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Abstract—High-level synthesis (HLS) enables designers to cus-
tomize hardware designs efficiently. However, it is still challeng-
ing to foresee the correlation between power consumption and
HLS-based applications at an early design stage. To overcome this
problem, we introduce HL-Pow, a power modeling framework
for FPGA HLS based on state-of-the-art machine learning tech-
niques. HL-Pow incorporates an automated feature construction
flow to efficiently identify and extract features that exert a major
influence on power consumption, simply based upon HLS results,
and a modeling flow that can build an accurate and generic power
model applicable to a variety of designs with HLS. By using
HL-Pow, the power evaluation process for FPGA designs can be
significantly expedited because the power inference of HL-Pow
is established on HLS instead of the time-consuming register-
transfer level (RTL) implementation flow. Experimental results
demonstrate that HL-Pow can achieve accurate power modeling
that is only 4.67% (24.02 mW) away from onboard power
measurement. To further facilitate power-oriented optimizations,
we describe a novel design space exploration (DSE) algorithm
built on top of HL-Pow to trade off between latency and power
consumption. This algorithm can reach a close approximation of
the real Pareto frontier while only requiring running HLS flow
for 20% of design points in the entire design space.

1. INTRODUCTION

High-level synthesis (HLS) [1] automates the process of
translating applications described by high-level languages
(e.g., C++ and Python) into register-transfer level (RTL) de-
signs. With the aid of HLS tools, designers targeting hardware
implementation for field-programmable gate arrays (FPGAs)
or application-specific integrated circuits (ASICs) are no
longer required to dig deep into low-level hardware details,
such as the micro-architectures of individual components and
the interconnection between them. Besides this, modern HLS
tools have the capability to give relatively good estimation of
performance and resource utilization for the created hardware,
and also deliver a series of design knobs, or so-called direc-
tives, to help designers tune the two aforementioned design
metrics. As a result, the productivity and flexibility brought
by HLS notably speed up the development process of hardware
designs, and also open up an opportunity for efficient design
space exploration (DSE) [2]-[7]. However, off-the-shelf HLS
tools [_8]] are still lacking in mature power analysis techniques,
making it difficult to clearly observe the influence of different
optimization strategies of HLS on power consumption.

Power consumption is a primal concern for many hard-
ware designs, especially for portable electronic devices and
embedded systems. The common practice to obtain power
consumption is through power measurement or estimation,
both of which require designers to spend substantial effort.
First, RTL designs are created by designers either manually
or through HLS. Afterwards, the RTL implementation flow,
including logic synthesis, placement and routing, is applied
to the provided RTL designs for the generation of gate-level

details. For power measurement, the designs are implemented
on real systems, and power consumption can be measured
onboard by monitoring devices. For power estimation, gate-
level simulation is performed with real input vectors to capture
switching activities of the IO and internal signals. Thereafter, a
prebuilt analytical power model [9] provided by the design tool
is applied to compute power consumption given the gate-level
details and signal activities. After obtaining power values,
designers can accordingly refine the hardware architectures
in pursuit of higher performance or power efficiency, and
run the above design flow again for verification. In general,
the creation of power-efficient designs usually necessitates
multiple iterations of power evaluation and design refinement,
which results in a long design time and low productivity.

Some state-of-the-art works [[10]-[13]] have presented power
modeling techniques to accelerate the power analysis process
for hardware designs; however, each of these methods exhibits
some of the following drawbacks: 1) each of the power models
generated by these methods is customized for an individual
design and not applicable to others, 2) their modeling process
for each target design requires multiple rounds of power
characterization following the slow RTL implementation flow,
and 3) it is difficult to migrate their techniques to new plat-
forms due to their dependence on specific hardware modeling
expertise. Putting it all together, designers must familiarize
themselves with the modeling steps and make great effort to
build a specialized power model for every target design, thus
incurring high labor intensity.

