1912.07829v1 [cs.ET] 17 Dec 2019

arxXiv

Defects Mitigation in Resistive Crossbars for Analog Vector Matrix Multiplication

Fan Zhang

Electrical and Computer Engineering
Binghamton University
Binghamton, New York 13902
e-mail: fzhang27 @binghamton.edu

Abstract— With storage and computation happening at the
same place, computing in resistive crossbars minimizes data
movement and avoids the memory bottleneck issue. It leads
to ultra-high energy efficiency for data-intensive applications.
However, defects in crossbars severely affect computing ac-
curacy. Existing solutions, including re-training with defects
and redundant designs, but they have limitations in practical
implementations. In this work, we introduce row shuffling and
output compensation to mitigate defects without re-training or
redundant resistive crossbars. We also analyzed the coupling
effects of defects and circuit parasitics. Moreover, We study
different combinations of methods to achieve the best trade-off
between cost and performance. Our proposed methods could
rescue up to 10% defects in ResNet-20 application without
performance degradation.

I. INTRODUCTION

Memory bottleneck holds back data intensive applications,
such as machine learning, image processing, and Internet-of-
Things (IoT) [[1]. This happens because of the limited on-chip
memory resource and high cost off-memory access. As on-
chip memory is way smaller than the data to be processed,
frequent cache update with off-chip memory is necessary and
it incurs significant energy consumption on off-chip commu-
nications, preventing today’s computers from becoming more
energy efficient. Recently, resistive crossbar-based computing
attracts researchers’ attention for its “in-memory computing”
feature[2], [3]. By storing matrix values non-volatilely as
conductance of cross-point devices, a crossbar can efficiently
perform vector-matrix multiplication(VMM) in one operation
cycle [4], [, [6], [[7]. Using resistive crossbars, matrices only
need to be fetched once, and the total communication cost
dramatically reduces.

However, defects in resistive crossbars is a major concern
since they severely affect the VMM computing accuracy. To
mitigate defects, existing works use redundant circuits or re-
training with consideration of defects [8], [9], [LO], [IL1]], but
they have certain limitations in practical applications. In this
paper, we introduce row shuffling and output compensation to
mitigate defects in resistive crossbars without need of redun-
dant circuits or re-training. Our contributions are summarized
as below:

e Our defect mitigation methods do not need re-training
and can apply to general VMM operations. With high
flexibility, they could be used individually or in any
combination.

e« We also discussed the coupling effect between circuit
parasitic and defects, and we adopted parasitic-aware

978-1-7281-4123-7/20/$31.00 2020 IEEE

Miao Hu

Electrical and Computer Engineering
Binghamton Universiy
Binghamton, New York 13902
e-mail miaohu@binghamton.edu

DAC
SiR|
DAC >
SLo WL
DAC =5 Memristor
DAC e
St BL

Ol|lOo|[O]||O
al|lallalla
|| << |||

Fig. 1. 1-transistor-1-memristor (1T1M) crossbar for analog VMM computing
with digital interface.
mapping to evaluate the performance of defect mitigation
methods when circuit parasitic could not be ignored.
o With experiment-verified circuit simulations, our pro-
posed methods could rescue up to 10% defects in cross-
bars on general VMM and modern CNN applications.

II. PRELIMINARY
A. Computing with resistive crossbar

In VLSI, the resistive crossbar is defined as an adjustable
resistor array sandwiched by horizontal and vertical metal
paths. The adjustable resistor could be the phase change
material(PCM), the memristor, the floating gate, the ReRAM
device, the SRAM device, and etc. Fig. E] shows a diagram of
the 1-transistor-1-memristor(1T1M) resistive crossbar array. It
consists of wordlines(WL), bitlines(BL), selection lines(SL),
access transistors and memristors. The access transistor con-
trolled by SL enables high precision, non-disturbance tuning
for memristor conductance states[12]]. DAC and ADC arrays
act as digital/analog interfaces for the crossbar to other digital
components. Researchers found that by mapping the matrix
A to the conductance of cross-point device G and feed row
vector X as the input voltage signal V, resistive crossbars can
perform VMM via Ohm’s Law and Kirchhoff’s Current Law
(KCL)[I13], [14].

