
Efficient Preparation of Cyclic Quantum States

Fereshte Mozafari1 Yuxiang Yang2,3 Giovanni De Micheli1

1Integrated Systems Laboratory, EPFL, Lausanne, Switzerland
2Quantum Information and Computation Initiative, The University of Hong Kong, Pokfulam Road, Hong Kong

3Institute for Theoretical Physics, ETH, Zurich, Switzerland

Abstract— Universal quantum algorithms that pre-
pare arbitrary n-qubit quantum states require O(2n)
gate complexity. The complexity can be reduced by
considering specific families of quantum states depend-
ing on the task at hand. In particular, multipartite
quantum states that are invariant under permutations,
e.g. Dicke states, have intriguing properties. In this
paper, we consider states invariant under cyclic per-
mutations, which we call cyclic states. We present
a quantum algorithm that deterministically prepares
cyclic states with gate complexity O(n) without re-
quiring any ancillary qubit. Through both analytical
and numerical analyses, we show that our algorithm is
more efficient than existing ones.

I. Introduction

Preparing quantum states is among the most important tasks
in quantum computing. Multiple algorithms [1–6] have been
proposed for preparing arbitrary quantum states, which require
an exponential number of quantum gates with respect to the
number of qubits. To reduce this complexity, researchers either
use free-qubits or prepare quantum states approximately [7–9].
Both ways add overheads. To remove these overheads, another
way is to consider, instead of arbitrary quantum state, specific
families of quantum states such as uniform quantum states [10,
11] and Dicke states [12].

There are interesting metrological properties associated with
multipartite quantum states that are invariant under certain
permutations [13–17]. The most studied family is the Dicke
states [18] of n-qubit system with Hamming weight k, which
are invariant under any permutation in a symmetric group
S(n). Inspired by Dicke states, in this paper we introduce
another important family of n-qubit states with Hamming
weight k, which are invariant under cyclic permutations. We
call these states as cyclic states. The family of cyclic states has
widespread attention for tasks in quantum internet [19] and
quantum metrology [20], which is explained in more detail in
Section III. To prepare cyclic state, the methods presented for
preparing arbitrary quantum states or uniform quantum states
are used. But these methods generate an exponential number
of quantum gates, in the worst case.

In this paper, we propose an efficient algorithm for preparing
cyclic states with arbitrary value of k. We further present
its circuit construction. The idea is based on creating cyclic
permutations step-by-step. We design our algorithm such that
creating each permutation requires only a constant number
of 2-qubit and 3-qubit gates regardless of the total number of
qubits n. Notably, the number of qubits required for creating
each permutation is independent of n, since 2-qubit and 3-qubit

gates require only constant numbers of elementary quantum
gates. As a result, our algorithm requires only O(n) elementary
quantum gates.

As cyclic states are a special subset of uniform quantum
states, we can use the methods presented in [10,11]. Authors
in [10] utilize symbolic representations to reduce runtime and el-
ementary quantum gates. In [11], they try to find dependencies
between qubits to reduce the number of elementary quantum
gates. Their experiments show that they can reduce the number
of gates but they cannot provide a linear complexity for prepar-
ing cyclic states. Authors in [12] present an efficient algorithm
for preparing Dicke states, which uses O(kn) quantum gates.
However, their method works only for cyclic states with k = 1
or k = n − 1, not any value of k. Hence, their method is not
useful for preparing cyclic states. In [21], the authors show a
method to prepare quantum states associated with graphs. The
method prepares some specific subsets of Dicke states includ-
ing cyclic states with only k = 2. In contrast, we propose an
algorithm for preparing cyclic states with arbitrary values of k
ranging from 1 to n. Note that, in [21], it is claimed that the
method can be extended to cyclic states with other values of
k, but the extension is highly nontrivial as far as we can see.
In addition, the complexity of preparing generic cyclic states
using the method in [21] is unclear.

We compare our results with previous methods. These meth-
ods, however, either do not cover arbitrary values of k or are too
computationally expensive to implement. Comparison over [11]
shows that we reduce elementary quantum gates from exponen-
tial to linear complexity. While, our evaluation against [12, 21]
shows that our circuit construction works for any value of k
as well as gains a significant reduction of elementary quantum
gates.

