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ABSTRACT

There are many applications for the ability to find repetitions
of perceptually similar sound events in generic audio recordings.
We explore the use of matching pursuit (MP) derived features to
identify repeated patterns that characterize distinct acoustic events.
We use locality-sensitive hashing (LSH) to efficiently search for
similar items. We describe a method for detecting repetitions of
events, and demonstrate performance on real data.

Index Terms— Acoustic signal analysis, database searching

1. INTRODUCTION

There are many examples of sound events which may be heard
multiple times in the same recording, or across different record-
ings. These are easily identifiable to a listener as instances of the
same sound event, although they may not be exact repetitions at
the waveform level. We define an event as any short-term, percep-
tually distinct occurence, e.g. a door knock. The ability to iden-
tify recurrences of perceptually similar events has applications in
a number of audio recognition and classification tasks. This work
was motivated specifically by the desire to relate repeated audio
events with the visual source of the sound, as in a video.

Our goal is to identify characteristic patterns that can be used
to search for the presence of an event, i.e. identifying a kind of fin-
gerprint for the events. There are two main challenges to this task:
First, we must find a representation that is sufficiently invariant to
differences in event instances, and to context such as background
sounds, to allow repeated events to be matched, yet still captures
enough detail of the sound to allow perceptually distinct events to
be distinguished. Second, we need a way to efficiently search for
these events in very large datasets.

Our approach to the first problem is to use the matching pur-
suit (MP) algorithm as the basis for our audio event representation.
MP [1] is an algorithm for sparse signal decomposition into an
over-complete dictionary of basis functions. MP basis functions
correspond to concentrated bursts of energy localized in time and
frequency, but spanning a range of time-frequency tradeoffs. By
allowing the analysis to choose the bandwidth/duration parameter
that best fits a feature in the audio – instead of adopting a single,
compromise timescale as in the conventional short-time Fourier
transform, MP allows us to describe a signal with the atoms that
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most efficiently explain its structure. The sparseness of this rep-
resentation makes this approach robust to background noise, since
a particular element, representing the most compact local concen-
tration of energy, will experience the least proportional change as
the surrounding noise level increases. MP features were proposed
for environmental audio classification in [2].

Our work is also inspired by previous work in searching for
events using a strict, exact-match fingerprint technique [3]. That
algorithm efficiently identified audio excerpts that were repeated
in their entirety, such as pieces of music or electronic ring tones,
from environmental audio. However, it was not able to identify
“organic” sounds (such as the sound of a door closing) where there
was nontrivial variation between successive instances of the event.
In the current paper, we use a similar representation in terms of
time-frequency energy peaks taken in pairs and characterized by
their time difference, but instead of an exact hash we use locality-
sesitive hashing (LSH) [4], an algorithm that uses the highly ef-
ficient constant-time mechanism of hash lookups to find nearest
neighbors in feature space instead of only exact matches. LSH has
been proposed for matching similar music items e.g. remixes of
particular tracks [5].

Section 2 describes our MP representation, section 3 describes
how we search for recurring events, section 4 describes our pre-
liminary experiments to illustrate this idea, and we conclude with
a discussion of the issues raised and the prospects for unsupervised
discovery of repeating acoustic events.

2. MATCHING PURSUIT REPRESENTATION

The basis functions used for MP are Gabor functions, i.e.
Gaussian-windowed sinusoids. The Gabor function is evaluated
at a range of frequencies covering the available spectrum, scaled
in length (trading time resolution for frequency resolution), and
translated in time. Each of the resulting functions is called an
atom, and the set of atoms is the dictionary, which covers a range
of time-frequency localization properties. The length scaling cre-
ates long atoms with narrowband frequency resolution, and short
atoms (well-localized in time) with wideband frequency coverage.
This amounts to a modular STFT representation with analysis win-
dows of variable length. During MP analysis, atoms are selected
in a greedy fashion to maximize the energy removed from the sig-
nal at each iteration, resulting in a sparse representation. Atoms
extracted from the signal are defined by their dictionary parame-
ters (center frequency, length scale, translation) and by parame-
ters the algorithm estimates (amplitude, phase). Here, we use the
Matching Pursuit Toolkit [6], an efficient implementation of the
algorithm.
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The dictionary we use contains atoms at nine length scales,
incremented by powers of two. For data sampled at 22.05 kHz,
this corresponds to lengths ranging from 1.5 to 372 ms. These are
each translated by increments of one eighth of the atom length over
the duration of the signal.