B. Impact of defects in resistive crossbars

Unfortunately, defects exist in the resistive crossbar. Here, a
defect is defined as a memristor whose conductance could not
be programmed and stuck at certain state(s). There are various
types of defects in a memristor crossbar[[15]. Without losing
generality, here we simplify divide defects into two most
popular types: Stuck-ON defect at the highest conductance
state, and Stuck-OFF defect at the lowest conductance state.
Using a sequence of reads and writes, the traditional March
test is enough to detect stuck-at faults[16].

Defects significantly reduce computing accuracy of cross-
bars as they cause error to the target conductance values,
and contribute to computing error in the output result. In

(a) Ideal With Defects
X XYY X
Weights /
Output
(b) 100%
a 0,
s 80%
=1
8 60%
<
40% t
0% 2% 4% 6% 8% 10%

Defect Percentage

Fig. 2. (a) An illustration of how defects affect ANN output. (b) ANN
classification accuracy degrades as defect grows.
Gus) Defected G (uS) Gepror (US)
172 [23] 14 172 | 23] 14
4 27|67 |54 PoEam |4 |1 |67 | 54 26
9 6 | 34 | 88 9 6 | 100 | 88 66
8§ | 11|97 | 72 8 11197 |72
Shuffled G (uS) Defected G’ (uS) G pror (US)
4 127167 |54 4 | 27|67 54
17| 2 | 23| 14| Proeam |47 | 1 | 23| 14 1
8 |11 |97 |72 8 | 11 |100| 72 3
9 6 | 34 | 88 9 6 | 34 | 88

Fig. 3. Shuffling rows in a 4 X 4 crossbar to minimize conductance error
due to defects.

Fig. Pfa), red lines between input and output neurons are
representing weights stored on defected synapses. The output
neurons (in black) receive contaminated weighted input signals
from defected synapses, and it finally leads to a degradation in
ANN performance. classification accuracy drops as the defect
rate grows [I7]. In Fig. 2|b), the classification accuracy of
ANN can reach around 95% on MNIST without defects. After
injecting 10% defects[16] in the weight matrices, classification
accuracy quickly drops to around 50%. In short, crossbar-
based ANN is sensitive to defects and it is necessary to
mitigate defects in resistive crossbars.

1II. METHODOLOGY
A. Row shuffling (RS)

We observe that a defect becomes effective only when its
stuck conductance being different from the target conductance.
In other words, if we can arrange target conductance close
to the stuck conductance of defect, the impact of the defect
is reduced. Fig. [3] illustrates an example of RS to minimize
conductance mapping error. By shuffling row 1 and row 2, row
3 and row 4 in G, new conductance mapping errors become
smaller. Note that input channels to each row should also be
shuffled accordingly. Although it is straightforward to shuffle
rows in this simple example, it is not trivial to optimize RS
in large crossbars with many defects.

Finding the best RS order in a defected crossbar can be
defined as an assignment problem: Before mapping G to a n X
n crossbar having m defected rows with index [dy, da, ..., d],
the cost matrix C is generated. Each entry ¢; ; stores the total
conductance error on each row due to defects (use L1 norm
since errors could be positive or negative), when mapping the
ith row of G to the jth row of a crossbar. If there are no defects

on a row, the cost of mapping any row of G to it is always O.
Our goal is to find an optimal set [rsy,7S2,...,7Sy], where
the rs; row in G is shuffled to the d; row in crossbar, so that
>t Cys, 4, is minimized. The remaining m — n rows in G
can be mapped to the m — n rows in crossbar.

To solve this problem, first, we scan (read-write-read) the
whole crossbar to get its defect pattern. The conductance
and locations of defects are both stored for later calculation.
Second, we convert the target matrix to the conductance matrix
G so that we can generate the initial cost matrix C, where ¢; ;
stores the L1 norm of the conductance error between the ith
row of the crossbar and the jth row of G. The conductance
error is the difference between defect’s conductance to the
target conductance. In the end, We adopt Munkres algorithm
to solve the assignment problem [18]].