In light of the above considerations, in this work, we
investigate advanced modeling techniques to provide power
prediction for FPGA designs at an early design stage, and
also strive to speed up power-oriented exploration of hardware
designs. Specifically, we propose HL-Pow, a learning-based
power modeling framework for HLS designs. Our modeling
framework features wide applicability and high efficiency
compared with state-of-the-art works [10]-[13]]. First of all,
HL-Pow offers a modeling strategy with high generalization
ability so that various designs can use one well developed
model for power prediction without the need of model recon-
struction when targeting the same FPGA platform. Second, our
methodology can be easily migrated to new platforms without
knowing low-level hardware details such as the technology,
hardware primitives or macros. Third, the power prediction of
HL-Pow for new designs is fast in runtime, as it dispenses with
the need to perform the time-consuming RTL-based power
estimation or measurement flow. With HL-Pow, DSE can be
quickly conducted to investigate the design tradeoff between
power and other design metrics provided by HLS. In summary,
we demonstrates the following contributions in this work:

¢ We introduce an automated feature construction flow



for rapid identification and extraction of features closely
related to power consumption, simply using results gen-
erated by the HLS design flow.

« We propose HL-Pow, a learning-based power modeling
methodology with the ability to achieve accurate, fast
and early-stage power estimation for HLS designs, by
building the power model only once.

o We describe a novel DSE algorithm established on HL-
Pow to demonstrate how the tradeoff between latency
and power consumption can be effectively and efficiently
evaluated by design space sampling.

II. RELATED WORK
A. Hardware Power Modeling

Studies about hardware power modeling have been con-
ducted at two abstraction levels: low abstraction and high
abstraction. Low-level abstraction methods [[14]—[/17] look into
the power consumption of primitive components, and derive
overall power consumption by aggregating power of all used
primitive components. For this purpose, a library is built in
advance for real-time power reference of primitive compo-
nents. A power characterization process should be conducted
to construct a power look-up table, or a so-called macro-
model, for each basic component, such as the adder and
multiplier. Except that a rich body of basic components should
be characterized individually, this power characterization stage
should also take into account various use cases, such as signal
activity levels, bitwidths and even cell selection variances, thus
leading to a large evaluation space to walk through all different
situations per component. The large characterization space for
all components requires a tremendous amount of development
time. What’s more, different technologies or standard cell
libraries would have their specific design methodologies that
are not shared among the others. Based on this, creating this
library also depends on developers having a good understand-
ing of all primitive components.

In contrast, high-level abstraction methods [10]-[13] view
a design as a whole and build an analytical or learning-based
model specific to it, which avoids going deep into most low-
level hardware details. The works [10] and [[11]] are for post-
RTL power modeling, while the works [12] and [13]] focus on
pre-RTL power modeling and they are close to our work. The
work [12] specifically looks into affine functions, identifies
the basic code segment as a tile from the programs, and
deduces overall power consumption by summing up power
consumption of all tiles. For each application, the tile structure
is unique. As a result, given a new application, a tile-based
power characterization stage still needs to be carried out
through gate-level power simulation. Nevertheless, the power
characterization time can be significantly expedited compared
with low-level abstraction methods, because only the tile
structures instead of a pool of primitive components should be
characterized. Another work FlexCL [13] targets OpenCL-to-
FPGA design flow. Based on the fact that OpenCL applications
tend to show regular behaviors in phases, FlexCL decomposes
the execution timeline of a kernel into work-groups, and then
further divides work-groups into work-items. The dynamic
power model is generated according to these two phase levels.
Similar to the work [12], FlexCL also involves the fine-grained

power characterization for different phases in work-groups
and work-items, but the overall characterization overhead is
also remarkably reduced compared with low-level modeling
techniques.

