
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Apr 27, 2024

Formal Semantics of Predictable Pipelines: a Comparative Study

Jan, Mathieu ; Asavoae, Mihail ; Schoeberl, Martin; Lee, Edward A.

Published in:
Proceedings of the 25th Asia and South Pacific Design Automation Conference

Link to article, DOI:
10.1109/ASP-DAC47756.2020.9045351

Publication date:
2020

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Jan, M., Asavoae, M., Schoeberl, M., & Lee, E. A. (2020). Formal Semantics of Predictable Pipelines: a
Comparative Study. In Proceedings of the 25th Asia and South Pacific Design Automation Conference IEEE.
https://doi.org/10.1109/ASP-DAC47756.2020.9045351

https://doi.org/10.1109/ASP-DAC47756.2020.9045351
https://orbit.dtu.dk/en/publications/ea3d0d25-efff-47f0-a04a-525703b6153a
https://doi.org/10.1109/ASP-DAC47756.2020.9045351


Formal Semantics of Predictable Pipelines:
a Comparative Study

Mathieu Jan and Mihail Asavoae
CEA, List,

Email: Firstname.Lastname@cea.fr

Martin Schoeberl
Technical University of Denmark,

Email: masca@dtu.dk

Edward A. Lee
University of California at Berkeley,

Email: eal@berkeley.edu

Abstract—Computer architectures used in safety-critical do-
mains are subjected to worst-case execution time analysis. The
presence of performance-driven microarchitectures may trigger
undesired timing phenomena, called timing anomalies, and com-
plicate the timing analysis. This paper investigates pipelines
specifically designed to simplify the worst-case execution time
analysis (also called predictable pipelines). We propose formal
and executable models of four research-oriented pipelines and
one industrial pipeline to validate some of their claims related to
their timing behavior. We indeed validate, via bounded model
checking, the absence of a type of timing anomalies called
amplification timing anomalies, or its potential presence by
identifying prerequisite to situations where they can occur.

I. INTRODUCTION

Real-time systems need to satisfy timing constraints, thus
reasoning about such systems means reasoning about their tim-
ing behaviors. Time is monotonic and correct timing analyses
should be constructed around this property of monotonicity.
One prominent form of timing analysis, called worst-case
execution time (WCET) analysis [29], computes program
execution bounds and considers both the program and the
underlying computer architecture. The latter is, in general,
a design with performance-driven features such as pipelines,
caches, and speculation mechanisms. All these microarchitec-
ture elements may impact time monotonicity and affect, in this
way, the soundness and/or the precision of a WCET timing
analysis. The alternative solution to analyzing performance-
driven architectures is to construct predictable ones (i.e.,
having a property called timing predictability [27]) and to
characterize their global timing behavior by composing local
timing contributions of the sub-components (i.e., a property
called timing compositionality [10]).

Pipelines improve architecture performance by allowing
multiple instructions to be processed at the same time as
the execution of an instruction is decomposed into several
computational steps. In each processor cycle, the ideal pipeline
behaves as follows: an instruction completes its execution
(i.e., exits the pipeline) while other instructions move one
step in the pipeline and a new instruction begins its execution
(i.e., enters the pipeline). The ideal pipeline preserves timing
monotonicity, ensuring sequential execution of instructions. In
reality, even simple pipelines can be problematic for timing
analysis because of non-monotonic timing effects, also called
timing anomalies [21]. Briefly, a timing anomaly is when a
local worst-case timing does not lead to a global worst-case
timing. For example, a restrictive pipeline, such as a classical
5-stage in-order design [13], presents timing anomalies when
a first-come first-serve bus arbiter is used [10]. Predictable

architectures require predictable pipelines to anchor the argu-
ments about the system-level timing monotonicity.