One limitation of RS is that the conductance mapping error
is only minimized, but not completely removed. However, RS
always improves computing accuracy since it guarantees to
minimize the overall conductance error due to defects, and it
can be easily implemented by re-ordering input data.

B. Output compensation (OC)

To further reduce the impact of defects, we estimate the
error current caused by the defect and try to compensate
it with affordable post-processing computation. The post-
processing computation must be low complexity and low cost
to implement, otherwise, it is meaningless to fix defected
crossbars with methods even more expensive than just re-
calculating all with digital circuits.

With this idea in mind, we estimate the error current due
to defects in a simple yet effective way. In an ideal crossbar
where I = VG, the error current caused by defects on the jth
column can be calculated by eq. [T}

k
error __ defect
jrideal = Z(Glm - Gli,j) o,)

i=1

v; is the input voltage signal at the ith row. k (k < n) defects
locate on the jth column with index [I1, 12,13, ..., [%]. G;ij;.cea
is the conductance of defect on the /;th row and the jth column.

The actual error current on the j column is formulated as
below:

n
error __ §
Ij,act — (% Gz}j - Ij,act (2)
=1

where I; ,c; is the actual output current sensed on the jth
column.

As running circuit simulation in real-time to fix crossbar
output violates the rule of low complexity, we attempt to use
the simple linear fitting method to estimate the actual error
current with ideal error current. Linear fitting methods can be
regarded as finding a; and b; coefficients so that I77?" ~

J,est
IS0, where

k
error __ . error R)) defect)
IS = a1 igea + 05 = E Ja;- (G, —G)75) b,
=1
(3)

Compensation a Compensation b

* " * .-
° * ' ¥ s g 22
w * *st‘.r * & - m&:.t
5% c FERLTeT T 53 R 4 A
580 St TN, £80 SRR At
= v AT e T == + st E
13- e ‘_w,:
TR bt
sk-* P AN sl =" *
5 0 5 6 -4 2 0 2 4 6

error error
j.estimate j.estimate

Fig. 4. Fitting result with linear conductance mapping

®

[}

——16x16
32x32

- =-64x64

——128x128

IS

Avg accuracy (Bit level)

[N)

3 3.5 4 4.5 5 55 6 6.5
log10(Ron/Rwire)
Fig. 5. Impact of R,,;re On computing accuracy.

Inspired by eq. [3] an alternative linear fitting method is given
below to give more degree of freedom in fitting parameters,
where

k
jerror .)
Ij,est = E wy, j - vy, +bj “4)
i=1

To distinguish the two fitting methods, we denote fitting with
eq. [3]as compensation a, and fitting with eq. @ as compensation
b. Fig. [shows the fitting result with both methods for a
128 x 128 crossbar. The simulation considers device models
and wire resistances, and its setup is detailed in section [[V-A]
Although a linear trend can be observed between /773" and
IS the parasitic effect becomes unignorable, which causes
large variations and reduces the quality and robustness of the
linear fitting between the estimated error current to the real
error current. In short, it is necessary to compensate the impact
of circuit parasitic to use OC in large-scale crossbars.

C. Farasitic-aware matrix mapping (PM)

So far we are only using linear mapping to map A to G
without considering the impact of circuit parasitics. How-
ever, in realistic, the impact of circuit parasitics, such as
wire resistance and device nonlinearity, is usually ubiquitous
and inevitable. Fig[5| shows the impact of wire resistance
on crossbar computing accuracy. The circuit simulation is
done with experiment-verified memristor model and transistor
model[13]. Linear mapping is used to map matrix value A to
crossbar conductance G. R,,, is the lowest resistance state of
the memristor device, and R,,;,. is the interconnect resistance
between adjacent cross-point devices. As expected, computing
accuracy improves with more conductive wires. However, the
error does not decrease to 0 even with superconductive wires.

Compensation a Compensation b

4 4 .-
ooy T 7
2 e 2 *
3 NF A 3 ot
52 ' LT 52
53 0 Rt 741 ggo ,//.‘
82 o 8.2 W
2 NP~ I 2 b
i Praed - e
PRy -
P =
4 2 0 2 4 2 0 2 4

error error
jestimate jestimate

Fig. 6. Fitting result with parasitic-aware mapping.

