
A Versatile Mapping Approach for Technology
Mapping and Graph Optimization

Alessandro Tempia Calvino∗, Heinz Riener∗, Shubham Rai†, Akash Kumar†, Giovanni De Micheli∗
∗Integrated Systems Laboratory, EPFL, Lausanne, Switzerland
†Chair for Processor Design, TU Dresden, Dresden, Germany

Abstract—This paper proposes a versatile mapping approach
that has three objectives: i) it can map from one technology-
independent graph representation to another; ii) it can map to
a cell library; iii) it supports logic rewriting. The method is cut-
based, mitigates logic-sharing issues of previous graph mapping
approaches, and exploits structural hashing. The mapper is the
first one of its kind to support remapping among various graph
representations, thus enabling specialized mapping to emerging
technologies (such as AQFP) and for security applications (such
as XAG-based design). We show that mapping to MIGs improves
area by 10% as compared to the state of the art, and that
technology mapping is 18% faster than ABC with slightly better
results.

I. INTRODUCTION

Multi-level logic optimization is a fundamental step in the

realization of competitive integrated circuits. State-of-the-art

logic synthesis tools describe a circuit using a technology-

independent representation, apply transformations to optimize

mainly the size and the depth, and lastly, they map the

optimized logic to a technology-dependent representation.

Originally, 2-input NANDs and NORs, together with invert-

ers, were used as primitives in graph representations thanks

to their universality. As logic synthesis evolved, the And-
inverter graph (AIG) [1], consisting of 2-input AND gates and

inverters, became the most common technology-independent

representation. As an alternative, Majority-inverter graphs
(MIGs) [2], [3] have been proposed and motivated by a more

expressive potential and by majority-based emerging technolo-

gies, e.g., quantum-dot cellular automata. Additionally, Xor-
And graphs (XAGs) [4] and Xor-Majority graphs (XMGs) [5]

have been proposed for their compactness in arithmetic circuits

and as a basis for logic rewriting. Recent work investigated 3-

input gates as new graph representations to address logic syn-

thesis [6]. The first and only toolbox that supports optimization

over multiple representations has been proposed in [7]. Since

different graph representations are available to support logic

synthesis, in this work we investigate the mapping from one

graph representation to another while optimizing the circuit

for delay or area.

We tackle different mapping problems with a single imple-

mentation that, on one hand, achieves comparable results in

technology mapping when compared to the ABC mapper, and

on the other hand, achieves better results in graph mapping and

logic restructuring compared to previous methods. Moreover,

we present the first mapper that supports mapping from and

to different graph data representations such as AIG, XAG,

MIG, and XMG. This feature finds extensive applications in

different technologies. For instance, the Adiabatic Quantum
Flux Parametron (AQFP) [8] superconducting technology, and

quantum-dot cellular automata [9] are inherently majority-

based. Our tool provides an efficient rewriting to MIGs that is

crucial for specialized tools such as [10] for AQFP design. Re-

configurable nano-technologies (RFET) make use of XMGs

as an efficient representation to preserve self-duality [11]. In

cryptography and security applications, XAGs are used to

represent circuits and analyze the multiplicative complexity of

Boolean functions which correlates with vulnerability against

algebraic attacks [12]. Furthermore, additional applications

are possible for logic optimization (e.g., logic rewriting),

especially in arithmetic-intensive circuits. Since publicly avail-

able logic synthesis tools mostly rely on AIGs for logic

optimization [13], this mapper provides a way to easily obtain

a representation that is more suitable for a particular applica-

tion while optimizing it. Additionally, we present technical

improvements over previous logic restructuring methods on

logic sharing and global view.

In the experiment, we evaluate the versatility of the mapper

and compare it to state-of-the-art methods:

• We map to a standard cell library and compare to ABC

map command [13] showing comparable results with an

average improvement of 1.75%, 0.10%, and 18% in area,

delay, and total run time respectively.

• We evaluate the mapper for logic restructuring on MIGs.

We test our solutions to improve logic sharing and

optimize with a global view by comparing to previous

state-of-the-art LUT-based rewriting and cut rewriting.

Our mapper improves the average size by 9.45% and

20.64% respectively obtaining considerably better results

for all the benchmarks.

• We map from AIGs to XAGs and XMGs. We improve

previous work on XMG size optimization using LUT-

based rewriting in [5], [30] by 12.22% in geometric mean

and 27.45% in size/depth product.

In summary, this mapper is the first tool to enable remap-

ping among various graph-based representations and it enables

faster technology mapping, as compared to ABC, for better or

comparable quality of results.

II. BACKGROUND

In this section, we introduce the basic notations and the

necessary background on mapping and logic restructuring.