The high-level abstraction modeling methods show signif-
icant speedup in model creation compared with low-level
abstraction methods. However, existing high-level abstraction
methods still entail model regeneration for new designs, rely
on slow and repetitive power estimation/measurement for
power characterization, and can not be easily migrated to new
platforms because some critical steps, such as power profiling
for particular components or code structures, involve hardware
design expertise. To the best of our knowledge, our work for
HLS-based power modeling, HL-Pow, is the first work that
overcomes all these aforementioned limitations, and finally
presents an HLS power modeling framework that can deliver
high accuracy, efficiency and generalization ability.

B. Design Space Exploration

A rich body of research studies DSE for HLS. One direction
of automatic DSE is to establish predictive models offline
and use brute-force search to retrieve an approximate Pareto
frontier between two or more target metrics. The works [12]
and [13] elaborated in Section also provide exhaustive
DSE after the power model is developed for an application.
Another instance is the MPSeeker [4] which evaluates the
tradeoff between performance and area by producing a pre-
dictive model for early estimation of HLS results and then
traversing the complete design space to find optimal points.

An alternative to these methods is to select a subset of
design points to feed into HLS and search new design points
for exploration according to present HLS results. Due to
the difficulties of getting information of all design points in
advance, methods developed in this way first selects a small
subset of samples as promising candidates to put into HLS
execution. After obtaining the results from current sample
points, knowledge can be learned and used to navigate the
search space for evaluating new candidate points. The knowl-
edge generalization techniques include heuristic methods [3]],
[7] that are specific to their target problems, learning-based
methods [2], [5] to generate predictive models for HLS
results, and a combination of them [6] which applies heuristic
algorithms and machine learning methods in different stages.
In our work, we first develop a generic model for rapid power
inference of HLS designs, and based on that we present a novel
heuristic algorithm to further speed up the DSE to evaluate
the latency-power tradeoff by online design space sampling.
These two stages are complementary to each other for fast
design-time hardware power optimization.

III. POWER MODELING FRAMEWORK

Starting with a new platform, the HL-Pow design flow has
two phases: 1) power model training with a collection of
applications and 2) power inference for new applications. The
complete design flow of the HL-Pow framework is depicted
in Fig. [I] In the training phase, a number of representative
applications described in C or C++ are used to generate
training samples for power modeling. Each application is
associated with a set of optimization strategies (i.e., directives)
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OPERATOR TYPES AND IR OPCODES FOR ACTIVITY TRACKING.

Operator type \ IR opcode

Arithmetic add, sub, mul, div, sqrt, fadd, fsub, fmul, fdiv, fsqrt
Logic and, or, xor, icmp, fcmp
Memory store, load, read, write
Arbitration mux, select
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Fig. 1. Overview of HL-Pow design flow.

to produce a number of design points varying in performance,
resource utilization and power consumption. The directives
used in this paper are array partitioning, loop unrolling
and loop pipelining. The collected design points first pass
through the traditional HLS design flow to be converted into
synthesizable RTL designs. After that, two major steps are
conducted for training sample generation: feature construction
and power collection. For feature construction, we make
use of input stimuli, the generated reports and intermediate
results from HLS runs to construct features that are of great
importance to power consumption. For power collection, the
power consumption obtained from estimation or from onboard
measurement can be used as ground truth power values, both
of which require the design points from HLS to go through the
RTL implementation flow. Putting it all together, the feature
set and the corresponding true power consumption of each
design point constitute a training sample. A training set with
multiple samples from different applications is used to build a
learning model that maps from features to power consumption.

In the power inference phase, HL-Pow can achieve fast and
accurate power prediction for new applications using the well
trained power model. Firstly, the new applications, together
with the directive configurations to evaluate, are required to
go through the HLS design flow. Note that in this stage, RTL
code generation can be skipped to save time if the target HLS
tool supports the separate execution of different steps in the
back-end process. Secondly, the same feature construction step
as in the training phase is executed to capture features for new
design points. Finally, the created feature set is fed into the
prebuilt model for power inference. In this stage, all the steps
are solely based on HLS and thus there is no need to invoke the
tedious RTL implementation flow along with power estimation
or measurement for any design point.