Defect mitigation flow

Crossbar computing flow

Get input vectors

Get matrix G
and random
input sample V

Y

Use parasitic-aware mapping
to find Geet

Shuffle N
inputs

Feed input to
programmed

crossbar and get
the current T

Cost matrix C between
defect matrix Ga and Geet.
¥
Get shuffle order by Munkres
Algorithm & shuffle Gie

Iis the | Get the Ierror from
final linear model with
output input.
No error Get lideal and Idefect by
compensation applying (shuffled) V on

programmed crossbar
¥
Linear fit each column of
crossbar and get the coefficients.

Final output = I + Ierror

Fig. 7. Defect mitigation flow chart and crossbar computing flow chart.

This is because device nonlinearity starts to dominate the
computing error when wire resistance can be ignored. One
possible solution to eliminate such impact is to map A to
G with consideration of wire resistance as well as device
nonlinearity. Since mapping A to G only needs to be done
once, it can afford additional computing cost to compensate
parasitics in the mapping stage from A to G.

We adopt the parasitic-aware mapping method from [14]], it
targets on finding a new conductance matrix G’ with consider-
ation of parasitic effects, so that cross-point currents in a real
crossbar with G’ equal to the cross-point currents in an ideal
crossbar with G. To find G’ for a n x n crossbar, additional
constraints are added in circuit simulations to change devices
to conductance states that can pass the ideal amount of current.
For the detailed implementation of parasitic-aware mapping,
please refer to [14].

Fig. [6] shows the fitting result with parasitic-aware mapping
instead of linear mapping. Comparing to Fig. [the quality
of fitting significantly improves, especially for compensation
b. This verifies that parasitic-aware mapping successfully
decouples the parasitic and defects by mitigating parasitic
effects. It also proves that the higher degree of freedom in
compensation b helps and it should be our final version of
output compensation.

D. General flow of the combined solution

Fig. [7| summarizes the general flow of using row shuffling,
output compensation, and parasitic-aware mapping in different
combinations. Each method can be used independently and
works on different stage. Parasitic-aware mapping takes more
computations than linear mapping but offers better computing
accuracy on large and nonlinear resistive crossbar arrays.
Users should refer to Fig[j| to see if the linear mapping
can provide enough bit-accuracy on the chosen crossbar size

and R, /Ryire ratio. If not, the parasitic-aware mapping is
encouraged. For most cases, especially neural networks, the
model parameters only need to map on crossbar once before
inference. Therefore, using parasitic-aware mapping is a one-
time cost and leads to ignorable overhead on inference. Row
shuffling works on the input stage and also the mapping stage.
Output compensation works on the output stage and it tries
to compensate for the output error with the inputs. Since it
involves re-computation of the defects part to improve the
VMM accuracy, it becomes less efficient as defect number
increases.

IV. EVALUATION
A. Simulation setup

To measure the performance of our methods, we first check
the number of distinguishable levels in analog output and
convert it to bit accuracy following eq. [5}

Bit Accuracy = loga(Output Range/Avg.Error + 1) (5)

In circuit simulation, the memristor model is the TaOx
device model [19], and the access transistor model is from
[14]. Ron = 15Kf2, Roff = 300K(2, Rwire = Rin = Rout
= 1Q. LGS = 1/Roff, and HGS = 1/Ron. Our simulation
focus on cases that parasitic effects could not be ignored,
which is usual in real applications. For general VMM test,
we use uniform-distributed random inputs in range [-1,1],
and uniform-distributed random matrices in range [-1,1]. For
all tests, defect patterns follows a 2-D uniform distribution
and then assigned to LGS or HGS with Stuck-ON/Stuck-OFF
defect ratio = 1, if not otherwise mentioned.

B. General VMM test

Fig[§] shows the bit accuracy of crossbars with different
sizes. Here “Baseline” means linear mapping G to defected
crossbars, and then do computing without any mitigation.