This paper is organized as follows. In Section II, we explain
some preliminaries on quantum circuits. In Section III, we
introduce cyclic states, their properties, and our motivation
for preparing them. In Section IV, we propose our algorithm
and its circuit construction. Next, in Sections V, we evaluate
our algorithm and compare our results against state-of-the-art
methods. Finally, Section VI concludes our work.

II. Preliminaries

In this section, we introduce necessary background on quan-
tum circuit and computation.

A quantum bit (qubit) is the elementary unit of information
in quantum computation. A quantum state |φ〉 over n qubits is
characterized by

|φ〉 =
2n−1∑
i=0

αi|i〉, (1)
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Fig. 1. Decomposing a 2-controlled Ry(2θ) gate into elementary
quantum gates.

a column vector of 2n amplitudes αi ∈ C with |α0|2 + · · · +
|α2n−1|2 = 1. Each squared amplitude |αi|2 indicates the
probability that after measurement the n qubits are in the
classical state i.

A quantum circuit is a structural description of a quantum
program in terms of quantum gates connected with quantum
wires which show passing of time. A quantum gate is an oper-
ation applied to one or more qubits to change their quantum
state. Quantum gates that act on n qubits can be specified by
2n × 2n unitary matrices U [22, 23]. A matrix U is unitary if

U†U = UU† = I, (2)

where U† is the complex conjugate transposed of U . The matrix
product A · B, the direct sum A ⊕ B, and the direct product
(also called Kronecker product) A⊗B of two matrices A and
B, respectively, are defined as usual [23].

In this paper, we consider the following elementary quantum
gates: The 1-qubit gates

Rx(θ) =

(
cos θ

2
−i sin θ

2

−i sin θ
2

cos θ
2

)
, Ry(θ) =

(
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

)
,

Rz(θ) =

(
e−i θ

2 0

0 ei
θ
2

)
,

(3)
with parameter θ ∈ R, and the NOT gate (NOT)

UNOT =

(
0 1
1 0

)
. (4)

The 2-qubit gate called controlled NOT gate (CNOT)

UCNOT =

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ . (5)

We also use 1-controlled Ry gates and 2-controlled Ry gates.
A 1-controlled Ry(2θ) is easily seen to be created by 2 Ry(±θ)
and 2 CNOTs. It is also easy to see that a 2-controlled Ry(2θ)
is created by 4 Ry(± θ

2
) and 4 CNOTs that is depicted in Fig. 1.

III. Cyclic states and their properties

Dicke states are an important family of n-partite (for n ∈ N∗)
pure quantum states [18]. For example, their robustness against
photon-loss noise makes them a desirable resource in building
noise-resilient quantum sensors [14, 24]. Due to the importance
of Dicke states, their preparation has been demonstrated exper-
imentally in various settings [25–27], and quantum algorithms
have been proposed to prepare them efficiently [12, 27–29].

Dicke states are fully symmetric, i.e., they are invariant
under any permutation in the symmetric group S(n) of n
parties. Many realistic problems, nevertheless, only have partial
symmetry rather than the full symmetry. Consider, for instance,
a quantum network consisting of n nodes associated with a
graph. A common type of tasks is to prepare a global (i.e.

n-partite) quantum state such that each node is only entangled
to a certain subset of nodes. Such tasks are growing more
crucial as the quantum internet is being established [19, 30].
Dicke states obviously fail to achieve this goal unless in the
special case where the network graph is complete.

In this paper, we focus on cyclic states: A new family of
partially symmetric multipartite pure states that are more
versatile than Dicke states in network applications. Cyclic states
are generated by performing the group of cyclic permutations
C(n) in coherent superpositions on a computational basis state
|1〉⊗k|0〉⊗m (m := n− k):

|Cn
k 〉 := 1√

n

∑
π∈C(n)

π
(
|1〉⊗k|0〉⊗m

)
. (6)

In other words, they are the uniform superpositions of com-
putation basis states whose Hamming weights are equal and
whose ones are adjacent.

Note that |Cn
1 〉 coincides with the W state [31]. One also gets

back the original definition of Dicke states by replacing C(n)
with the full symmetry group S(n) in the above definition.