A. Mapping

Mapping is the process of expressing a Boolean network

using a set of primitives. In technology mapping, primitives

depend on the target technology and are typically contained

in a library such as standard cells or field programmable gate

978-1-6654-2135-5/22/$31.00 ©2022 IEEE

5D-3

410

arrays. Before mapping, the Boolean network is represented

as a k-bounded network called the subject graph. A k-bounded

network contains nodes with a maximum fanin size of k.

AIGs are typically used as subject graphs. Accordingly to the

definition, other types of representation may be used such as

XAGs.

The subject graph is transformed into a mapped network by

applying local substitutions to sections of the circuits. These

sections are defined by cuts [14]. A cut C of a node n in the

subject graph is a collection of nodes called leaves such that

each path from the PIs to node n must traverse at least one leaf.

Node n is the root of the cut. A cut is k-feasible if the number

of leaves of the cut is less than or equal to the bound k. The

number of leaves in the cut determines the size. A trivial cut
is a special cut that contains exclusively the node n. Each non-

trivial cut can be associated with a truth table representing the

function at its root considered from the leaves. Truth tables are

used for Boolean matching, i.e., to bind each cut to the cells

of the technology library. A k-input lookup table (k-LUT) can

implement any k-feasible cut. Thus, we may abstract each cut

as a k-LUT implementing the corresponding truth table.

A maximum fanout free cone (MFFC) of a node n is a subset

of the fanin cone containing only nodes such that every path

from these nodes to the POs passes through n.

A cover is a set of cuts so that all the cuts in the set are

leaves of other cuts in the set or are rooted at the POs. A

mapping algorithm selects a set of cuts to cover the subject

graph. A delay-oriented mapping aims to reduce the delay of

the longest path in the cover. An area-oriented mapping aims

to minimize the total area of the cover. While a minimal-

delay mapping is tractable and can be obtained in polynomial

time using a dynamic programming approach when ignoring

loading effects [15], [16], an optimal area mapping is NP-

hard [17] and thus requires heuristics.

B. NPN-equivalence classes

Two functions f(x1, . . . , xn) and g(x1, . . . , xn) are NPN-

equivalent if there exists a permutation of the inputs (xixj →
xjxi), an inversion of the inputs (xi → xi), and an inversion

of the output (f → f̄) so that f and g can be made Boolean

equivalent [18].

For n-inputs, 22
n

different Boolean functions exist. Boolean

functions can be partitioned into NPN classes. In particular,

n-input Boolean functions can be classified into 14, 222 and

616126 classes, for n = 3, 4, 5 respectively.

NP-equivalence classes are defined similarly without con-

sidering the output inversion.

C. Exact synthesis

Exact synthesis [19] is the problem of finding optimum

representations of Boolean functions in terms of network

primitives. Generally, the cost criterion is the size or the depth

of the structure. Methods such as logic rewriting [5], [20] use

exact synthesis to rewrite parts of the circuit with optimum

implementations.

NPN classification supports exact synthesis by notably

reducing the number of functions to be synthesized and stored.

Due to the problem complexity and the double-exponential

growth in the number of functions with respect to the number

a b c d

p

r s

∧

∧ ∧

(a) Initial network

a b c d

r s

a ∧ b ∧ c b ∧ c ∧ d

(b) LUT mapping

a b c d

r s

∧

∧

∧

∧

(c) LUT decomposition with exact synthesis

Fig. 1: Logic sharing limitation in LUT-based rewriting

of variables, exact synthesis is generally limited to small

functions of 4 variables.

D. Logic restructuring

LUT mapping [15] is a special case of technology map-

ping which covers a network using LUTs. State-of-the-art

technology-independent mapping (or graph mapping) relies

on LUT mapping followed by a k-LUT decomposition using

exact synthesis to obtain the target graph representation [21].

We refer to this method as LUT-based mapping. LUT-based

mapping is often used for logic rewriting by iteratively remap-

ping the circuit. Previous work implemented optimization

flows that used LUT mapping and exact k-LUT decomposition

on MIGs [21] and XMGs [5]. LUT-based mapping suffers

from a limitation that decreases the quality of results. LUT

mapping aims at mapping a network by minimizing the

number of LUTs or LUT levels. By preferring larger LUTs

to cover more logic, the logic sharing of the original network

is often lost. Hence, when the LUTs are decomposed using

exact synthesis, more nodes than necessary are added to the

network.

An example is shown in Fig. 1. In Fig. 1a, an AIG network

contains a shared node p. When the network is mapped to

a 3-LUT network for size reduction, the network obtains

the configuration in Fig. 1b using the minimum number of

two LUTs to cover the network. This operation loses the

local information of the shared node p. When the LUTs are

decomposed back to an AIG using exact synthesis, in Fig. 1c,

the two LUTs are matched to the same structure which creates

an additional node with respect to the original network. To

describe structurally the logic sharing, a better mapping would

use one LUT for each node of Fig. 1a.