In [9], the predictable pipeline of SIC has been formally
proved to be without timing anomalies, while the pipelines
of the predictable platforms Patmos [25] and PRET [19] are
only partially formalized (the most recent PRET architecture,
FlexPRET [23], is more complicated because it admits un-
predictable timing behavior but for soft real-time threads).
However, and to the best of our knowledge, none of the
existing formal arguments of these predictable pipelines is
executable. Besides, no formalization or proof of the an-
nounced predictable behavior of the K1 pipeline has been
shown [5]. We advocate for formal and executable pipeline
models since this synergy should be of particular interest when
answering timing behavior questions. While the arguments for
formalization, even on paper, are well-known, the executability
aspect is often overlooked. By executable, we mean the use
of model checking to animate the formalizations and proving
properties about them. So far, one formal description of a
predictable pipeline has been published, SIC [9], but only
manually demonstrated. Besides, the executability gives way
to engineering the pipeline model, in particular towards tools
construction (e.g., simulators, analyzers, etc.).

Contributions. This paper makes the following contribu-
tions: a canonical pipeline model, to capture local worst-
case timing behavior in pipeline designs; formal models of
predictable pipeline cores, as instances of the canonical model
and finally a comparative study of the timing compositionality
of these formal pipelines. The canonical pipeline model targets
amplification timing anomalies which are a requirement for
sound compositional timing analyses (e.g., composing timing
analyses of pipelines and shared memories). The formal mod-
els of the pipelines of PRET, Patmos, SIC, and K1, as well
as of a classical in-order pipeline are based on an explicit
manipulation of their stalling semantics, using the UCLID5
formal framework [26]. For SIC, we encode the formalization
from [9], while for PRET, Patmos and K1, we propose what
we believe to be their first formal and executable models.
The comparative study assesses, on the one hand, the timing
compositionality of PRET, Patmos, and SIC and on another
hand, leads to the verification that only a specific configuration
of K1 can be without amplification timing anomalies. Our
formal models of these pipelines are available on-line on a
GitHub repository [15].

The paper is organized as follows: we introduce timing
anomalies, our canonical pipeline model, which focuses on
the stalling logic, and its verification strategy in Section II.

978-1-7281-4123-7/20/$31.00 c© 2020 IEEE



In Section III, we then present our formal models of the pre-
dictable pipelines SIC, PRET, Patmos, as well as the K1. We
describe the results of their evaluation, via model checking,
in Section IV. We address related works in Section V. We
conclude and outline future works in Section VI.

II. FORMALIZING STALLING OF PIPELINES DESIGN

In this section, we briefly introduce timing anomalies
and our abstract canonical pipeline model to facilitate the
comparison between pipelines (e.g., what are the necessary
assumptions to represent the memory system or the ISA-level
restrictions etc.). We then present our verification strategy.

A. Timing Anomalies

Exec1

Exec2

∆L ∆G

Fig. 1. Example of an amplification timing anomaly.

A timing anomaly defines (1) a counterintuitive timing
behavior, or (2) a timing amplification. The counterintuitive
timing anomaly appears when a reduced local timing leads
to an increased global timing [21]. A local timing variation
refers to the possible latencies of an instruction, due to
memory access variability, for instance. The global timing
variation refers to the possible execution times of a sequence
of instructions. The presence of such counterintuitive timing
anomalies leads to timing predictability problems and requires
an exhaustive exploration of all possible behaviors to estimate
a safe WCET bound. It can occur whenever a run-time
decision has to be made for selecting the execution unit used
to execute an instruction [28]. In-order pipelines could exhibit
such behaviors if an instruction requires multi-cycle latencies
in its execution stage and a run-time decision for choosing a
functional unit. These timing anomalies have been investigated
in [1], while in this paper we focus on (2).

The second timing anomaly, the amplification timing
anomaly, is shown in Fig. 1. It appears when a local timing
variation of ∆L leads to a larger global variation of ∆G.
The presence of amplification timing anomalies threatens the
timing compositionality (a property formally defined in [10])
which is necessary to address the timing analysis of multi-
component systems. For example, timing compositionality is
required to combine the cache-level timing analyses with
pipeline-level ones when performing a WCET analysis. In-
order pipelines still suffer from amplification timing anomalies
when they use a first-come-first-serve bus arbiter, as shown
in [10]. The local timing variation of the described amplifica-
tion timing anomalies is due to a switch from a cache hit to
a cache miss for a first instruction. This local variation then
triggers an increased global variation, the bus being occupied
by another instruction (succeeding the first instruction in the
execution flow of a sequence of instructions) stalling the cache
miss request of the first instruction.