Cyclic states, as promised, have intriguing entanglement
and coherence properties, which promise their applications in
quantum internet [19] and quantum metrology [20]. Their
arbitrary bipartite marginal state can be evaluated. Assuming
w.o.l.g. k ≥ m, straightforward calculation shows that the
bipartite marginal state ρij := trij |Cn

k 〉〈Cn
k | is given by

ρij =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k−1
n
|11〉〈11|+ m−1

n
|00〉〈00|+ 1

n
|01〉〈01|+ 1

n
|10〉〈10| ,

if |i− j| 	= m, |i− j| 	= k

2
n
|Ψ+〉〈Ψ+|+ m−1

n
(|01〉〈01|+ |10〉〈10|) + k−m

n
|11〉〈11| ,

if |i− j| = m or k

(7)
where |Ψ+〉 := (|01〉+ |10〉)/√2. One can immediately see that
any two nodes are entangled if and only if they are separated by
m−1 nodes (as the entanglement of formation [32] is non-zero).
This is in contrast to Dicke states, for which there is the same
amount of entanglement between any two subsystems. In more
details, by the Hashing inequality [33,34], one can lower bound
the distillable entanglement ED of the marginal state. For the
case when |i− j| = m = k, the distillable entanglement [35, 36]
satisfies

ED ≥
(
m+1
2m

)
log2

(
m+1
m

)− (m−1
2m

)
log2

(
m

m−1

)
> 0.

(8)

The above implies that if n nodes in a quantum network
share multiple copies of a cyclic state, the relevant nodes (those
whose distance is either m or k) can distill pure Bell states
via local operation and classical communication. This means
that each node in the network can establish secure quantum
communication with one certain node in the network, while
sharing only classical correlation with others. Such a property
can be used in quantum communication tasks such as network
routing [37, 38].

The above property of cyclic states also has useful applica-
tions in quantum metrology [20] or, more precisely, multipartite
phase estimation problems. Imagine that a cyclic state |Cn

k 〉
is, again, shared by n individual nodes in a quantum net-
work. The j-th node passes its qubit through a phase gate
Pj := eiφj |0〉〈0| + e−iφj |1〉〈1| with an unknown phase φj , re-

sulting in the global state |Cn
k (�φ)〉 :=

(⊗n
j=1Pj

) |Cn
k 〉. The goal

6D-1

461



|0〉⊗m

|1〉⊗k

Cn,k = SOn,k
SZn−1,m

|Cn
k 〉

Fig. 2. The general structure of the cyclic state preparation
algorithm.

is for arbitrary two nodes to jointly measure their phase dif-
ference δij := φi − φj . Then, two nodes can jointly estimate
δij if and only if either |i− j| equals m or k. Otherwise, they
cannot extract any useful information since the marginal state
is independent of δij .

Given the above desired features, it is therefore meaningful to
consider how to prepare cyclic states efficiently. In the remain-
ing part of the paper, we address this problem by proposing a
quantum algorithm that prepares any cyclic state with circuit
complexity linear in n.

IV. Proposed Method

As mentioned before, a cyclic state is defined as Eq. 6.

Example 1 The cyclic state |C5
3 〉 is represented by

|C5
3 〉 = 1√

5
(|11100〉+ |01110〉+ |00111〉+ |10011〉+ |11001〉).

(9)

In this section, we propose an algorithm to prepare cyclic
states deterministically. Next, we propose a quantum circuit
construction and a pseudo-code for our algorithm. We also
present a proof of correctness.

A. Cyclic State Preparation Algorithm

To prepare cyclic states, we design a unitary operator Cn,k,
which takes as input the classical state |1〉⊗k|0〉⊗m correspond-
ing to |qn〉|qn−1〉 . . . |q1〉, and generates the cyclic state |Cn

k 〉
Cn,k(|1〉⊗k|0〉⊗m) = |Cn

k 〉. (10)

From definition of cyclic states in Eq. 6, and by considering
the Example 1, it is obvious that cyclic states are the super-
position of two types of basis states. For the first type, all the
ones are together in the binary string of the basis states. In
the second, ones are split in the beginning and the end of the
string. Hence, we divide our preparation into two parts. First,
we apply a block to Shift Ones (SO). This block generates all
basis states of the first type and results |0〉⊗m|1〉⊗k in the end
that goes to the second block as input. Second, we create the
basis states of the second type. They are generated by circular
shifting of |0〉⊗m|1〉⊗k that corresponds to Shift Zeros (SZ).
To keep ones in the beginning and in the end of the string, and
to avoid creating repetitious basis states, we shift zeros one less
time. Hence, we apply the SZ block on the last n− 1 qubits.
The general construction of our algorithm is depicted in Fig. 2.