The result shows that: First, with linear mapping row shuf-
fling provides ~1 bit improvement on average, output compen-
sation provides ~2 bit improvement on high defect rates, and
its accuracy increases with defect rate as more computations
are transferred to digital circuit implemented compensation
component. Second, RS+OC performs very similar to output
compensation alone in all crossbar sizes and capped at certain
bits as defect rate grows. This is because circuit parasitics
begin to dominate the error as defects being mitigated. OC
not only rescues the stuck-at fault but also increases accuracy
from the other imperfections. In such parasitics or other
defects dominate cases, as the stuck defect goes up, OC could
have more input and fitting parameter to compensate output.
Therefore, accuracy may also increase with the stuck defect,
which usually happens in low bit accuracy, as shown in our
results. Without considering parasitic effects, any mitigation
methods for defects will have limited improvement. Third,
with consideration of parasitic-aware mapping(PM) to mitigate
parasitic effects, RS+PM, OC+PM, and RS+OC+PM make a
leap in the performance, especially for large crossbars. But
only using parasitic-aware mapping without defects mitigation
cannot help mitigate the defects impact. This supports our
claim that parasitic-aware mapping is used to decouple the
parasitic impact and boost the performance of row shuffling

and output compensation. RS+OC+PM appears to have the
best resilience to high defect rates and can maintain ~8 bit
accuracy in all situations. In 128 x 128 crossbar, OC+PM,
and RS+OC+PM capped again since the remaining parasitic
effects begin to dominate the error again. In this case, we need
fabrication improvements, such as a device with better linear-
ity and higher resistance range, wires with lower resistance,
to overcome the bit accuracy barrier in large crossbars.

Stuck-ON/Stuck-OFF defect ratio can vary a lot for dif-
ferent chips with different materials, fabrication processes
and programming schemes. Thus, we evaluate the impact
of Stuck-ON/Stuck-OFF defect ratio on computing accuracy.
Fig. 0] shows the average bit accuracy with different Stuck
ON/Stuck-OFF defect ratio on a 128x 128 crossbar. We can
see that parasitic-aware mapping only mitigates parasitic and
suffers a large variation in computing accuracy due to different
Stuck-ON/Stuck-OFF defect ratios. Other methods, especially
RS+OC+PM, are not sensitive to Stuck-ON/Stuck-OFF defect
ratio.

C. CNN demonstration

To demonstrate the effeteness of our methods for crossbar-
based neural networks, we evaluated them on defected
crossbar-based ResNet-20 on CIFARI10 dataset. We adopted
the method in [20] to transform convolution layers to VMM
computations.

Fig. shows the bit accuracy of different combinations
in ResNet20 layers with 10% defects in crossbars. It is
obvious that RS+OC+PM significantly improves the computng
accuracy, especially at high defect rates and large crossbars.
Bit accuracy between conv14-18 is relatively lower than other
layers because the crossbar used in those layers are much
larger. It worth noting that even a defect-free crossbar can
only get ~8-bit computing accuracy with PM[[14]. Thanks to
OC, our defected crossbars can get even higher bit accuracy
than defect-free crossbars at the cost of digital computing as-
sistance. Even on the largest crossbar (576x64), our proposed
methods could still maintain >8-bit output accuracy. Our
result does not only demonstrate the effeteness of our defect
mitigation methods, but also points out a potential direction of
crossbar/ALU hybrid computing if more computing accuracy
is needed.

Resistive crossbar based CNN is more sensitive to Stuck-
ON defect rather than Stuck-OFF|[21]]. Therefore, lower Stuck-
ON/OFF ratio under the same defect rate would cause
more error in the CNN application. In Fig. [[I] we tested
ResNet-20 with 10% defects with RS+OC+PM. Two Stuck-
ON/Stuck-OFF ratios are tested: 1.75/9 from [16]] and 1/1.
Fig[TT|a) shows that higher Stuck-ON/Stuck-OFF ratio leads
to lower minimum and average bit-accuracy in all CNN layers.
Fig[TT(b) shows that with minimum bit-accuracy > 8-bit,
crossbar-based ResNet-20 on CIFAR10 maintains software-
level classification accuracy (88.4%), proves the effeteness of
our methods in CNN applications.