There are two main types of features to acquire: architecture
features and activity features. Architecture features describe
the overall design information estimated by HLS tools, while
activity features correspond to the switching activities of
different hardware components in the target designs.

A. Data Collection

Starting from the HLS front-end execution, the C/C++
source code is first translated into intermediate representation
(IR). Some optimizations are also performed by vendor tools

at this IR level, such as bitwidth reduction and loop unrolling.
With the IR code, the HLS back-end process then conducts
control and data flow graph (CDFG) generation, followed by
resource allocation, scheduling and functional unit binding.
At this stage, the hardware architecture is determined and
described by a finite state machine with datapath (FSMD)
model. Finally, code generation is executed to convert the
generated FSMD model into synthesizable RTL code.

Using Vivado HLS [8]] as the design tool for demonstration,
some of the data and intermediate results from HLS runs
are collected for feature construction: 1) the HLS report
(app_name.verbose.rpt.xml) containing details of the overall
design, as described in Section [[II-B] 2) the IR code (a.0.3.bc)
and IR operator information (app_name.adb), including each
IR operator’s ID, opcode, type and netlist name corresponding
to a hardware component (denoted as RTL operator), and 3)
the FSMD model (app_name.adb.xml) that describes the FSM
stages, dataflow, and RTL operator information, including each
RTL operator’s ID, operand bitwidths and related IR instruc-
tions. We identify four types of IR operators that contribute
the most to power consumption and can be mapped to RTL
operators through ID matching: arithmetic, logic, memory and
arbitration operators, as shown in Table[l] The activity features
introduced in Section only account for these opera-
tors. Besides the hardware micro-architectures, the operators’
switching activities also depend on the input stimuli, which
can be collected from real scenarios or generated at random.

B. Architecture Features

The power consumption is associated with the scale and
complexity of the hardware design and the operating fre-
quency. Therefore, we construct the following architecture
features for each design point from the HLS report: 1) FPGA
resource utilization estimated by HLS, including look-up table
(LUT), flip-flop (FF), digital signal processing unit (DSP)
and block random access memory (BRAM); 2) performance,
including achieved clock period in nanoseconds and latency in
cycles; and 3) the scaling factors (SFs) of the above metrics for
the current design to those of the baseline design, respectively,
which can be computed as

Mcurrent

SFM B Mbase ’ (l)

where M represents one of the metrics (i.e., different types

of resources, clock period or latency) of the current design,

current, or the baseline design, base, in which no direc-

tives are used. In general, the SF is a type of important

reference that helps to normalize the resource utilization and

performance across different applications. We constructs 11
architecture features in total.

C. Activity Features

Dynamic power is introduced by signal transitions which
dissipate power by repeatedly charging and discharging the
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Fig. 2. The IR annotator with RTL-to-IR back tracing and activity tracking.

load capacitors. Eq. [2] formulates dynamic power Py, as

Z ;G Vi f, 2
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which is a function of signal switching activity «;, capac-
itance C; on the net i, supply voltage V;4 and operating
frequency f. It is conceivable that switching activities of
different RTL operators are critical indicators for dynamic
power consumption. In HL-Pow, an automatic design flow
is introduced to capture the switching activities of different
components, and construct activity features using them. To
reduce runtime overhead, the design flow targets IR-level
activity extraction, instead of the time-consuming RTL-based
simulation. The HLS intermediate results elaborated in
(a.0.3.bc, app_name.adb, and app_name.adb.xml) are used
during the construction of activity features. Finally, an IR
annotator, an activity generator and a histogram constructor
are incorporated in this design flow.

den:

IR Annotator. The IR annotator instruments RTL operators
with functions to keep track of their switching activities. The
two main steps in the IR annotator are RTL-to-IR back tracing
and activity tracking, as shown in Fig. 2] The RTL-to-IR
back tracing is based on the observation that multiple IR
operators can be mapped to the same RTL operator due to
scheduling and resource sharing in the HLS back-end process,
as depicted in the right-hand side of Fig.[2] Therefore, multiple
IR operations may contribute to the activities of one RTL
operator in different time steps. In the IR code, we trace
back the RTL operators to their corresponding IR operators
with the opcodes shown in Table |I} This is done by matching
the netlist name between IR operators and RTL operators
in the FSMD model. Following the RTL-to-IR back tracing
process, we instrument the IR code with an activity tracking
function after each IR operator to record the values of input
and output signals and the associated RTL operator ID of
this IR operator. After all the above steps, an annotated IR is
generated. This IR annotator is developed within the LLVM
compiler toolchain [18]].
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Fig. 3. The activity generator.

Activity Generator. Before conducting HLS for an applica-
tion, the users are required to provide a C-based testbench and
a set of input stimuli to verify the correctness of the design
output. These files are leveraged in the activity generator. As
depicted in Fig. 3] the activity generator first compiles the
given testbench and a library of activity tracking functions
written in C++ into object files by the g++ compiler, respec-
tively. In addition, the annotated IR is also converted into an
object file by the clang++ compiler. All these object files are
further linked together into a single executable file. Through
running the executable file with the input vectors, we are able
to invoke the target kernel function in the IR, and extract the
cycle-level input and output values for each RTL operator into
a list. Thereafter, we compute the average switching activity
per RTL operator by

Sy S HD(s(ing), siod = 1)
Mo,p - Nop ’

where s(i,j) is the bit vector for an operand or result ¢ at
time step j for the evaluated RTL operator op, M,, is the
total number of operands and results, N, is the length of the
list of activity vectors for op, and HD(-) is the Hamming
distance computation function which counts the differences
between two vectors bit by bit.

We further scale the average switching activity for each RTL
operator as follows:

N,

SAscaled = £p : SAOIH (4)

where L is the latency of the target design point estimated by
HLS. In this equation, Ni”’ can be regarded as an activation
rate to amortize an operator’s average switching activity over
the total execution cycles.

Histogram Constructor. As the directive configurations
for different design points lead to different numbers of RTL
operators, the size of the currently extracted activity set also
varies from design point to design point even for the same
application. Noticing that a trained machine learning model
is not able to deal with varying feature size, we need to
devise a way to convert the set of extracted activities into
features so that the feature size is fixed for various design
points, and a well developed model is applicable to different
applications. To this end, we adopt a histogram representation
of operator activities. For each opcode, we create a histogram
with a pre-defined number of bins, each of which covers a
specific activity range. Each RTL operator is first sorted into
a particular histogram according to its opcode, and then it is
distributed to the bin covering its scaled switching activity,

SAyy =




as computed by Eq. 4 Within each bin, the data statistics to
be collected are the number, the percentage and the average
switching activity of all the RTL operators in this bin. The
fixed-sized statistics for every opcode are used as features and
are assembled into an activity feature set for model training
and inference. In addition, we adopt the total number of RTL
operators for each opcode as a feature.

D. Power Model Generation

HL-Pow constructs a total number of 256 features, con-
sisting of 11 architecture features mainly accounting for
static power and 245 activity features contributing to dynamic
power. To obtain ground truth power values for each design
point, we conduct RTL implementation flow after the HLS
flow, and collect real power measurement during onboard im-
plementation. Besides onboard measurement, gate-level power
estimation is another option to get ground truth power values.

We build regression models for power prediction using a
variety of supervised learning methods. These models are 1)
linear regression: classic linear regression and Lasso regres-
sion with a [;-norm regularization term; 2) support vector
machine (SVM): support vector regression with a radial basis
function (RBF) kernel; 3) tree-based model: decision tree
and ensemble models, including bagging trees, adaboost trees,
random forests and gradient boosting decision trees (GBDT);
and 4) neural network: multi-layer perceptron (MLP), convo-
Iutional neural network (CNN) and residual neural network
(ResNet). For CNN and ResNet, we construct a 16-by-16
input map from the 256 features, by filling it row by row with
architecture features and the total number of RTL operators
for each opcode, followed by the other activity features. As
for data preprocessing, we perform data normalization when
necessary. For the first three categories of models, we conduct
feature selection and K-fold cross-validation to determine the
models’ hyperparameters before model generation. For neural
networks, we deploy several widely used model instances, and
fine-tune the model hyperparameters.