To restructure a circuit, another method is also available

in the literature. Rewriting [20] is a DAG-aware optimization

method that aims at minimizing the size of a representation by

replacing small parts of the network with smaller structures.

The advantage of being DAG-aware is to be able to re-

use existing logic and to exploit structural hashing [22].

The structures are typically contained in a database. The

approach greedily chooses the best local replacements but

5D-3

411

a b c d e

p r

s

t

∧ ∧ ∧

∧∧

∧

∧

(a) Initial network

a b c d e

p r

s

t

∧ ∧

∧∧

∧

∧

(b) AIG rewriting

a b c d e

s

t

∧ ∧

∧

∧

(c) Best structure with a global view

Fig. 2: Local view limitation in cut rewriting

local decisions create conflicts (e.g., two replacements cannot

happen at the same time). The algorithm lacks of a global
view to extract the best replacements globally.

An example is shown in Fig. 2. We use 4-feasible cuts.

Fig. 2a shows the initial AIG network in which dashed lines

represent negations. By rewriting the network, the best struc-

ture is obtained by replacing the cut with leaves {b, c, d, e} at

root s. The implementation of this replacement depends on the

substitution at the PO node t. In Fig. 2b, rewriting heuristic

selects the cut with leaves {a, p, r} at root t since it has a

greater or equal local gain compared to the other candidates

at t. Consequently, the best replacement at s cannot be used

since s is already included in the chosen cut at t. AIG rewriting

replaces the sub-graphs rooted at p and r, thus leading to a

size improvement of a single node. The best result in Fig. 2c

can be achieved by evaluating the conflicts globally.

III. VERSATILE MAPPING

In this section, we describe our contribution. We present

a versatile mapper that can map from a generic technology-

independent representation (e.g., AIG, XAG, MIG) into an-

other representation or a technology cell library. In the former

case, it uses a database of pre-computed optimum structures

(e.g., obtained using exact synthesis) to map or rewrite the

network, in the latter case it uses a standard technology

library. Our approach combines and extends state-of-the-art

technology mapping [23] and logic rewriting [5], [24].

Our mapper implements the best characteristics of these two

methodologies and addresses the LUT-based mapping and cut

rewriting drawbacks. Boolean matching is used to bind the

cuts to the available structures or primitives. Thus, accurate

decomposition costs (size and depth) are available during

mapping. The cover is minimized using size and depth instead

of the number of LUTs and LUT levels. This helps to better

exploit shared logic as compared to LUT-based mapping (e.g.,

Algorithm 1: Versatile Mapper

1 Input : Boolean network N , cut size k, library,
cut sorting func, constraints, skip delay, AreaGlobalIter,
AreaLocalIter, AreaStrashIter, rw limit

2 Output: mapped network M
3 cuts ← compute cuts(N , k, cut sorting func);
4 match cuts(cuts, library);
5 if !skip delay then
6 delay oriented map(N , cuts);
7 end
8 for i← 1 to AreaGlobalIter do
9 compute required times(N , cuts, constraints);

10 global area oriented map(N , cuts);
11 end
12 for i← 1 to AreaLocalIter do
13 compute required times(N , cuts, constraints);
14 local area oriented map(N , cuts);
15 end
16 M ← new network();
17 foreach primary input i ∈ N do
18 create input(M, i);
19 end
20 if graph mapping and AreaStrashIter then
21 compute required times(N , cuts, constraints);
22 local area strash oriented map(N , cuts, M , rw limit);
23 remove dangling(M);
24 else
25 finalize network(N, cuts, M);
26 end
27 return M ;

our mapper maps each node in Fig. 1a with a LUT since this

cover has a lower decomposition cost than the one in Fig. 1b,

preserving the shared node p). The mapper executes multiple

mapping refinements, from global to local optimization. In

this way, the mapper generates the cover globally accounting

for shared logic and then optimizes it locally, in the MFFCs.

This approach helps to choose better replacements with a

global view (e.g., our method achieves the structure in Fig. 2c

when mapping from the structure in Fig. 2a). Our mapper

does not need to rewrite each cut. Nevertheless, an option

exploits structural hashing during the last iteration to find

shared nodes among the structures. This typical feature of

rewriting is controlled by technology mapping algorithms to

select the replacements.

The mapper is implemented in a flexible parameterized way

so that it can switch to different cost functions for delay-

oriented or area-oriented mapping. The pseudo-code is shown

in Algorithm 1. The mapper maps for delay by executing a

delay-oriented mapping followed by area-recovery iterations.

Area-oriented mapping is achieved by bypassing the delay-

oriented iteration or by relaxing the required time constraint.