V. DISCUSSION

A. Implementation strategy

Since the optimal implementation can only be done with
architecture level analysis, here we only provide some discus-

Bit Accuracy

— ¥ — BaseLine
—&#— RS
—&-0C
—&5— RS +0C

HEDH

3 3.5
0% 2% 4% 6% 8% 10% 0% 2% 4% 6% 8% 10% 0%

3.2
10% 0% 4%

8%

2%

- PM

-8- RS+PM
~&- OC +PM Iy
&~ RS +0C +PM 114

Bit Accuracy
® ~ o © o

o

4

-
\}\
Ny Ok

Ty
!

45

3 3 3
0% 0% 0%

2%

4% 6%
Defect Percentage

8% 10% 2% 4% 6% 8% 10%

Defect Percentage

2%

4%
Defect Percentage

4
0% 4% 6%

Defect Percentage

3
6% 8% 10% 0o 2% 4% 6% 2% 8% 10%

Defect Percentage

8% 10%

Fig. 8. Bit accuracy of crossbars with different sizes. From left to right, 8 X8, 16X 16, 32x32, 64x64, 128x128.

©

= Sofware 11 pu
Baseline

M RS I Rs +PM
I oc+PM

= oc
= rs+oc Ml Rs+0C+PM

o

Bit Accuracy

Bit Accuracy
[}

4
4 ~_—Inf
T T 0% 1 a0
0% 4% 8% T % go O/M\\O“ i
Defect Defect SWe

Fig. 9. Avg. bit accuracy with different Stuck-ON/Stuck-OFF ratios on
128128 crossbar.

« Without mitigation RS+OC « RS+PM + OC+PM e RS+0OC+PM

15

Bit Accuracy

0

E N 0 & > O © (0 & &0 U I N TN I WA I)
oé 0‘\\\ o& oé oA 0‘\\\ o& cf\{ c§\A 0‘\\\ 6\\ @\ «\Q 0‘\\ G\\ k*\ «\Q 0‘\\ G\\ <
(SO S N e e T P S O P S S

Layer index of ResNet-20
Fig. 10. Bit accuracy of ResNet20 layers.

sion on implementation strategies, and it is not the focus of
the paper.

To implement RS in hardware, we need an interconnect
network between data inputs and crossbar rows. Every input
should be able to connect to any row of crossbar to guarantee
arbitrary shuffling order is reachable. Such hardware refers to
non-blocking interconnect networks [22]]. In our case, as the
shuffling order is fixed, dynamic routing configuration is very
rare and dynamic power consumption is near zero. To imple-
ment RS in software, we need re-order input data. Re-ordering
data in memory with the given order can be quickly done in
O(n). Due to pipeline processing, software implementation
of RS may not affect the throughput but only affects latency

Fig. 11.
ratio.

(a)
"AVG
= MIN

(b)

13.35
9.55

100.00%
80.00%
60.00%
40.00%
20.00%

0.00%

10.75
8.15

=
Accuracy

12345678910
Bit accuracy

Bit accuracy of ResNet20 with 10% defect and different ON/Off

Bit accuracy
»

On/0ff =1.75:9 On/Off = 1:1

Bit Accuracy
H OO 0O

1% 2% 3% 4% 5%

OC Rate
Fig. 12. Bit accuracy for limited OC.

6% 7% 8% 9% 10%

since the main bottlenecks are still at DACs and ADCs. Some
memristor-based architectures, such as Atomlayer[5], store all
inputs and intermediate data in DRAM. In this case, software
implementation can be performed within the DRAM at low
cost.

To implement OC in hardware, additional MACs are re-
quired. In our approach, OC is limited to at most 10% of the
total computation. This is because if we have to re-calculate
more than 10% of the VMM computation, the benefit of using
crossbars will be very marginal. Hardware implementation
can minimize delay but at the expense of extra area and
power consumption. Fig. [I2] shows the impact of OC rate on
computing accuracy of a 128x 128 crossbar array with 10%
defects. 1% OC rate means we only consider 1% defects with
the highest conductance error in each column. 10% OC rate
means we compensate for all 10% defects. Low OC rate saves
computation power but limits the OC performance.

To implement OC in software, the compensation is done by
CPU, and it runs in parallel with the crossbars.