The absence of amplification timing anomalies is a neces-
sary and sufficient condition for achieving timing composition-
ality. When timing compositionality is not ensured, a WCET
analysis can not be safely decomposed per component and
thus requires over-approximations. The soundness of a WCET
analysis then requires bounds on the potential amplification
timing anomalies in the system. However, note that if an
amplification timing anomaly occurs at each iteration of a
loop, it cannot be bounded by a constant value but by a value
proportional to the loop bound. Our current approach aims
towards the detection (and bounding) of such amplification
timing anomalies.

B. Canonical Pipeline Model

The goal of our canonical pipeline model is to focus on am-
plification timing anomalies linked to bus accesses to shared
memory. For each pipeline, we define a set of instructions
classes and a set of pipeline stages. All instructions of an
instruction class must have the same temporal behavior over all
the pipeline stages. The instruction classes that we define are:
load, store, branch, nop, and other. Branch and the optional
nop instruction classes enable the modeling of instructions of
these classes becoming inactive after a given stage. Pipeline
stages are specific to each pipeline. However, we introduce
two additional stages pre and post to model an instruction,
respectively, waiting to enter the pipeline, and that has finished
its execution.

I... ...

current stage

latencydelay progress

stalling semantics

Fig. 2. Canonical pipeline model: the advancement of instruction I in the
pipeline depends on delay, latency, and progress.

Our canonical model instantiates two instructions, called
upstream and downstream in the pipeline. The downstream
instruction precedes the upstream instruction in the execution
flow of a sequence of instructions. The downstream instruction
thus enters first in a pipeline, thus reaching pipeline stages
before the upstream instruction.

An instruction state is defined as:

〈type, vl, stage, latency, delay, progress〉

where type is the instruction class, vl is a vector with initial
latencies in each stage, stage is the current stage, latency
is its remaining latency in stage, delay is the accumulated
delay (due to stalling) up to stage, and finally, progress is a
boolean which captures the decision on the stalling logic. Each
of these variables is subscripted with down or up to identify
respectively downstream and upstream instruction states. Note
that all timings are expressed in clock cycles and that our
canonical model is cycle-accurate. Data dependencies between
instructions are not modeled, as they do not generate timing
anomalies.



For each instruction, two procedures are defined. The pro-
cedure next stage computes the next stage of an instruction
and updates its latency, with the one initially specified for
that next stage (noted vl.stage). The procedure check progress
computes the decision of the stalling logic being modeled,
only if latency has elapsed. In the next section, we present
our baseline stalling logic, while Section III details the stalling
logic of each pipeline we have modeled.

C. Baseline Stalling Logic

Our canonical pipeline model relies on an encoding of the
stalling semantics using the next operator from UCLID5. The
baseline stalling logic is implemented as in a textbook in-
order processor pipeline [12]. This pipeline is organized into
five pipeline stages: (1) instruction fetch (IF), (2) decode
and register read (ID), (3) execute (EX), (4) memory ac-
cess (MEM), and (5) register write back (WB). We assume
separated instruction and data caches, and thus two potential
cache misses and stalling from IF and MEM stages. In these
cases, the next stage of the downstream instruction is by
design available in our model. However, the next stage of the
upstream instruction might be occupied by the downstream
instruction. The check progress procedure thus takes as input
stage′down (′ denotes the next state of a variable) to stall
the upstream instruction in that case. For both instructions,
the check progress procedure also checks whether the bus
is already used, due to a miss, by the other instruction.
In that case, the delay′ of the instruction being stalled is
incremented. The upstream instruction can progress whenever
its next targeted stage is available when stageup 6= pre or the
following condition holds:

stageup = pre⇒ stage′down /∈ {IF}∧
(stage′down /∈ {MEM}∨ vl.MEMdown = 1)

i.e., the downstream instruction is neither at the IF stage,
nor it generates a data miss from the MEM stage. Finally,
note that we model a higher priority for data accesses over
instruction accesses, as commonly implemented within real
pipelines. This stalling logic is called specific upstream, as
the upstream instruction is stalled, due to memory access, only
when it is at a specific stage, in our case at the pre stage.

We have also implemented another stalling logic, called
only upstream, which stalls the upstream instructions at their
current stages, whatever they are, when a cache miss occurs.
Downstream instructions can progress meanwhile. The pre-
vious specific upstream logic is checked at any stage of the
upstream instruction.