Our method follows equivalent steps for the technology-

dependent and -independent mapping except for some differ-

ences that will be fully covered in the next paragraphs. In this

section, the terms area, delay, and gates are equivalently used

as size, depth, and structures respectively. The algorithm can

be summarized in four steps described in Sections A-D:

A) Library generation

B) Cut enumeration

C) Boolean matching

D) Mapping

5D-3

412

A. Library generation

We define a library as a hash table that is used to classify

gates for simple and fast Boolean matching. Given a Boolean

function represented as a truth table, the library returns, if

possible, a set of gates that can implement that function. The

library generation is different for technology or graph mapping

since two different Boolean matching methods are used.

For cell libraries, the library contains all the NP-

configurations of the gates. Given a gate with fanin size k, the

maximum number of NP-configurations is k!× 2k. However,

this number is often smaller due to function symmetries.

The library stores the configurations of the gates and the

associated functions. Note that for most standard libraries the

number of entries is manageable. For the MCNC standard

cell library [25], only 206 functions and 223 configurations

are stored in the table.

For graph mapping, the pre-computed structures are parti-

tioned into NPN-equivalence classes and saved in a database.

Since the mapper matches both polarities, and automatically

inserts output inverters, each entry must not implement an

output negation. Given an entry S which implements the NPN-

class representative function f , if S has a negated output,

the output negation is removed and the entry is saved to

the new class f . Thus, NPN-classes are rearranged to NP-

classes when necessary. In the library, the NP-configurations

are not enumerated since the entries would be too many.

Consequently, functions are matched by canonization (more

details in Section III-C). For each entry, the pin-to-pin delay

and the area are computed given a cost function. The pin-

to-pin delay describes the depth of the longest path from an

input pin to an output pin. The area is defined as the size of

the structure. Additionally, also inverter costs are supported.

B. Cut enumeration

Cut enumeration computes a set of k-feasible cuts for

each node in the subject graph (line 3 of Algorithm 1). The

computation proceeds in topological order from the primary

inputs (PIs) to the primary outputs (POs) as in [26]. The cut

computation is independent of the graph representation and

works for nodes with a variable number of inputs.

For each non-trivial cut, the corresponding truth table is

computed. Truth tables are minimized by reordering variables

and removing the ones without a functional support. This

process eliminates “holes” in the truth table that prevent

cuts from matching with the gates (which truth table is

minimized). In this case, the support of the cuts is reduced

accordingly. For instance, a cut C with leaves {l1, l2, l3, l4}
and truth table “0F05”1 can be minimized to cut C ′ with

leaves {l1, l3, l4} and function “31” since l2 in C does not have

functional support. An average of 0.06% additional cuts can be

matched in the EPFL benchmark suite [27] using the MCNC

library [25]. This number is not so small when considering the

huge amount of cuts that are typically generated. Moreover,

these cuts are often good since they contain internal don’t care

conditions.

During the enumeration phase, cuts are sorted on the fly

based on their depth, area flow [28], and size. The cut

1The truth table is represented in hexadecimal as a bitstring b2n−1 . . . b1b0.

a b c d

p

r s

∧

∧ ∧

(a) Inverter sharing

a b c d

p

r s

∧

∧ ∧

(b) Optimal delay

Fig. 3: Advantages of matching in two polarities

prioritization is selected depending on the desired goal of the

mapping. For a delay-oriented mapping, the sorting function

primarily sorts for the depth while for area-oriented mapping,

it orders primarily for area flow. To decrease the number of

candidate cuts at each node, only a small number l is selected.

On top of that, the trivial cut is added. This guarantees that at

most l+1 cuts are saved at each node, so, for a node with fanin

size equal to m, a maximum of (l+1)m cuts are enumerated.

This technique is referred to as priority cuts [14]. When using

the mapper for technology mapping, the cut size is always the

first criterion of selection. Ordering first by minimum size

guarantees a feasible mapping if the technology library is

complete (e.g., NAND2 and INV) since some of the first l
selected cuts must match a function primitive.

C. Boolean matching

Given a cut and the corresponding truth table, Boolean

matching finds a set of gates that can implement that function.

The pre-computed library of gates discussed in Section III-A

is used to achieve that. In that section, we mentioned that

the mapper matches in two polarities (uncomplemented, com-

plemented). Considering both polarities for each cut function

is necessary to enable logic sharing of inverters or avoid

additional inverter delay costs [23].