B. Cyclic State Circuit Construction

In this section, we propose the detailed structure of SO
and SZ blocks in creating all desired basis states. We further
present a pseudo-code of our algorithm.

o SOo,k =

k
+
1

ShiftOnes(o, k)

SOo−1,k

Fig. 3. The construction of SO block iteratively.

o-k

o-k+1
..
.

o

Ry(2cos−1
√

1
o
)

..

.

Fig. 4. The circuit implementation of ShiftOnes(o, k).

B.1 Explicit Construction of SOo,k

In the following, we describe a construction of shifting ones
unitary SOo,k. In this notation o shows the total number of
qubits entering the subroutine. The Fig. 3 shows its structure.
First, we apply a block on the last k + 1 qubits to shift k ones,
one position to the right called ShiftOnes(o, k). Next, we
apply same procedure iteratively on the first o− 1 qubits that
is showed by SOo−1,k.

ShiftOnes(o, k) Building Block. We need to transform
|1〉⊗k|0〉 to |0〉|1〉⊗k. In this regard, we design a quantum circuit
that maps:

|1〉⊗k|0〉 →
√

1

o
|1〉⊗k|0〉+

√
o− 1

o
|0〉|1〉⊗k. (11)

This transformation is constructed by a 1-controlled

Ry(2cos
−1
√

1
o
) which maps |0〉 →

√
1
o
|0〉 +

√
o−1
o
|1〉, and a

CNOT, that is shown in Fig. 4. On one hand, as we have k
successive ones, we only need to check one of them. On the
other hand, we know qo−k+1 is modified in the previous step
to create the previous permutation. Hence, we select qo−k+1

as the control-qubit for the 1-controlled Ry gate to create the
current permutation. Then, we apply a CNOT to convert the
last qubit to |0〉 state.

B.2 Explicit Construction of SZz,m

Here, a construction of shifting zeros unitary SZz,m is described.
Its structure is shown in the Fig. 5. Here, z shows the number
of input to the block. First, ShiftZeros block is applied on
the last m+ 1 qubits to shift m zeros one position to the right.
Next, we iteratively apply SZ block on the first z − 1 qubits
that is shown by SZz−1,m.

ShiftZeros(z, m) Building Block. This time, we need to
transform |0〉⊗m|1〉 to |1〉|0〉⊗m. Hence, we design a quantum
circuit to transform

|0〉⊗m|1〉 →
√

1

z −m+ 1
|0〉⊗m|1〉+

√
z −m

z −m+ 1
|1〉|0〉⊗m.

(12)

Note that the first part (SO) consists of m ShiftOnes blocks.
We consider its effect in adjusting amplitudes in Eq. 12. This
transformation is constructed by two CNOTs and a 2-controlled

Ry(−2cos−1
√

1
z−m+1

), in between, with negative controls that
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z SZz,m =

m
+
1

ShiftZeros(z,m)

SZz−1,m

Fig. 5. The construction of SZ block iteratively.

z-m

z-m+1
.
..

z-1

z

Ry(−2cos−1
√

1
z−m+1

)

.

..

Fig. 6. The circuit implementation of ShiftZeros(z,m).

is shown in Fig. 6. The Ry gate maps |1〉 →
√

1
z−m+1

|1〉 +√
z−m

z−m+1
|0〉. Here, to transform qz−m into |0〉, all previous m

qubits should be |0〉, but in practice it is not essential to check
all the m qubits. In fact, we find that it is enough to check qz−1

and qz−m+1 to guarantee proper functionality. Furthermore,
we add one more CNOT in the beginning, as the SO block may
have changed something.

Algorithm 1 shows the pseudo-code of our deterministic
algorithm for preparing the cyclic states that we have already
explained in detail.