Another stalling logic stalls the whole pipeline thus called
whole. Preceding instructions, within the sequence of instruc-
tions, the one causing the stall are then also stalled. This whole
pipeline stalling logic is implemented by Patmos, and thus we
detail it later.

D. Verification Strategy

Our verification strategy for our canonical model explores
the localization of all upstream instructions in the pipeline that
can impact/stall the downstream instruction. To achieve this,
we systematically explore, using the bounded model checking
of UCLID5, the following: (1) all possible instruction classes

combinations of upstream and downstream instructions, (2)
all possible distances between upstream and downstream
instructions and, finally, (3) all possible memory latencies,
within a bounded range, for the upstream and the downstream
instructions. Precisely, point (1) is trivially setup by assuming
that each instruction can be of any class; for point (2), the
downstream instruction can start from any possible pipeline
stage; and finally, for the point (3), the latency of memory
accesses varies between 1, a cache hit, and 10 cycles, a cache
miss (i.e., a standard ratio for the cache hit-miss). Interested
readers may refer to [3] for an introduction to bounded model
checking.

A range of latencies is indeed needed to explore all the
scenarios where the upstream instruction enters the pipeline
while the downstream instruction is waiting for a memory
transfer to finish. This memory transfer could be generated
by the downstream instruction, but also by the upstream
instruction from the IF stage. The chosen hit/miss latencies
are classical values for the embedded systems we target that
have a limited memory hierarchy, i.e., a private L1 and a
shared L2. For instance, the commercial K1 core has a cache
miss penalty, from a private L1 cache towards a shared L2
SRAM, of around 10 clock cycles. The Patmos, configured
for the default FPGA boards, has a memory latency towards
an SRAM of 21 clock cycles. Finally, note that path-level
semantic, due to branches, has no impact on our canonical
model as our verification strategy explores all combinations
and distances of upstream and downstream instructions.

III. FORMAL PREDICTABLE PIPELINES

SIC enhances the compositionality of the classical 5-stage
in-order pipeline with specific rules to enforce the timing
monotonicity w.r.t. the memory system [9]. The memory ac-
cesses of both the IF and MEM stages are indeed constrained
to be performed in the program order. The in-order stalling
logic is thus extended with an additional condition preventing
the upstream instruction to enter the pipeline while a memory
operation is pending. For loads, it is as follows:

stageup = pre⇒¬mem pending(stage′down)

with mem pending = (typedown = load ∧ vldown.MEM > 1∧
stage′down ∈ {IF, ID,EX ,MEM}). A similar condition holds
for stores. The downstream instruction is no longer stalled
in the MEM stage due to a pending instruction cache miss
generated by the upstream instruction from the IF stage.
Dependencies between instructions leading to amplification
timing anomalies are thus removed. Besides, we introduce
a ST stage in the next stage procedure to model the asyn-
chronous semantic of stores assumed in [9].

PRET, the Precision Time architecture [20] targets the
specification of multithreaded processors able to execute sev-
eral hard real-time tasks concurrently. It relies on a thread-
interleaved in-order five-stage pipeline to exploit the thread-
level parallelism. A static round-robin scheduling is used to
fetch, at every cycle, an instruction from a different hardware
thread (amongst 4) enabling a constant latency between suc-
cessive instruction fetches for the same thread. All data and
instructions are assumed to be initially stored in a scratchpad
memory, whose access latency is 1 cycle. Modeling PRET is



thus straightforward as there is simply no need for a stalling
logic. Compared to the classical in-order pipeline, the progress
condition is thus always true, i.e., there is no need to check
whether the next stage is available.

Patmos [25] is a five-stage, in-order pipeline that can
be connected to a method cache [6], instead of a regular
instruction cache. Using this method cache, misses may only
occur in the MEM stage when loading instructions on a call
or return: an instruction fetch is guaranteed to always hit. We
thus include instructions handling the method cache in the
load instruction class. Stalling due to method cache but also
data cache misses can only occur from a single stage within
the pipeline: MEM. This simplifies the hardware design of the
whole stalling logic. Compared to the only upstream logic,
the downstream instruction now stalls when the following
condition holds:

(stageup = MEM∧ vl.MEMup > 1∧ latencyup ≥ 1)

As misses occur only in the MEM stage, the downstream
instruction can only be stalled at the WB stage. This stalling
logic enforces a fully timing-compositional behavior.