In Fig. 3a, node p has two negated outputs. Let us suppose

that our library contains an AND2 gate and an inverter. Node

p would be matched to an AND2 gate. Consequently, the

mapper would insert two inverters on the edges (p, r) and

(p, s) when mapping r and s with AND2 gates, creating an

unnecessary inverter duplication. The adopted solution is to

construct a gate composed of an AND2 plus an output inverter

for a complemented polarity match at p. Hence, r and s can

share the complemented polarity match avoiding the logic

duplication. Although these redundancies could be removed

with a circuit analysis after mapping, the mapper would be

affected by wrong area estimations during the match selection

phase leading to worse results.

Let us suppose now that the library contains also a NAND2

gate. In Fig. 3b, node p has two fanout of different polarities.

If p is mapped with only one polarity, e.g., to an AND2 gate,

the arrival time at node r would increase by an inverter delay.

By matching both polarities separately using an AND2 and

a NAND2 gate, we could avoid an additional inverter delay.

This operation is generally evaluated in terms of delay gain

and area increase since it induces a duplication of the node p.

The Boolean matching technique (line 4 of Algorithm 1) is

differentiated based on the mapping goal.

5D-3

413

For technology mapping, since the library contains all the

configurations of all the gates, each compatible set of gates is

obtained with a simple look-up in the library using the truth

table.

For a technology-independent mapping, the library stores

the database of structures in NP-classes. Boolean matching is

achieved using function canonization to get the NPN class rep-

resentatives f and f of the library and to match the gates. The

canonization procedure finds the lexicographically smallest

truth table (the NPN-class representative), the permutations,

and the input negations to apply.

D. Mapping

Delay-oriented mapping aims to cover the subject graph

by selecting the gates that minimize the arrival time at each

node. The computation (line 6 of Algorithm 1) proceeds in

topological order, over the internal nodes of the subject graph.

For each node, the cut and the gate with the best arrival

time is selected. Both the uncomplemented polarity p and

complemented polarity p of a node n are mapped separately

if ta(np) < ta(np) + dinv and ta(np) < ta(np) + dinv where

ta(np) (ta(np)) is the arrival time of the best match at n with

polarity p (p) and dinv is the inverter delay. This approach

guarantees optimal delay mapping under the set of cuts. The

area overhead is then addressed during area recovery once the

required times at the nodes are known.

Area-oriented mapping or area recovery are performed in

multiple passes over the nodes in the subject graph. In our

approach, we use a first heuristic called area flow [28] for a

global area optimization (line 10 in Algorithm 1) and a second

method called exact area [14] for a local area optimization

(line 14 in Algorithm 1). Our algorithm maps and adjusts

the cover using these two methods iterated multiple times if

necessary (lines 8-15 in Algorithm 1). The area passes are

constrained by the required time so that the worst-case delay

is not increased. If the slack window is large enough, the

algorithm tends to keep only one polarity mapped per node to

save area. The other polarity is obtained by adding an inverter

on the output pin of the match. If the slack window is too

narrow, both polarities are kept mapped. Depending on the

mapping phase, the cost criteria to select the best gate are

shown in Table I.

We extend exact area with an option for high-effort area

optimization in graph mapping to exploit structural hashing

to find shared nodes (lines 21-23 in Algorithm 1). Exact area

is a local refinement of the cut selection which is driven by

the area in the MFFC. The area is locally reduced by selecting

a cut so that the sum of the area of the best cuts in the MFFC

is minimized. Given a current cover of the subject graph, the

exact area for a node n can be computed using recursive

cut referencing and dereferencing. A recursive cut referencing

(dereferencing) algorithm recursively explores the leaves in the

MFFC of a current cover. The last local area iteration for graph

TABLE I: Gates selection criteria

Mapping Phase Cost criterion Tie-breaker 1 Tie-breaker 2
Delay arrival time area flow cut size
Global area area flow arrival time cut size
Local area exact area arrival time cut size

mapping may include a rewriting of the l best cuts per node

with structural hashing, called rw limit in Algorithm 1, to find

shareable nodes among the possible structures. In topological

order, for each node, a candidate match is inserted in the

network using one-level structural hashing by permuting and

negating the inputs according to the NP transformation. Then,

the number of added nodes is measured using node referencing

and dereferencing similarly to rewriting [20]. Exact area is

computed normally using the measured area value instead of

the pre-computed area of the match. The match that minimizes

the exact area at the node is selected. Structural hashing in

exact area helps to select matches that share nodes with other

structures in the cover. This method is particularly effective

also when multiple alternative structures are available per NPN

class and exact area with structural hashing is executed only

on the previously selected best cut (rw limit is 1).

In the finalization process, the resulting network is created

using the computed cover and the associated gates (line 25 of

Algorithm 1).

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the versatility of the mapper

and compare it to state-of-the-art methods. We first use the

mapper to map to a standard technology library and we

compare it to ABC [13]. In the second experiment, we use

the mapper to optimize MIGs and we compare it to state-

of-the-art LUT-based rewriting and cut rewriting methods.