Modern CPUs, such as Intel 13, IS and I7 series support
SSE4 instruction set which contains the specific dot-product
instructions(DPPS and DPPD), and could be very efficient in
handling OC computations[23].

The hardware overhead is significant in most cases. From

ISAAC [6], a 128 x 128 crossbar PE needs 0.157 mm? area
and 24 mW power. However, a switch network for 128 x 128
needs 18.3 with 0.25um technology [24]. For the OC, if we
add MAC after each column, one MAC may need up to 2.1
mm? and 0.17W under 0.8um technology [25]. As a result,
software implementation may be more suitable. Crossbar-
based architectures like ISAAC, PRIME [7]], Atomlayer [5]
could benefit from our methods when encountering defect
issues without any hardware modification.

B. Comparison to related work

Many works have been published on the defect issue, and
their methods can be concluded in two ways. One way is to
use redundant hardware where redundant rows and columns
in a crossbar are used to replace highly defected ones [8]], [9],
[26]]. Another way is to re-train ANNs with consideration of
defect patterns [[11], [10].

With redundant hardware, crossbar size is usually empir-
ically set to 1.5 times of the matrix size regardless of the
hardware cost [26]. However, it is still necessary to have a re-
routing scheme to route input signal from a defected row to
a defect-free row. Therefore, the connection/switch network,
which transmits the input data to its destination row is also
required. Since the redundant crossbar has 50% more rows,
it may need a larger switch network than our hardware RS
implementation. In short, our proposed method can be applied
with redundant crossbars to further mitigate the impact of
defects.

Re-training with consideration of defects sounds promising
as it can tolerate high defect rates up to 20% thanks to the
sparse nature of ANNSs [10]. However, it has three limitations:
first, they are ANNs specific and not for general VMM;
Second, the problem must be trainable, or say, there must
be enough training data with labels to re-train the ANN with
consideration of defects; Third, circuits with different defect
patterns have to be re-trained individually even they have the
same weight matrix. Moreover, there are other overheads for
re-training need to be considered in practice, including the
extra training circuit, re-training time, and even more time-
related defects. Because re-training may update weights more
frequently and cause the more time-related defects.

Not only manufacturing defects but also time-related defects
can also be rescued with our proposed method or redundancy
crossbar. After long time use, more defects may appear. We
can detect crossbar defects again, and use the new defect
pattern to update shuffling order, compensation fitting param-
eters, and even the conductance matrix. Overall, our proposed
methods are very flexible and can be used together with
existing defect mitigation methods.

VI. CONCLUSION

Defects in resistive crossbar significantly degrade its perfor-
mance in computing. Previous work using redundant hardware
and/or re-training methods have limitations on efficiency and
applicable ranges. In this paper, we introduce row shuffling
and output compensation to mitigate defects in resistive
crossbar-based analog VMM computing with consideration of
circuit parasitics. Our methods provide high flexibility for im-
plementation and can be used for general VMM applications.

Extensive circuit simulations have been carried out to verify
the performance in different applications.

REFERENCES

[1] W. A. Wulf et al. Hitting the memory wall: implications of the obvious.
ACM SIGARCH computer architecture news, 23(1):20-24, 1995.

[2] M. Prezioso et al. Training and operation of an integrated neuromorphic
network based on metal-oxide memristors. Nature, 521(7550):61, 2015.

[3] C.Li et al. Analogue signal and image processing with large memristor
crossbars. Nature Electronics, 1(1):52, 2018.

[4] J.J. Yang et al. Memristive devices for computing. Nature nanotechnol-
ogy, 8(1):13, 2013.

[5] X. Qiao et al. Atomlayer: A universal reram-based cnn accelerator with
atomic layer computation. In Proceedings of the 55th Annual Design
Automation Conference, DAC *18, pp. 103:1-103:6, New York, NY, USA.

[6] A. Shafiee et al. Isaac: A convolutional neural network accelerator with

in-situ analog arithmetic in crossbars. SIGARCH Comput. Archit. News,

44(3):14-26, June 2016.

P. Chi et al. Prime: A novel processing-in-memory architecture for neural

network computation in reram-based main memory. In 2016 ACM/IEEE

43rd Annual International Symposium on Computer Architecture (ISCA),

pp. 27-39, June 2016.