K1 core is a 7-stage pipeline stage where a sequence of four
execution stages, named E1 to E4, take place after Instruction
Decode (ID) and Register Read (RR) stages. A prefetch buffer
connects the pipeline to an instruction cache, that we modeled
as a regular IF stage. We divide the other instruction class into
mac (multiply and accumulate operations) and alu (arithmetic
and logical operations). The alu instruction class spends only
1 cycle at the E1 stage, while the mac stays 1 cycle in each
of the four Ex stages. In case a miss occurs, loads stall at the
E3 stage. Stores are asynchronous, with thus a latency of 1
cycle in their last E3 stage.

K1 implements a variant of the specific upstream stalling
logic. The upstream instruction is stalled at the E1 stage.
However, this stalling occurs only for loads or stores. Besides,
memory transfers by the downstream can span over several
stages, leading to the following stalling condition for the
upstream instruction:

typeup ∈ {load,store}∧
((stage′down ∈ {E1,E2,E3}∧ (typedown = store

∨ (typedown = load∧ vl.memdown > 1)))
∨unv dcache > 1)

Checking if the downstream instruction is a store is required,
as we assume the default write-through policy for the data
cache. Finally, the last variable (unv dcache) models the cache
being unavailable for some extra-cycles: (1) to evict data from
the cache and (2) to implement the critical-word-first return
strategy used to load the core with the initially missed-data.
The advantage of this strategy is that instructions can be
released as soon as possible. For (1), we arbitrary select a
value, as the number of extra clock cycles depends on the
availability of the shared memory. For (2), we add 3 more
extra clock cycles to any load miss, to align on the cache line
size. The variable unv dcache is updated after the next state
of the downstream instruction is computed. It can thus impact
the stalling logic of the upstream.

Both Patmos and K1 cores are n-issues Very Long Instruc-
tion Word (VLIW) pipelines. For both of them, only a single
pipeline can generate memory accesses, allowing us to ignore
modeling bundles of instructions.

IV. PROPERTIES AND RESULTS

Each pipeline model has been verified using specific tests
and the verification strategy presented in II-D. These runs
were performed with 2 invariants: (a) stagedown 6= stageup,
except when they are in the pre and post stages and (b)
the latency for both instructions must always be valid, i.e.
latencydown ≥ 0∧ latencyup ≥ 0. The depth of the Bounded
Model-Checking (BMC) is set to the minimal value that
ensures that both the upstream and downstream instructions
have been fully executed, i.e. have reached the post stage.
To this end, the BMC depth is first manually set to an
arbitrary value. Then, we manually iterated until we found this
minimal value ensuring that the following Linear Temporal
Logic (LTL) property is verified:

G(step = depth⇒ (stagedown = post ∧ stageup = post)) (1)

where step is the current step and depth is the BMC bound.
The Globally temporal operator G of LTL applied to a property
p, i.e. Gp, means that p holds in all states. Performing this
verification, following our strategy presented in Section II-D,
can take from a few minutes, for PRET, to several hours, for
K1, and has shown to detect bugs in the early design phase
of these models.

After these first set of runs, we then focus on checking
whether a downstream instruction can or cannot be stalled by
an upstream instruction. This is achieved by computing in our
models the delay of the downstream instruction (delaydown),
i.e., its stalling time due to upstream instruction. Whether the
upstream instruction can delay the downstream instruction is
then simply verified using the following LTL property:

G(delaydown = 0) (2)

This property is a prerequisite to situations where amplifica-
tion timing anomalies might occur and thus not amplifications
directly. This LTL property is thus only a sufficient condition,
and false positives can be found, i.e. non-null delays computed
but no amplification timing anomalies, as shown later, when
we report the results. Directly checking amplification timing
anomalies would require to compare local variations of the
latency of instructions to the global variation of the execution
time of a sequence of instructions. Note that for these second
set of runs, we use the same strategy as in the first set of
runs to set the depth of the BMC, i.e., the LTL property 1 is
combined with property 2. Finally, note that the BMC depth
is not directly related to the complexity of a WCET analysis.
However, the absence of timing anomalies, i.e., both amplifi-
cation and counterintuitive, allows to simply aggregate local
timing contributions into a WCET analysis, i.e., an exhaustive
search is no longer required and thus the complexity of a
WCET analysis is reduced.