In the third experiment we map from AIGs into XAGs and

XMGs. As baseline for all the experiments, we use the EPFL

combinational benchmark suite [27] containing combinational

circuits provided as AIGs.

The mapper has been implemented in C++17 in the open-

source logic synthesis framework Mockturtle2 [29] as a com-

mand map. The experiments have been conducted on an Intel

i5 quad-core 2GHz on MacOS. All the results were verified

using the combinational equivalent checker in ABC3.

A. Technology mapping

In this first experiment, we use our mapper for technology

mapping starting from an AIG representation. The mapping

is delay-oriented using one iteration of global area followed

by two iterations of local area. We use the MCNC standard

cell library [25] to bind the network. We compare to the ABC

command map. In this experiment, we compute cuts of size 5
storing a maximum of 25 cuts per node.

The results are shown in Table II. We compare in terms

of area and delay improvement with respect to the results in

ABC. While the results are comparable, our versatile mapper

improves the area by 1.75% on average with a better run time.

Better run time is due to our simplified Boolean matching and

cut prioritization that we use to store only 25 cuts. Our mapper

leads to better delay results in two benchmarks thanks to the

truth table minimization technique described in Section III-B

that is not implemented in ABC.

2Available at: https://github.com/lsils/mockturtle
3Available at: https://github.com/berkeley-abc/abc

5D-3

414

TABLE II: Experimental results for technology mapping

Benchmark I/O Baseline ABC map Versatile mapper
Size Depth Area Delay Time (s) Area Delay Time (s)

adder 256 / 129 1020 255 1976 204.9 0.01 1975 204.9 0.01
bar 135 / 128 3336 12 5911 10.2 0.04 5911 10.2 0.05
div 128 / 128 57247 4372 124016 3516.5 1.20 127191 3516.5 1.34
hyp 256 / 128 214335 24801 435468 17520.6 7.35 429738 17520.6 5.59
log2 32 / 32 32060 444 55686 330.4 1.41 53778 329.8 1.02
max 512 / 130 2865 287 6186 208.4 0.06 5958 208.4 0.07
multiplier 128 / 128 27062 274 49597 210.9 1.05 47015 210.9 0.75
sin 24 / 25 5416 225 10690 154.3 0.24 10413 153.0 0.24
sqrt 128 / 64 24618 5058 44724 4235.8 0.58 44523 4235.8 0.71
square 64 / 128 18484 250 36321 199.4 0.74 35154 199.4 0.58

Total 12.68 10.36
Improvement +1.75% +0.10%

B. Mapping into MIG and logic restructuring

In this experiment, we compare our mapper to LUT-based

rewriting and cut rewriting to optimize MIGs. The LUT

mapping is realized with the synthesis package ABC using the

command &if -a -K 4 followed by a node re-synthesis

in Mockturtle that decomposes each LUT with a matching

structure contained in the database. Rewriting is achieved

using the standard cut rewriting algorithm [24] implemented in

Mockturtle (equivalent to AIG rewriting [20] but compatible

with MIGs). For the experiment, we use a database obtained

with exact synthesis with size-optimum structures for the 4-

input NPN classes. Up to 10 alternative structures are available

for each NPN class. The mapper computes cuts of size 4 and

stores up to 25 cuts per node. The versatile mapper is set

for area-oriented mapping with one round of global area, two

rounds of local area, and a high-effort round rewriting the

two best-matched cuts, for a low impact on performances. The

restructuring methods are iterated until no more improvement.

The results are shown in Table III. We evaluate the results

in terms of size improvement with respect to the baseline. Our

mapper obtains better results in all the benchmarks. From our

experiments, mapping with structural hashing improves the

size up to 10% more, and 1.23% on average, than standard

area-oriented mapping. The results support our motivations

and the proposed solutions to exploit shared logic and account

for global optimization. Moreover, our mapper supports a

reduction in depth that the other methods cannot achieve.

C. Mapping into XAG and XMG and logic restructuring

In this experiment, we show the versatility of the mapper to

map into other graph representations starting from AIGs. For

the experiment, we used two databases of structures for XAGs

and XMGs obtained using exact synthesis and containing

a single structure per NPN class. We run the mapper for

area mapping until convergence using cuts of size 4. The

results are shown in Table IV. The baseline is the same as

the one reported in Table III containing only AND gates.