Algorithm 1: Deterministic Preparation of Cyclic
States.
Input: The number of qubits n, The number of ones k
Output: The quantum circuit qc
Proc C(n, k):

qc = CreateAndInitializeQC(n, k)
ApplySO(qc, 1, n, k)
ApplySZ(qc, 2, n, n− k)
return qc

Proc CreateAndInitializeQC(n, k):
qc = CreateNewQC()
for i = 1, . . . , n do

qc.CreateQubit(i)
if i > n− k then

qc.ApplyNOT(i)

return qc

Proc ApplySO(qc, qstart, qend, k):
o = qend - qstart + 1
if o ≤ k then

return
qc.ApplyShiftOnes(o, k)
return ApplySO(qc, qstart, qend − 1, k)

Proc ApplySZ(qc, qstart, qend, m):
z = qend - qstart + 1
if z ≤ m then

return
qc.ApplyShiftZeros(z, m)
return ApplySZ(qc, qstart, qend − 1, m)

C. Proof of correctness

Here we show that the circuit indeed prepares the cyclic
state as desired. To this purpose, we first define two families of

intermediate states:

|ψl〉 :=
√

1

n

l−1∑
i=0

|0〉⊗i|1〉⊗k|0〉⊗m−i +

√
n− l
n
|0〉⊗l|1〉⊗k|0〉⊗m−l

(13)

and

|φl〉 :=
√

1

n

m−1∑
i=0

|0〉⊗i|1〉⊗k|0〉⊗m−i +

√
1

n

l−1∑
j=0

|1〉⊗j |0〉⊗m|1〉⊗k−j

+

√
n−m− l

n
|1〉⊗l|0〉⊗m|1〉⊗k−l.

(14)

By definition, the initial state is |ψ0〉 = |1〉⊗k|0〉⊗m. First, we
analyse the action of SO(n, k) on the input state. In the process
of preparing cyclic states, any input to the shift one operation is
in a superposition of qubit strings of the form |0〉⊗i|1〉⊗k|0〉⊗m−i.
Notice that, according to Fig. 4, ShiftOnes(n− l, k) acts non-
trivially only if the (n − l − k + 1)-th qubit is |1〉, and we
have

ShiftOnes(n− l, k)|0〉⊗i|1〉⊗k|0〉⊗m−i =

|0〉⊗i|1〉⊗k|0〉⊗m−i i < l, (15)

and

ShiftOnes(n− l, k)|0〉⊗l|1〉⊗k|0〉⊗m−l =√
n− l − 1

n− l |0〉⊗l|1〉⊗k|0〉⊗m−l+

√
1

n− l |0〉
⊗l+1|1〉⊗k|0〉⊗m−l−1.

Substituting into Eq. 13, we have

ShiftOnes(n− l, k)|ψl〉 = |ψl+1〉 (16)

and thus

SO(n, k)|ψ0〉 = |ψm〉. (17)

It remains to be shown that SZ(n,m)|ψm〉 = |Cn
k 〉. By Eqs. 13

and 14, we have |ψm〉 = |φ0〉. Next, notice that

ShiftZeros(n− l,m)|1〉⊗l|0〉⊗m|1〉⊗k−l =√
n− l −m

n− l −m+ 1
|1〉⊗l|0〉⊗m|1〉⊗k−l

+

√
1

n− l −m+ 1
|1〉⊗l+1|0〉⊗m|1〉⊗k−l−1 (18)

and

ShiftZeros(n− l,m)|1〉⊗j |0〉⊗m|1〉⊗k−j =

|1〉⊗j |0〉⊗m|1〉⊗k−j j < l. (19)

In addition, since we assumed m ≤ k, we also have

ShiftZeros(n− l,m)|0〉⊗i|1〉⊗k|0〉⊗m−i = |0〉⊗i|1〉⊗k|0〉⊗m−i.
(20)

Therefore, substituting both into Eq. 14 we have

ShiftZeros(n− l,m)|φl−1〉 = |φl〉 (21)

SZ(n− 1,m)|φ0〉 = |φk−1〉. (22)

The proof is concluded since by definition in Eq. 14

|φk−1〉 = |Cn
k 〉. (23)
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V. Results & Evaluation

We compute the number of elementary quantum gates
{CNOT , Ry, NOT} of our circuit construction. We assume
k ≥ m, otherwise, we only need to add n extra NOTs at the
beginning to ensure k > m. To bring back the circuit into the
correct state, we must also add n more extra NOTs at the end.