IV. ALGORITHM FOR DESIGN SPACE EXPLORATION

With our power modeling framework, power prediction for
a design point can be greatly expedited without running the
tedious RTL implementation flow. However, when the goal is
to find the Pareto-optimal points from a large design space,
there is still a large HLS runtime overhead to exhaustively
assess power for every design point through HL-Pow. To
tackle this issue, we propose a novel algorithm to approximate
the Pareto frontier between latency and power consumption by
only sampling a small subset of the design points. Specifically,
we apply a priori knowledge generalized from training appli-
cations to navigate the search of Pareto-optimal points.

The overview of the algorithm is depicted in Fig. |4 We
first prune away the design points that produce repetitive RTL
designs from the design space, and divide the design space
into several regions to explore. The pruning is based on the
fact that when an outer loop is pipelined, all the inner loops
are automatically unrolled [[19]. In such a situation, no matter
what unrolling factors are set for the inner loops, the resulting
architectures are the same as that without unrolling the inner
loops. Therefore, we reserve one design point and remove
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the redundant ones when this situation happens. Afterwards,
we split the design space into multiple regions by the array-
related directive, namely, array partitioning, and use loop-
related directives including loop pipelining and loop unrolling
for the search of promising points in each region.

Starting with the trimmed and divided design space, an
initial sampling step is conducted to collect the first set of
design points to assess. The heuristic is to select representative
points in each region that are spreading out over the range
of both latency and power consumption. Through analysis
of the training set, we discover a trend that pipelining the
outer loops, compared with pipelininig inner loops or no
pipelining, generally leads to higher power consumption along
with lower latency. Moreover, unrolling the loops with a larger
unrolling factor also brings a similar effect. Following these
observations, we can provide a coarse-grained but a priori
estimation of latency and power consumption for different
directive configurations, and accordingly, we transform each
region into a grid-like representation as shown in step 2 of
Fig.|4] On top of that, the design points in the corner and in the
middle of each grid are selected to add to the initial sampling
set, in that they are most likely to demonstrate extreme and
median values for both latency and power consumption.

The initial sampling set is fed into HL-Pow to assess
latency (by HLS) and power consumption. After obtaining
both latency and power values, an approximate Pareto frontier
is derived from the current sampling set, and the existing
Pareto-optimal points are used as references for identifying
promising design points to evaluate. We propose to use the
standard deviation reduction (SDR) [20] as the metric for
candidate point selection. SDR measures the ability that an
attribute splits a dataset into subsets: the higher the SDR, the
better the dataset is split by similarity. Specific to our case,
the dataset is the set of latency or power consumption for all
design points in an application, and the attributes are unrolling
and pipelining. The SDR in our case can be deduced as

SDR = sd(T) — ) ||§f|| x sd(T}), ®)




TABLE II
DIRECTIVE OPTIONS SUITABLE FOR THE TARGET PLATFORM.

Directive | Option

Array partitioning
Loop pipelining
Loop unrolling

type: cyclic; factor: [1, 2, 4, 8]
different levels of nested loops
factor: [1, 2, 4, 8]

where sd(-) is the standard deviation computation function,
T is the set of latency/power consumption and 7; is the ith
subset of 71" split by unrolling/pipelining. We evaluate all the
training applications and find that, for both latency and power
consumption, loop pipelining has higher SDR compared to
loop unrolling. This means that loop pipelining tends to show
a larger effect than loop unrolling on both latency and power
consumption, and can better split the design space to indicate
differences in both of these metrics. According to this finding,
we further transform each region of the design space into an
ordered sequence, in which the directive configurations are
first sorted by loop pipelining in a coarse-grained manner and
then by loop unrolling in a fine-grained manner, as shown in
step 5 of Fig. 4] In this way, the latency/power consumption
can be roughly estimated as monotonic decreasing/increasing
following the direction from right to left in this representation.