Table I shows, for each pipeline, whether prerequisite to
amplification timing anomalies are identified or their absence
proved (noted No), the required BMC bound and the runtime
of the verification process. These runtimes are the total times



TABLE I
IDENTIFIED OR PROVED ABSENCE OF PREREQUISITE TO AMPLIFICATION

TIMING ANOMALIES FOR PIPELINES.

Pipeline (stalling logic) Prerequisite to
amplifications

BMC depth Runtime (s)

In-order (specific/only) Identified 31 44.5

In-order (whole) Identified 34 83.8

SIC (specific) No 23 41.1

PRET (no) No 10 9.4

Patmos (whole) Identified 14 12.2

Patmos (specific) No 14 11.5

K1 (∼specific) Identified 33 84.8

to verify the properties 1 and 2 over each model and not of
WCET analyses of given programs over our pipeline models.
These runtimes cannot be directly compared to any previous
work, as none has targeted the verification of timing am-
plifications anomalies. Verification runtimes reported in [16]
are only a few seconds, but indeed ignore to model the
interplay between instructions, as we do in our canonical
model. Compared to [17], our runtimes are this time much
lower as we focus on a specific timing behavior and not on a
set of functional properties.

As expected, the simplest pipeline in which the absence
of amplification is proven is PRET, with BMC depth of
10. Patmos requires a BMC depth of 14. However, a set of
situations with a positive delay are identified. These cases
correspond to the situations where the downstream instruction
is stalled at the WB stage, due to a cache miss generated
by the upstream instruction at the MEM stage. We have
checked that these counter-examples, due to the whole stalling
logic, cannot lead to amplification timing anomalies. The
downstream instruction does not indeed experience a local
timing variation in its latency at the WB stage. The delay
the downstream instruction is stalled in these cases, and thus
the global timing, must include the worst-case latency of
the upstream instruction at the MEM stage. Additionally, we
have verified that a Patmos model using the specific upstream
stalling logic is proved to be without timing amplifications.
The additional specific rules of SIC requires an increased
BMC depth of 23. This is due to other rules in the model
to ensure compositionality. We have omitted them in our
description of Section III, due to space constraints.

Finally, a prerequisite to amplification timing anomalies
are identified for both in-order (independently of the stalling
logic) and K1 pipelines. For both pipelines, they correspond
to a local variation due to a switch from a cache hit to a
cache miss at the MEM stage of the downstream instruction.
The increased global variation then comes from the bus being
occupied by the upstream instruction at the IF stage, stalling
the cache miss request from the downstream instruction. K1
requires a higher BMC depth due to the specific behavior of
its data cache. We also modeled the streaming mode of the K1,
where instructions can progress up to a fifth pending uncached
load reaches the E3 stage. The uncached streaming stores are
supported in an unlimited number. Under these conditions, we
verify that K1 does not exhibit timing amplifications.

To summarize, we establish the following complexity-based
ordering between the proven, predictable pipelines: PRET <
Patmos < SIC. SIC has a complexity similar to a classical in-
order pipeline, while Patmos almost reaches the simplicity of
PRET but brings additional specialized caches into play.

All the developed models are in open source and available
on-line on a GitHub repository [15]. The README.md provides
instructions on how to rerun our experiments.

V. RELATED WORK

WCET analyses have been the subject of numerous publi-
cations, [29] provides an overview of the subject to interested
readers. However, the notion of timing anomaly, and implicitly
its first (semi-formal) definition, is introduced in the context
of the WCET analysis in [21]. It is further refined (and
accompanied by a simple detection criterion), in [28] and
finally, it is formally defined in [24]. Several existing WCET
tools still assume no timing anomalies, such as Heptane [11].

Several approaches are proposed towards formally rea-
soning about counterintuitive timing anomalies in pipelined
systems. For example, in [7], the absence of such anomalies
is verified, using bounded model checking and in [1], guided
model-checking is combined with a state-space transformation
to detect such anomalies. The approach in [8] augments a
static analysis with measurements executed directly on the
system under analysis. In this work, we use the bounded model
checking techniques of UCLID5 [26] to focus on amplification
timing anomalies.