The geometric mean is computed over size and depth. In the

table, we compare our results with previous work on XMG

optimization using rewriting in [5], taking the results using

cuts of size 4, and in [30] that uses cuts of size 6. Our mapper

obtains considerably better results in all the benchmarks in

XMG optimization compared to the work in [5] when using

the same cut size of 4. Moreover, our mapper obtains better

results compare to the best results in previous work [5], [30]

in 7 out of 10 benchmarks with an improvement of 12.22%

in geomean and of 27.45% in size/depth product compared

to [30]. Note that these results used LUT-mapping and exact

synthesis on-the-fly on cuts of size 6. Consequently, their

method needs a significant run time to compute the optimum

structures on-the-fly since complete 6-input databases are too

big to be pre-computed. Nevertheless, our method obtains

better results for most benchmarks. This result shows again

the advantage of our approach over LUT-based mapping.

V. CONCLUSION

In this work, we presented a versatile mapper for delay

or area optimization that is independent of the underlying

graph data structure and the target representation. Within one

implementation, graph mapping, and logic restructuring. It is

the first mapper that supports mapping among different graph

data structures such as AIG, XAG, MIG, and XMG. Our

approach better exploits the sharing of the logic as compared

to LUT-based mapping by evaluating decomposition costs

directly during mapping. It uses mapping algorithms for a

global optimization. It can use structural hashing to exploit

common nodes among the structures. The experiments showed

better results in logic restructuring compared to LUT- and cut-

based rewriting methods in all the benchmarks.

ACKNOWLEDGMENTS

This research was supported by the SNF grant “Supercool:

Design methods and tools for superconducting electronics”,

200021 1920981, and by the German Research Foundation

(DFG), project “SecuReFET” 439891087.

REFERENCES

[1] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust Boolean
reasoning for equivalence checking and functional property verification,”
Trans. CAD, pp. 1377–1394, 2002.

[2] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “Majority-inverter
graph: A novel data-structure and algorithms for efficient logic opti-
mization,” in Proc. DAC, 2014.

[3] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “Majority-inverter
graph: A new paradigm for logic optimization,” IEEE Trans. CAD,
vol. 35, no. 5, pp. 806–819, 2016.

[4] I. Háleček, P. Fišer, and J. Schmidt, “Are XORs in logic synthesis really
necessary?,” in Proc. DDECS, 2017.

[5] W. Haaswijk, M. Soeken, L. Amarù, P. Gaillardon, and G. De Micheli,
“A novel basis for logic rewriting,” in ASP-DAC, 2017.

5D-3

415

TABLE III: Experimental results for mapping and rewriting MIGs

Benchmark Baseline LUT-based rewriting [21] Cut rewriting [24] Versatile mapper
Size Depth Size Depth Time (s) Size Depth Time (s) Size Depth Time (s)

adder 1020 255 385 130 0.05 893 129 0.08 384 129 0.06
bar 3336 12 2940 14 0.15 2952 15 0.71 2588 13 1.79
div 57247 4372 48827 4288 22.77 41553 2276 157.27 36858 2235 14.95
hyp 214335 24801 163398 9168 15.80 178736 9330 93.93 137048 8885 28.83
log2 32060 444 25651 247 3.91 30056 420 8.88 24295 206 3.20
max 2865 287 2446 248 0.35 2346 240 0.85 2171 162 0.96
multiplier 27062 274 20309 138 3.07 24829 271 12.37 19299 142 2.97
sin 5416 225 4560 159 0.44 5049 201 3.66 4196 122 1.14
sqrt 24618 5058 21002 6132 2.29 23889 4941 11.69 17355 3846 45.75
square 18484 250 14050 155 1.24 17669 163 8.85 11924 126 2.39

Total 50.09 298.27 102.05
Improvement +22.66% +25.10% +11.47% +20.54% +32.11% +41.88%

TABLE IV: Experimental results for rewriting XAGs and XMGs

Benchmark XAG XMG XMG (k = 4) in [5] XMG (k = 6) in [30]
Size Depth Size Depth Size Depth Size Depth

adder 639 256 383 128 639 130 383 128
bar 3013 13 2944 14 3281 16 2149 14
div 29124 4316 17613 2300 29607 4371 37003 4243
hyp 158682 24912 114746 8984 155349 12507 99428 8755
log2 24330 327 21361 204 27936 275 22957 213
max 2766 234 1845 157 2296 296 1938 200
multiplier 18651 268 15642 134 17508 154 16357 133
sin 4259 175 3728 138 5100 176 3896 140
sqrt 12617 6122 9750 2431 20130 6031 17187 5169
square 13876 247 11250 126 15070 130 8325 156

Average 26,795.7 3.687.0 19,926.2 1,461.6 27961.6 2408.6 20,962.3 1,915.1
GeoMean 2,293.1 1,511.2 2,117.8 1,721.6
Size · Depth 98,795,745.9 29,124,133.9 66,697,987.8 40,144,900.7

[6] D. S. Marakkalage, E. Testa, H. Riener, A. Mishchenko, M. Soeken,
and G. De Micheli, “Three-input gates for logic synthesis,” Trans. CAD,
2020.