We identify each pair of neighboring points in the approx-
imate Pareto set that are from the same region, and annotate
them in the corresponding ordered sequence. For each pair of
annotated points, we locate the middle point between them in
the sequence and add it to the sampling set. If this middle point
has already been added to the sampling set, we remove it from
the sequence, and instead search for the updated middle point
to add. The above steps, namely, design evaluation, Pareto
frontier search and candidate selection, are iterated to search
for promising design points until a user-defined budget of
HLS runs is reached or no more candidates exist. Finally, to
ensure that the real Pareto-optimal points are not pruned away
due to the error induced by power estimation, we allow the
design points within a pre-defined deviation (e.g., 5%) of the
power consumption from the nearest Pareto-optimal points to
be incorporated into the Pareto set.

V. EXPERIMENTAL RESULTS
A. Experimental Setup

The HL-Pow design flow is fully automated and imple-
mented with Python and C++ for feature construction, model
establishment and power inference. Different types of learning
models are realized in Scikit-learn [21]], XGBoost [22]] and
Keras [23], respectively. We apply our design flow to evaluate
22 applications from different categories in Polybench [24]], re-
sulting in up to 11326 valid design points and 256 features per
design point. The design points are synthesized using floating-
point arithmetic and implemented under a timing constraint
of 10 ns. The FPGA development toolkit we use is Xilinx
Vivado Design Suite 2018.2. We implement all the design
points on a Xilinx Ultrascale+ ZCU102 FPGA board and
collect real power consumption through onboard measurement
with the Power Advantage Tool [25]. We customize the HLS
optimization strategies that fit the applications into the target
platform, as shown in Table @

TABLE III
ACCURACY OF POWER MODELING.

Application Power MAE (%) of Learning Models
PP Range (W) | Lasso | SVM | GBDT | CNN
Atax 0.30-1.00 | 746 | 1507 | 280 | 5.14
Bicg 030-1.15 | 621 | 2062 | 463 | 7.80
Fdtd_2d 029 -136 | 946 | 1081 | 479 | 3.98
Gemm 030-086 | 692 | 1751 | 3.69 | 5.15
Gramschmidt | 029 -0.65 | 9.07 | 1231 | 626 | 5.69
Jacobi_2d | 030-131 | 10.67 | 1416 | 632 | 436
Mvt 0.30-1.09 | 958 | 14.03 | 4.11 | 440
Overall | 029-136 | 9.08 | 13.00 | 478 | 4.67

B. Performance of Power Modeling

We use 8784 design points from 15 applications for train-
ing and validation, and 2542 design points (>20%) from
the other seven applications (Atax, Bicg, Fdtd_2d, Gemm,
Gramschmidt, Jacobi_2d, Mvt) are used for testing only.
The applications for testing are from different categories of
Polybench and are unseen in the training set. This ensures
that the machine learning models we build are not specifically
tuned for the test cases. We evaluate the four categories of
machine learning models discussed in Section [[II-D} and show
the results of the best model from each category in Table
The model performance is measured by mean absolute error
(MAE) in percentage terms. The CNN (based on Keras
CIFAR-10 CNN) achieves the best overall performance among
all the learning models, leading to a prediction error of 4.67%
(24.03 mW). The GBDT also demonstrates good performance
that is comparable to the CNN. For Atax, Bicg, Gemm and
Mvt applications, the GBDT even outperforms the CNN. In
contrast, the Lasso linear regression and SVM give rise to
much higher error in power modeling. This conforms to the
conclusion in prior studies [[10], [[14] that the power behavior
of complex hardware designs is generally non-linear. Com-
pared with the closest state-of-the-art work [[12f] that incurs
a 5.04% error, HL-Pow is more generic, accurate and user-
friendly by adopting a one-time modeling process, obviating
the need for iterative RTL-based power characterization per
target design.