The formal modeling and verification of computer architec-
tures in general, and pipelines in particular, has been addressed
in numerous works. A wide range of solutions have been
proposed, from manual to automated/synthesized correctness
proofs, addressing in general the functionality correctness.
Without being exhaustive, we relate to several approaches
which, roughly, fall into three categories: model checking and
decision procedures [4], [17], [22], theorem proving [16], [18]
and mixed techniques [14]. The work in [4] couples a stalling
semantics with a flushing semantics (which is also based on
pipeline stalls) to prove that instructions are correctly executed
(i.e., functional correctness). [16] focuses on the stalling
semantics of simple in-order processor (as ours) coming from
data hazards or a slow (data) memory, ignoring the instruction
memory. [2] extends the scope of this work to a whole
architecture but still without considering the interplay between
instructions and data memories on the stalling semantics of
pipelines, as we consider in our work. The same (limited)
stalling semantics of in-order pipeline is synthesized in [17],
whereas, the stalling semantics from [22], [18] and [14] are
for out-of-order pipelines, thus richer than what we propose.
However, the particularity of our stalling semantics is the
canonical pipeline model – designed to track local timing
variations and hence, for worst-case timing analysis.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we proposed a formal and executable frame-
work to facilitate the automated detection of amplification
timing anomalies. We used UCLID5 to encode a classical in-
order pipeline and several predictable pipelines. We validated,
via bounded model checking, the absence of such anomalies



for the PRET, Patmos and SIC pipelines. Finally, we have
shown that K1 is subjected to these timing anomalies, except
if streaming accesses are used.

We are currently working on how to generate such models
from hardware description languages and how to define ap-
propriate abstractions over these models. Besides, it could be
interesting to extend our canonical pipeline model to generate
the scheduling parameters of hard and soft real-time threads
for FlexPRET. We also plan to extend our canonical model, by
instantiating several instructions, to verify both amplifications
and counterintuitive timing anomalies.

REFERENCES

[1] M. Asavoae, B. B. Hedia, and M. Jan. Formal executable models for au-
tomatic detection of timing anomalies. In 18th Intl. Workshop on Worst-
Case Execution Time Analysis (WCET), pages 2:1–2:13, Barcelona,
Spain, 2018.

[2] S. Beyer, C. Jacobi, D. Kröning, D. Leinenbach, and W. J. Paul. Putting
it all together – formal verification of the vamp. International Journal
on Software Tools for Technology Transfer, 8(4):411–430, Aug 2006.

[3] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu. Bounded
model checking. Advances in Computers, 58:117–148, 2003.

[4] J. R. Burch and D. L. Dill. Automatic verification of pipelined mi-
croprocessor control. In Computer Aided Verification, 6th International
Conference, CAV ’94, pages 68–80, 1994.

[5] B. D. de Dinechin, D. van Amstel, M. Poulhiès, and G. Lager. Time-
critical computing on a single-chip massively parallel processor. In Proc.
of the Conf. on Design, Automation & Test in Europe (DATE’14), pages
97:1–97:6, 2014.

[6] P. Degasperi, S. Hepp, W. Puffitsch, and M. Schoeberl. A method
cache for Patmos. In Proc. 17th Intl. Symp. on Object/Component-
Oriented Real-Time Distributed Computing, ISORC ’14, pages 100–108,
Washington, DC, USA, 2014.

[7] J. Eisinger, I. Polian, B. Becker, A. Metzner, S. Thesing, and R. Wilhelm.
Automatic identification of timing anomalies for cycle-accurate worst-
case execution time analysis. In Proc. of the Workshop on Design &
Diagnostics of Electronic Circuits & Systems (DDECS), pages 15–20,
Prague, Czech Republic, April 2006.

[8] G. Gebhard. Static timing analysis tool validation in the presence of
timing anomalies. PhD thesis, Saarland University, 2013.

[9] S. Hahn and J. Reineke. Design and analysis of SIC: A provably
timing-predictable pipelined processor core. In Proc. Real-Time Systems
Symposium (RTSS), pages 469–481, Nashville, TN, 2018.