[7] H. Riener, E. Testa, W. Haaswijk, A. Mishchenko, L. Amarú,
G. De Micheli, and M. Soeken, “Scalable generic logic synthesis: One
approach to rule them all,” in Proc. DAC, Jun 2019.

[8] R. Cai, O. Chen, A. Ren, N. Liu, C. Ding, N. Yoshikawa, and Y. Wang,
“A majority logic synthesis framework for adiabatic quantum-flux-
parametron superconducting circuits,” in Proc. GLSVLSI, p. 189–194,
May 2019.

[9] K. Kong, Y. Shang, and R. Lu, “An optimized majority logic synthesis
methodology for quantum-dot cellular automata,” IEEE Transactions on
Nanotechnology, vol. 9, no. 2, pp. 170–183, 2010.

[10] E. Testa, S.-Y. Lee, H. Riener, and G. De Micheli, “Algebraic and
boolean optimization methods for AQFP superconducting circuits,” in
Proc. ASP-DAC, p. 779–785, 2021.

[11] S. Rai, H. Riener, G. Micheli, and A. Kumar, “Preserving self-duality
during logic synthesis for emerging reconfigurable nanotechnologies,”
in DATE, 2021.

[12] J. Boyar, R. Peralta, and D. Pochuev, “On the multiplicative complexity
of Boolean functions over the basis (∧, ⊕, 1),” Theoretical Computer
Science, vol. 235, no. 1, pp. 43–57, 2000.

[13] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength
verification tool,” in Computer Aided Verification (T. Touili, B. Cook,
and P. Jackson, eds.), 2010.

[14] J. Cong, C. Wu, and Y. Ding, “Cut ranking and pruning: Enabling a
general and efficient FPGA mapping solution,” in Proc. FPGA, 1999.

[15] J. Cong and Y. Ding, “FlowMap: an optimal technology mapping
algorithm for delay optimization in lookup-table based FPGA designs,”
in Proc. ICCAD, 1994.

[16] Y. Kukimoto, R. Brayton, and P. Sawkar, “Delay-optimal technology
mapping by DAG covering,” in Proc. DAC, 1998.

[17] A. H. Farrahi and M. Sarrafzadeh, “Complexity of the lookup-table

minimization problem for FPGA technology mapping,” Trans. CAD,
1994.

[18] L. Benini and G. De Micheli, “A survey of Boolean matching techniques
for library binding,” ACM Trans. Design Autom. Electr. Syst., July 1997.

[19] W. Haaswijk, M. Soeken, A. Mishchenko, and G. De Micheli, “SAT-
based exact synthesis: Encodings, topology families, and parallelism,”
Trans. CAD, 2020.

[20] A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-aware AIG
rewriting: a fresh look at combinational logic synthesis,” in DAC, 2006.

[21] W. J. Haaswijk, M. Soeken, L. Amaru, P.-E. Gaillardon, and
G. De Micheli, “LUT mapping and optimization for majority-inverter
graphs,” in Proc. IWLS, 2016.

[22] A. Mishchenko, S. Chatterjee, and R. Brayton, “FRAIGs: A unifying
representation for logic synthesis and verification,” tech. rep., EECS
Department, UC Berkeley, 2005.

[23] S. Chatterjee, On Algorithms for Technology Mapping. PhD thesis,
EECS Department, University of California, Berkeley, Aug 2007.

[24] H. Riener, W. Haaswijk, A. Mishchenko, G. De Micheli, and M. Soeken,
“On-the-fly and DAG-aware: Rewriting Boolean networks with exact
synthesis,” in DATE, Mar 2019.

[25] S. Yang, Logic Synthesis and Optimization Benchmarks User Guide:
Version 3.0. Microelectronics Center of North Carolina (MCNC), 1991.

[26] A. Mishchenko, S. Chatterjee, and R. K. Brayton, “Improvements to
technology mapping for LUT-based FPGAs,” Trans. CAD, 2007.

[27] L. Amarù, P.-E. Gaillardon, and G. D. Micheli, “The EPFL combina-
tional benchmark suite,” in Proc. IWLS, 2015.

[28] V. Manohararajah, S. D. Brown, and Z. G. Vranesic, “Heuristics for area
minimization in LUT-based FPGA technology mapping,” Trans. CAD,
2006.

[29] M. Soeken, H. Riener, W. Haaswijk, E. Testa, B. Schmitt, G. Meuli,
F. Mozafari, and G. D. Micheli, “The EPFL logic synthesis libraries,”
CoRR, vol. abs/1805.05121, 2019.

[30] Z. Chu, M. Soeken, Y. Xia, and G. De Micheli, “Functional decompo-
sition using majority,” in ASP-DAC, pp. 676–681, 2018.

5D-3

416

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

