

3.2 Write Coalescing
Figure 2-a shows the evolution of a sequence of 8-bit words written
in memory while considering a worst case programming condition.
Colored areas represent the time it actually takes for each of the
words to be written to memory (each column represents a bit). Each
word is written with a constant programming time accounting
for margins and respecting a constant frequency to ensure that,
at the next processor cycle, the data is actually written, and the
memory is available for the next operation. In these conditions,
the hashed area represents the potential energy and performances
loss of such an approach. In this context, we propose to coalesce
the write operations as shown in Figure 2-b. Every time a bitcell
switches, it is detected by the WT circuit and then, the controller
issues the next bit write operation to be performed. This way, the
overall programming time for the group of words (referred as the
batch in section 3.1) and the hashed area are drastically reduced. In
order to coalesce the words together, several assumptions must be
considered. (i) We consider that the words written are interleaved
between several arrays, and so, from a sub-array point of view,
only one bit is written at a time (this is actually compatible with

Vo
lta

ge
Cu

rr
en

t
Cu

rr
en

t

tprog

tprog

μ

μ

tdetect

tdetect

IHRS

ILRS

ILRS

IHRS

SET
0 1

RST
1 0

VPROG

time

timeμ

IHRS

timeμ

ILRS

0 0

1 1

tdetect

tdetect

Switch time

Co
un

t #

σ = 5 ns
σ = 10 ns
σ = 20 ns

(a)

(b)

1/fP

Gain

1/fM(WC)

Figure 3: (a) Considered RRAM distributions. (b) Energy cal-
culation in different switching cases and detailed parame-
ters.

Table 1: Energy corner cases for the considered RRAM

Programming Conditions With WT Without WT
Slow Fast Slow Fast

Set HRS (i) 0.515pJ 4.515pJ 1.175pJ 4.575pJ
Reset LRS (ii) 0.775pJ 0.17pJ 4.575pJ 1.175pJ
Reset HRS (iii) 0.015pJ 0.75pJ
Set LRS (iv) 0.1pJ 5pJ

constraints identified in high density RRAM memories [9]). This
way, each sub-array can manage the words independently without
having to wait for the entire word to be written. (ii) We consider
that the words coalesced are written inside the same memory sub-
arrays. In other words, we do not consider parallel write in several
sub-arrays that would actually enhance the performances of the
RRAM-VAC.

4 EXPERIMENTAL SETUP
This section introduces the experimental setup considered in this
work. First, we present energy considerations regarding the RRAM
memory. Then, we present the application characterization method-
ology used to assess the performances and energy gains provided
by the proposed RRAM-VAC circuit.

4.1 RRAM Energy Characterization
In this work, we consider a RRAM technology providing a 50 ns
cycle time for the programming operations. As shown in [6], a few
tens of ns programming time can be achieved for both set (HRS to
LRS) and reset (LRS to HRS) operations while considering 1V to
1.5V programming voltage (Vproд). We thereby assume that the
programming operations can be performed for the whole distribu-
tion at 1V with a 50 ns worst case cycle time. In order to ensure such
performances, specific programming strategies such as adaptive

ASP-DAC’20, Jan. 13-16, 2020, Beijing, China Shikhar Tuli, Marco Rios, Alexandre Levisse and David Atienza

programming voltage [11] can be considered. Finally, we consider
a programming current of 100 µA to achieve a sufficient HRS/LRS
ratio, a low variability in the LRS state and a several-years reten-
tion [6].
As introduced in Section 2.1, cycle-to-cycle and device-to-device
temporal variability tends to be extreme (as a reference, in [11],
variability may exceed 3 decades). In order to model this effect, we
consider a normal distribution on the programming time. Also, we
assume balanced programming conditions between set (program-
ming operation towards a LRS) and reset (programming operation
towards a HRS). Figure 3-a shows the three distributions considered:
σ = 5 ns, 10 ns and 20 ns. Following the 50 ns programming time,
we define a distribution mean (µ = 25 ns) and consider 5 ns margin
at the end and at the beginning of the programming pulse, ensuring
that all the switching events happen in this window (5 ns to 45 ns).
That said, 4 cases may happen : (i) program RRAM devices from
one state to the other (HRS to LRS or LRS to HRS). This case, shown
in Figure 3-b may induce a high energy consumption without a WT
circuit (saved energy, thanks to the WT circuit is represented in red
for all these graphs). (ii) program RRAM device in a state where they
already are (LRS to LRS or HRS to HRS). In that case, a WT circuit is
particularly important as it avoids non-needed programming oper-
ations. WT circuit detection time (tdetect) is considered 1 ns in the
following experiments. As a summary, Table 1 presents the corner
programming energy cases. Regarding the read performances, we
assume that read operations can be performed in one cycle. From
the energy standpoint, we take as a reference data from [7, 14] and
consider a 1 pJ per bit.