[10] S. Hahn, J. Reineke, and R. Wilhelm. Towards compositionality in
execution time analysis: definition and challenges. SIGBED Review,
12(1):28–36, 2015.

[11] D. Hardy, B. Rouxel, and I. Puaut. The Heptane Static Worst-Case
Execution Time Estimation Tool. In 17th International Workshop on
Worst-Case Execution Time Analysis (WCET), pages 8:1–8:12, 2017.

[12] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative
Approach, 4th ed. Morgan Kaufmann Publishers, 2006.

[13] J. L. Hennessy and D. A. Patterson. Computer Architecture - A
Quantitative Approach, 5th Edition. Morgan Kaufmann, 2012.

[14] C. Jacobi. Formal verification of complex out-of-order pipelines by
combining model-checking and theorem-proving. In 14th Intl. Conf.
Computer Aided Verification (CAV), pages 309–323, 2002.

[15] M. Jan. UCLID5 models of SIC, PRET, Patmos and K1, 2019. https:
//github.com/t-crest/patmos-sail/tree/master/uclid.

[16] D. Kröning. Formal verification of pipelined microprocessors. PhD
thesis, Saarland University, Saarbrücken, Germany, 2001.

[17] U. Kühne, S. Beyer, J. Bormann, and J. Barstow. Automated formal
verification of processors based on architectural models. In 10th Intl.
Conf. on Formal Methods in Computer-Aided Design (FMCAD), pages
129–136, 2010.

[18] S. K. Lahiri, S. A. Seshia, and R. E. Bryant. Modeling and verification
of out-of-order microprocessors in UCLID. In Formal Methods in
Computer-Aided Design, 4th International Conference, FMCAD 2002,
pages 142–159, 2002.

[19] I. Liu, J. Reineke, D. Broman, M. Zimmer, and E. A. Lee. A
PRET microarchitecture implementation with repeatable timing and
competitive performance. In 30th Intl. Conf. on Computer Design,
ICCD, pages 87–93, 2012.

[20] I. Liu, J. Reineke, and E. A. Lee. A PRET architecture supporting
concurrent programs with composable timing properties. In 44th
Asilomar Conf. on Signals, Systems, and Computers, November 2010.

[21] T. Lundqvist and P. Stenström. Timing anomalies in dynamically
scheduled microprocessors. In Proc. of the 20th Real-Time Systems
Symposium, pages 12–21, Phoenix, AZ, USA, December 1999.

[22] K. L. McMillan. Verification of an implementation of tomasulo’s algo-
rithm by compositional model checking. In 10th Intl. Conf. Computer
Aided Verification (CAV’98), pages 110–121, 1998.

[23] C. S. Michael Zimmer, David Broman and E. A. Lee. FlexPRET: A
processor platform for mixed-criticality systems. In 20th IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS),
Berlin, Germany, April 2014.

[24] J. Reineke, B. Wachter, S. Thesing, R. Wilhelm, I. Polian, J. Eisinger,
and B. Becker. A definition and classification of timing anomalies. In
6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis,
Dresden, Germany, July 2006.

[25] M. Schoeberl, W. Puffitsch, S. Hepp, B. Huber, and D. Prokesch. Pat-
mos: A time-predictable microprocessor. Real-Time Systems, 54(2):389–
423, Apr 2018.

[26] S. A. Seshia and P. Subramanyan. Uclid5: Integrating modeling,
verification, synthesis and learning. In 16th Intl. Conf. on Formal
Methods and Models for System Design (MEMOCODE), pages 1–10,
Oct 2018.

[27] L. Thiele and R. Wilhelm. Design for timing predictability. Real-Time
Systems, 28(2-3):157–177, 2004.

[28] I. Wenzel, R. Kirner, P. P. Puschner, and B. Rieder. Principles of timing
anomalies in superscalar processors. In Intl. Conf. on Quality Software
(QSIC 2005), pages 295–306, Melbourne, Australia, September 2005.

[29] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström. The worst-case
execution time problem – overview of methods and survey of tools.
Trans. on Embedded Computing Sys., 7(3):1–53, 2008.

https://github.com/t-crest/patmos-sail/tree/master/uclid
https://github.com/t-crest/patmos-sail/tree/master/uclid