Shifting ones consists of m ShiftOnes blocks. Considering
the quantum circuit depicted in Fig. 4, m 1-controlled Ry and
m CNOT gates are required.

Shifting zeros consists of k−1 ShiftZeros blocks. As shown
in Fig. 6, this part requires k − 1 2-controlled Ry gates except
when m = 1 or m = 2 which it requires k − 1 1-controlled Ry

gates, instead. It also needs 2(k − 1) CNOT gates. Moreover,
this part requires NOT gates to apply negative controls. Each
ShiftZeros block consists of 8 NOTs which at least one of
them can be canceled by the next block. Hence, in-between
blocks require 6 NOTs and the total number of NOTs is upper
bounded by 6(k − 1) + 2. Note that when m = 1 or m = 2, as
ShiftZeros blocks are constructed by 1-controlled Ry gates,
6(k − 1) NOTs are required.

To create elementary quantum gates, we decompose 1-
controlled Ry and 2-controlled Ry gates into {2 CNOTs, 2
Ry gates}, and {4 CNOTs, 4 Ry gates}, respectively, as ex-
plained in Section II. As a result, the cost function regarding
the number of CNOT gates (c), Ry gates (r), and NOT gates
(n) are formulated as follows:

Costc(n, k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
7 if k = 2, n = 3

4n− 5 if k = n− 1, n > 3

4n− 6 if k = n− 2

3n+ 3k − 6 otherwise

, (24)

Costr(n, k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
4 if k = 2, n = 3

2n− 2 if k = n− 1, n > 3

2n− 2 if k = n− 2

2n+ 2k − 4 otherwise

, (25)

and

Costn(n, k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
6 if k = 2, n = 3

6n− 12 if k = n− 1, n > 3

6n− 18 if k = n− 2

6k − 4 otherwise

. (26)

We compare our approach with state-of-the-art methods [12,
21] in terms of the number of CNOTs that are more expensive
than 1-qubit gates in NISQ architectures. We also show the
number of Ry gates. The results are shown in Table I. To
compare with [21], k should be only 2. As we assume k ≥ m,
it corresponds to k = n− 2 with 2n extra NOTs. Considering
Eqs. 24, 25, and 26, our method generates 4n − 6 CNOTs,
2n − 2 Ry, and 6n − 18 NOT gates. The result of [21] is a
little bit better, but it only covers k = 2. To compare with
Dicke state preparation method introduced in [12], we can only
consider some specific Dicke states |Dn

k 〉 that are equal to a
cyclic state |Cn

k 〉. From their definitions, they are equal when
either k = 1 or k = n− 1. As shown in the table, our method
reduces both CNOT and Ry gates significantly. Hence, our
circuit construction is more general (no constraints on k) and
effective as compared to methods in [12,21].

TABLE I
Proposed method comparison over methods in [12,21].

#CNOT #Ry

[21] k = 2 7
2
n+ 3 4n+ 2

Proposed Method 4n− 6 2n− 2

[12] k = 1 > 5n > 4n

Proposed Method 4n− 5 2n− 2

[12] k = n− 1 > 5n > 4n

Proposed Method 4n− 5 2n− 2

As previous methods are limited to special values of k, we
compare our method with the uniform quantum state prepa-
ration method in [10] that is more general. This method not
only covers arbitrary values of k but also is more efficient over
arbitrary state preparation methods. The results regarding the
number of CNOTs are presented in Table II, for different num-
ber (random) of n and k. The results show that our method
reduces the number of CNOTs by a factor of 2. When the
number of qubits (n) is small, for some cases (here for n = 10
and k = 5), our results are worse. This is due to the fact that,
for these cases, there exist good dependencies between qubits
which are utilized by [10] to reduce CNOTs. In the case that
the number of qubits (n) is large, we reduce CNOTs with linear
complexity, for all values of k . Conversely, [10] increases the
number of CNOTs exponentially.

VI. Conclusions

Efficient quantum state preparation is a crucial step to de-
sign quantum computing systems. In this work, we propose
a construction method as well as quantum circuits that deter-
ministically generate cyclic states. Our circuit construction
method uses 6n − 15 CNOT gates in the worst case when
k = n− 3, which is significantly better than the state-of-the-art
methods that generate exponential number of CNOTs. We
further provide experimental results that confirm this analysis.
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