4.2 Application Characterization and
Simulation Methodology

To assess the gains of the proposed solution, we simulate its func-
tionality with memory traces from real applications. To do so, we
tracked the read and write access to the variables that are kept in
memory (i.e. in RRAM) of C-Code applications running on a PC.
In this context, we simulated different real applications that are
widely used in WBSN Edge devices :
• Data compression algorithm : We considered the Compress sens-
ing (CS) algorithm [4], a 50% lossy compression algorithm used
on biosignals before storing them. This application takes as input,
a 3 seconds Electrocardiogram (ECG) signal and compresses it.

• Machine learning algorithms : We consider the Epilepsy Seizures
detection algorithm from [12]. It contains a Feature Extraction
(FE) and a Decision Tree (DT). This application processes a 4
seconds Electroencephalogram signal.

• Specific kernels : We considered two specific kernels widely used
in signal processing and machine learning : Matrix Multiplication
(MM) and Convolution (Conv) [5, 13]. MM multiplies random
30x30 arrays while Conv convolves random 3x3 and 30x30 arrays.

We then feed the extractedmemory traces inside a behavioral model
of the RRAM-VAC circuit presented in Section 3. The behavioral
model has been implemented using Matlab and simulates the opera-
tion of RRAM-VACwhile taking as input the memory traces. Energy
and area characterization of the RRAM-VAC block are performed
based on the proposed implementation from Figure 1. It must be
noted, that here, we only ensure that we have pessimistic enough

(a) (b) (c)

Figure 4: Normalised dispersion in parallel write with differ-
ent batch sizes

considerations to assess the profitability of the solution. More de-
tailed area and energy considerations are outside the scope of this
work and are left for future contributions. From the energy point of
view, we assume that for each memory request, a search operation
is performed in the wait buffer address bank. We thereby, took the
pessimistic assumption that it is performed inside a BCAM mem-
ory [1]. In that context, considering a 0.3fJ/bit/search, would lead
from 159 to 192fJ (respectively 64x8-bits and 80x8-bits wait buffer
address space) per access (it must be noted that values from [1] are
extracted from a 128x128array). Conservatively, to ensure worst
case estimation, and to account for read operations and leakage, we
considered 400fJ per access to the RRAM-VAC in our simulations.
From the area point of view, assuming a small BCAM and registers
would lead to a few thousand µm square. Such area, considering
last RRAM published chips [7, 14], corresponds to less than a few
equivalent kbits of RRAM and represents less than a percent of area
overhead.

5 EXPERIMENTAL RESULTS
In this section, we present (i) a design space exploration of the
RRAM-VAC sizing, considering random addresses and data inputs
and (ii) a benchmark of the RRAM-VAC while considering various
WBSN real application workloads.

5.1 RRAM-VAC Design Space Exploration
Figure 4 presents the normalised dispersion time per word versus
the batch size for a given RRAM-VAC operation frequency situ-
ated at the memory programming time average. As introduced in
Section 3.2-Figure 2-a, by coalescing the bits, the programming
time at word level is averaged. The more bits are written together,
the more the variability is averaged. Considering a wider memory
time distribution as described Figure 4-a,b and c (that could be
explained by a less controlled process, a worn out RRAM device
or simply the natural variability of a given technology), leads to

RRAM-VAC: A Variability-Aware Controller for
RRAM-based Memory Architectures ASP-DAC’20, Jan. 13-16, 2020, Beijing, China

Figure 5: Maximum buffer size requirement with relative
processor frequency (in terms of worst case memory fre-
quency) for a batch size of 5

higher distributions as more and more occurrences of slow bits may
happen in the batch. In that context, considering larger batch sizes
may help reducing the variability. Alternatively, Figure 5 shows
the required wait buffer size versus the frequency gain ratio for a
batch size of 5. In the considered case (introduced in Section 4), the
RRAM programming distribution average value is half of the worst
case memory frequency (fM (WC)), leading to a maximum gain of
2 (beyond that, the wait buffer fills faster than it can be flushed to
RRAM). As the processor frequency (fP) increases, the probability
of having a series of slow batches (compared to fP) increases, tran-
siently filling the wait buffer. This effect if amplified by the memory
variability, as visible for σ = 10 ns and 20 ns. Overall, the sizing of
the RRAM-VAC block depends on 3 parameters:
• Memory variability (σ) : high memory variability requires bigger
batch size.