C. Quality of Design Space Exploration

We investigate the quality of our DSE algorithm, as pro-
posed in Section with the three applications from the test
set (Fdtd_2d, Mvt and Gramschmidt) that have the largest
number of design points. To assess the performance of our
DSE algorithm in real cases, we calibrate the Pareto-optimal
points in the approximate Pareto set using the corresponding
real power values from measurement. Average distance from
reference set (ADRS) is used as the metric to quantify the
difference between the approximate and the exact Pareto sets.
ADRS is defined as

ADRS(P,P) = =N > " min(3(p,p))| x 100%,
|P| =, pep
peEP (6)
o Lats — Lat, Pwry — Pwry
O(p,p) = max {O’ Lat, Pwr, ’

where P is the approximate Pareto set, P is the exact Pareto
set, and Lat and Pwr denote latency and power, respectively.
The lower the ADRS, the smaller the difference between the
approximate Pareto set and the exact Pareto set.
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Fig. 5. Results of Pareto frontier approximation: (a) ADRS of Fdtd_2d ap-
plication with different initial sampling rate; (b) ADRS of different sampling
budgets under a 2% initial sampling rate; (c) real Pareto frontier of Fdtd_2d
with the complete sample set; and (d) approximate Pareto frontier of Fdtd_2d
with a 2% initial sampling rate and 20% sampling budget.

We investigate how different initial sampling rates and total
sampling budgets (i.e., the proportion of design points for
sampling) affect the quality of approximation results. We first
evaluate the initial sampling rates from 2% to 10%. Fig. 5] (a)
depicts the results for the application with the largest number
of design points, Fdtd_2d, and the other applications indicate
a similar trend. ADRS decreases rapidly as the total sampling
budget increases from a small starting point, which showcases
the efficacy of our DSE algorithm. Moreover, we can observe
that applying different initial sampling rates leads to a con-
verged ADRS as the sampling budget increases. Nevertheless,
using a small initial sampling rate benefits the approximation
quality given a limited sampling budget. This is because it
effectively balances the sampling proportion between initial
sampling and iterative searching. As a result, we adopt a 2%
initial sampling rate in the following experiments.

The ADRS for different applications is shown in Fig. [j]
(b). Our algorithm demonstrates good results with a sampling
budget of 20% and converges at a sampling budget of 40%,
resulting in an average ADRS of 2.35% and 1.84%, respec-
tively. Fig. 5] (c) and (d) show the real and approximate Pareto
frontiers for Fdtd_2d, respectively. From them, we can observe
a clear tradeoff between latency and power consumption.
Fig.[3] (d) also indicates good approximation quality. In brief,
our DSE algorithm can approach a close approximation of the
real Pareto frontier with a small sampling budget.

VI. CONCLUSION

Power consumption is a key consideration for hardware
designs. However, existing methodologies for power estima-
tion or measurement incur high development cost and also
exhibit many restrictions. In light of these problems, we target
efficient and accurate power estimation for FPGA designs at
an early design stage. We introduce HL-Pow, a learning-based
power modeling framework for HLS. We first propose an auto-
mated and fast feature construction flow to capture informative
features for power indication, simply based upon HLS results,
and then present a modeling framework which can build a
generic power model that works for diverse designs without
the necessity of model regeneration. HL-Pow can significantly

accelerate the power prediction process for FPGA designs
as the execution of the time-consuming RTL implementation
flow can be skipped. Experimental results verify that HL-
Pow can achieve an average prediction error within 4.67% of
onboard power measurement. Based on HL-Pow, we describe
a novel and efficient algorithm to explore the tradeoff between
latency and power consumption of HLS designs. The proposed
algorithm retrieves a close approximation of the real Pareto
frontier with an average ADRS of 2.35% and 1.84% while
only sampling 20% and 40% of design points, respectively, in
the complete design space.
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