[8] M. Liu et al. Design of fault-tolerant neuromorphic computing systems.
In 2018 IEEE 23rd European Test Symposium (ETS), pp. 1-9.

[9] S. Kim et al. Energy-efficient neural network acceleration in the presence
of bit-level memory errors. IEEE Transactions on Circuits and Systems
I: Regular Papers, 65(99):1-14, 2018.

[10] C. Liu et al. Rescuing memristor-based neuromorphic design with
high defects. In Design Automation Conference (DAC), 2017 54th
ACM/EDAC/IEEE, pp. 1-6. IEEE, 2017.

[11] I. Chakraborty et al. Technology aware training in memristive neuro-
morphic systems based on non-ideal synaptic crossbars. arXiv preprint
arXiv:1711.08889, 2017.

[12] E.J. Merced-Grafals et al. Repeatable, accurate, and high speed multi-
level programming of memristor 1tlr arrays for power efficient analog
computing applications. Nanotechnology, 27(36):365202, 2016.

[13] M. Hu et al. Memristor-based analog computation and neural net-
work classification with a dot product engine. Advanced Materials,
30(9):1705914, 2018.

[14] M. Hu et al. Dot-product engine for neuromorphic computing: program-
ming 1tlm crossbar to accelerate matrix-vector multiplication. In 53rd
annual design automation conference, pp. 19. ACM, 2016.

[15] V. Ravi et al. Memristor based memories: defects, testing, and testability
techniques. Far East Journal of Electronics and Communications,
17(1):105, 2017.

[16] C. Chen et al. Rram defect modeling and failure analysis based on
march test and a novel squeeze-search scheme. [EEE Transactions on
Computers, 64(1):180-190, Jan 2015.

[17] Y. LeCun et al. MNIST handwritten digit database, 2010.

[18] F. Bourgeois et al. An extension of the munkres algorithm for the
assignment problem to rectangular matrices. Communications of the
ACM, 14(12):802-804, 1971.

[19] J. P. Strachan et al. State dynamics and modeling of tantalum oxide
memristors. IEEE Transactions on Electron Devices, 60(7):2194-2202,
2013.

[20] F. Zhang et al. Memristor-based deep convolution neural network: A
case study. CoRR, abs/1810.02225, 2018.

[21] Z. He et al. Noise injection adaption: End-to-end reram crossbar non-
ideal effect adaption for neural network mapping. In Proceedings of the
56th Annual Design Automation Conference 2019, DAC 19, pp. 57:1-
57:6, New York, NY, USA, 2019. ACM.

[22] T. T. Ye et al. Analysis of power consumption on switch fabrics in
network routers. In Proceedings 2002 Design Automation Conference
(IEEE Cat. No.02CH37324), pp. 524-529, June 2002.

[23] Wikipedia contributors. Sse4 — Wikipedia, the free encyclopedia, 2019.
[Online; accessed 11-July-2019].

[24] T. Wuet al. A 2 gb/s 256* 256 cmos crossbar switch fabric core design
using pipelined mux. In 2002 IEEE International Symposium on Circuits
and Systems. Proceedings (Cat. No. 02CH37353), volume 2, pp. II-II.

[25] Shyh-Jye Jou et al. A pipelined multiplier-accumulator using a high-
speed, low-power static and dynamic full adder design. IEEE Journal of
Solid-State Circuits, 32(1):114-118, Jan 1997.

[26] O. Tunali et al. Permanent and transient fault tolerance for recon-
figurable nano-crossbar arrays. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 36(5):747-760, 2017.

[7

—

http://arxiv.org/abs/1711.08889

	I Introduction
	II Preliminary
	II-A Computing with resistive crossbar
	II-B Impact of defects in resistive crossbars

	III Methodology
	III-A Row shuffling (RS)
	III-B Output compensation (OC)
	III-C Parasitic-aware matrix mapping (PM)
	III-D General flow of the combined solution

	IV Evaluation
	IV-A Simulation setup
	IV-B General VMM test
	IV-C CNN demonstration

	V Discussion
	V-A Implementation strategy
	V-B Comparison to related work

	VI Conclusion
	References