• Processor Frequency (fP) : higher fP requires bigger wait buffer.
• batch size/wait buffer size ratio : A too small wait buffer does not
average enough the variability and wastes time when the batch
write finishes in-between two clock ticks. A too big batch size
forces the system to wait for it to be flushed when the wait buffer
is full.
Figure 6 summarizes the RRAM-VAC sizing trade-offs. Each con-

tour line corresponds to a sizing for which the processor is never
forced to wait while writing random data to random addresses.
Figure 6-a shows that for the considered RRAM technology, op-
timal performances can be achieved with a 75words wait buffer
and 15words batch. Reducing fP by 10% moves the optimum to the
couple 20words/10words, relaxing the area and energy constraints
on the RRAM-VAC. On the other hand, Figure 6-b shows that for a
constant fP , a more dispersed memory technology strengthens the
constraints and moves the optimum toward bigger wait buffer and
batch. In a looking forward perspective, these trade-offs may open
run-time adaptive frequency strategies to take advantage the wait
buffer and compensate for the RRAM temporal variations.

5.2 Real Workload Exploration
In this subsection, we explore the energy and performances gains
provided by the proposed RRAM-VAC concept while running real-
istic WBSN workloads. The RRAM-VAC is sized accordingly to the

(a) (b)

Figure 6: Contour plots showing the optimal sizing of the
RRAM-VAC circuit for (a) various fP and (b) memory tem-
poral variability.

2000 6000 10000 14000
Instructions

0.1

0.2

0.3

0.4

0.5

0.6
Proposed
Moving Average
Reference

2000 6000 10000 14000
Instructions

0
0.625

1.25
1.875

2.5
3.125

3.75
4.375

5
5.625

6.25

W
rit

e
En

er
gy

 (n
J)

(a) (b)

Proposed
Moving Average
Reference

Figure 7: Transient simulations of the RRAM-VAC running
the CS application. (a) Performances gains and (b) energy
gains per batch.

explorations performed in Section 5: wait buffer of 80 and batch of
10 while the frequency gain is set to 2 × fM (WC).

Figure 7 shows the energy consumption and performance gains
of a RRAM memory connected to a processor running the CS appli-
cation and using the RRAM-VAC (in blue) compared to reference
case not using the RRAM-VAC and considering worst case program-
ming conditions (in orange). In these graphs, each dot corresponds
to 10 words written (batch size). Figure 7-a shows the performances
gains enabled by the RRAM-VAC. It shows that compared to the
reference system, for the considered memory specifications, the
processor frequency can be increased by 2×. On the other hand,
Figure 7-b shows a transient simulation of the energy consumed.
Thanks to the RRAM-VAC, the energy consumed is reduced com-
pared to the reference case, while running a CS application. Figure

ASP-DAC’20, Jan. 13-16, 2020, Beijing, China Shikhar Tuli, Marco Rios, Alexandre Levisse and David Atienza

CS FE DT DT_C FE+DT MM Conv
Applications

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

is
ed

 P
ro

ce
ss

 E
ne

rg
y

0

10

20

30

40

50

60

70

80

90

100

Pe
rfo

rm
an

ce
 G

ai
n

(%
)

Read Energy (Proposed) Write Energy (Proposed)
Read Energy (Reference) Write Energy (Reference)

Figure 8: Energy and performances gains of the RRAM-VAC
for different applications

1 2 8 16 32
Read/Write Cluster Size

42

44

46

48

50

Pe
rfo

rm
an

ce
 G

ai
n

(%
)

Figure 9: Performance gains of the RRAM-VAC while alter-
nating reads and writes with bursts of different lengths for
random inputs (addresses and data) versus burst size.

8 shows the energy and performances gains provided by the RRAM-
VAC for the applications presented in Section 4. In terms of energy
gains, we separated write and read energies to ease the understand-
ing. Energy gains provided by the RRAM-VAC appear to be highly
dependant on the application memory patterns. Gains on CS, FE
and MM applications are highly dependent on the read/write ratio.
On the other hand, DT application shows a 10% performances gain
mainly due to the high locality of the read operations (i.e., reading
a word from the wait buffer is less expensive than accessing the
RRAM array) and a really low write/read ratio (less than 1 per 300).
As a reference, we compared it to the DT_C application (DT applica-
tion memory traces post-processed with a L1 cache of 16 words and
least-used eviction policy) and it shows a balanced read/write ratio
(as CS, FE and MM) providing stronger gains with the RRAM-VAC.
Finally, Conv application shows an even higher amount of read and
write access on recently written words than DT application and
exhibits the highest energy gain of all the considered applications,
thanks to its high read and write locality.

In terms of performances, all the considered applications show
around 50% of performances improvement compared to the refer-
ence case. While the gains are substantial, slight fluctuations can

be observed. This is due to the fact that while the write buffer is
being written to memory, the next read request that cannot be
processed inside the wait buffer is stored inside the read buffer and
the processor is stalled. This request is finally performed once the
memory is available again. In this context, the gains provided by
the RRAM-VAC are slightly reduced as the computation is delayed.
Figure 9 shows the gains achieved for a random inputs and random
addresses application (to avoid any bias provided by the cache effect
of the wait buffer) versus the read and write pattern. It shows that
longer bursts are less likely to stall the processor than shorter ones.
At the worst case, the performance gains are reduced to 44%.

6 CONCLUSION
In this work, we proposed the RRAM Variability Aware Controller
(RRAM-VAC), a new controller for RRAM-based memories that
takes advantage of the family of Write Termination (WT) circuits
to mitigate device-to-device and cycle-to-cycle variability of RRAM
technologies. By coalescing thewrite requests and performing them
together, it averages the variability and enables strong energy and
performances gains. We explored the design space of the RRAM-
VAC circuit and estimated its gains by simulating it with memory
traces from WBSN applications. With the considered RRAM tech-
nology, we show from 44 to 50% performances and 10 to 85% of
energy gain depending on the application memory access patterns.
Such performance and energy gains makes the RRAM-VAC an ex-
tremely promising solution for normally-off Edge devices.

ACKNOWLEDGMENTS
This work has been partially supported by the ERC Consolidator
Grant COMPUSAPIEN (GA No. 725657) and by the the ThinkSwiss
research scholarship by swissnex India.

REFERENCES
[1] A. Agarwal et al. 2011. A 128x128b high-speed wide-and match-line content

addressable memory in 32nm CMOS. In IEEE ESSCIRC.
[2] M. Alayan et al. 2019. Switching Event Detection and Self-Termination Program-

ming Circuit for Energy Efficient ReRAM Memory Arrays. IEEE TCASII.
[3] D. Apalkov et al. 2016. Magnetoresistive random access memory. Proc. IEEE.
[4] J. Constantin et al. 2012. TamaRISC-CS: An ultra-low-power application-specific

processor for compressed sensing. In IEEE/IFIP VLSI-SoC.
[5] A. Krizhevsky et al. 2012. ImageNet Classification with Deep Convolutional

Neural Networks. In Advances in Neural Information Processing Systems 25.
[6] E. Vianello et al. 2013. Back-End 3D Integration of HfO2-Based RRAMs for

Low-Voltage Advanced IC Digital Design. IEEE ICICDT.
[7] P. Jain et al. 2019. 13.2 A 3.6Mb 10.1Mb/mm2 Embedded Non-Volatile ReRAM

Macro in 22nm FinFET Technology with Adaptive Forming/Set/Reset Schemes
Yielding Down to 0.5V with Sensing Time of 5ns at 0.7V. In IEEE ISSCC.

[8] A. Lee et al. 2017. A ReRAM-Based NVFF With Self-Write-Termination Scheme
for Frequent-OFF Fast-Wake-Up Nonvolatile Processors. IEEE JSSC.

[9] A. Levisse et al. 2017. Architecture, design and technology guidelines for cross-
point memories. In IEEE/ACM NANOARCH.

[10] Panasonic 2018. ReRAM-based MCU MN101L. https://industrial.panasonic.com/
ww/products/semiconductors/microcomputers/mn101l

[11] G. Sassine et al. 2018. Sub-pJ consumption and short latency time in RRAM
arrays for high endurance applications. In IEEE IRPS.

[12] D. Sopic et al. 2018. e-Glass: A Wearable System for Real-Time Detection of
Epileptic Seizures. In IEEE ISCAS.

[13] A. Vasudevan et al. 2017. Parallel Multi Channel convolution using General
Matrix Multiplication. In IEEE ASAP.

[14] L. Wei et al. 2019. 13.3 A 7Mb STT-MRAM in 22FFL FinFET Technology with
4ns Read Sensing Time at 0.9V Using Write-Verify-Write Scheme and Offset-
Cancellation Sensing Technique. In IEEE ISSCC.

[15] H-S Philip Wong et al. 2010. Phase change memory. Proc. IEEE.
[16] H-S Philip Wong et al. 2012. Metal–oxide RRAM. Proc. IEEE.

https://industrial.panasonic.com/ww/products/semiconductors/microcomputers/mn101l
https://industrial.panasonic.com/ww/products/semiconductors/microcomputers/mn101l

	Abstract
	1 Introduction
	2 Background
	2.1 RRAM Technologies for Embedded Devices
	2.2 Write termination circuits

	3 RRAM-VAC Architecture
	3.1 Functional Description
	3.2 Write Coalescing

	4 Experimental Setup
	4.1 RRAM Energy Characterization
	4.2 Application Characterization and Simulation Methodology

	5 Experimental Results
	5.1 RRAM-VAC Design Space Exploration
	5.2 Real Workload Exploration

	6 Conclusion
	Acknowledgments
	References