2.1. Psychoacoustic Pruning of Atoms

Since MP is a greedy algorithm, the first (highest energy) atom ex-
tracted from a given neighborhood is the most locally informative,
with subsequent lower energy atoms selected to clean up imper-
fections in the initial representation; these are often redundant in
terms of identifying key time-frequency components.

In order to reduce the size of the representation while retaining
the perceptually important elements, we prune the atoms returned
by MP with post-processing based on psychoacoustic masking
principles [7, 8]. The objective of MP is to reduce the energy of
the error residual as much as possible at each stage, but owing to
the limitations of human hearing, perceptual prominence may be
only weakly related to local energy. In particular, lower energy
atoms close in frequency to higher-energy signal may be entirely
undetectable by human hearing, and thus need not be represented.
A related effect is that of temporal masking, which masks energy
close in frequency and occurring shortly before (backward mask-
ing) or after (forward masking) a higher-energy signal; the forward
masking effect has a longer duration, while the backward masking
is typically negligible. A similar approach, which incorporates a
psychoacoustic model into the matching pursuit algorithm itself,
has been explored in several places, such as [9].

Our implementation creates a masking surface in the time-
frequency plane, based on the atoms in the full MP representation.
Each atom generates a masking curve at its center frequency with
a peak equivalent to its amplitude, which falls off with frequency
difference. Additionally we consider this masking curve to per-
sist while decaying for a brief time (around 100 ms), to emulate
forward temporal masking.

Atoms with amplitudes that fall below this masking surface are
therefore too weak to be perceived in the presence of their stronger
neighbors; they can be removed from the representation. This has
the effect of only retaining the atoms with the highest perceptual
prominence relative to their local time-frequency neighborhood.
This pruning emphasizes the most salient atoms, and removes less
noticeable ones; it is an important step in reducing the size of the
search space and improving the relevance of the atoms as features
(since secondary, “cleaning up” atoms are usually removed), as
well as reducing the probability of false matches in the search pro-
cedure described below.

Figure 1 shows an example audio clip containing two distinct
transient events analyzed with MP. A large set of MP atoms (171
in this case) is extracted initially and then pruned with psychoa-
coustic masking (leaving 76 in the example).

3. PAIR FORMATION AND PATTERN DISCOVERY

We want a way to define a specific type of audio event by the
common relationships between its atoms, if any exist. We start
with an audio sample containing many separate instances of the
same event that we would like to describe, potentially including
small variations in the detail the instances. We form pairwise re-
lationships between all pairs of atoms whose centers fall within a
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Figure 1: Matching pursuit atoms used to represent audio events,
shown as dots at the centers in time-frequency overlaid on the
spectrogram, before and after psychoacoustic pruning.

relatively short time window of each other. The pairs are charac-
terized by the two center frequencies of the atoms and the time
offset between them, creating a three-dimensional feature space.
Bandwidth parameters could also be used to refine the space, but
were not needed for the current demonstration. By excluding the
energy of atoms, the representation becomes robust to variations in
level and channel characteristics, provided the sound event energy
remains sufficiently prominent to be included in the MP analysis.

The dimensions are normalized, then LSH is performed on the
entire set of pairs. LSH makes multiple random normalized pro-
jections of data items onto a one-dimensional axis. Items that lie
within a certain radius in the original space will be sure to fall
within that distance in the projection, whereas distant items have
only a small chance of falling close together. The projected values
are quantized, and near neighbors will tend to fall into same quan-
tization bin. These quantized sets are quickly recovered at query
time through a conventional hash table. By consolidating the re-
sults across multiple projections, both chance co-ocurrences due to
unlucky projections, and the risk that nearby points will straddle a
quantization boundary can be averaged out.

We start with a soundfile that we know or suspect contains
multiple instances of some sound event (perhaps mixed in with
other, nonrepeating events). We form the MP representation, then
store hashes describing all nearby atom-pairs in an LSH database.
The database is then queried with every atom-pair hash in turn
to identify large clusters of similar pairs i.e. atom-pairs that re-
turn large numbers of matches within some radius. Since the LSH
queries are constant-time, this entire process takes a time propor-
tional only to the number of atom-pairs, instead of the N2 time
required for exhaustive pairwise comparison. We assume clusters
in atom-pair space arise from the repeating events, and we can
link pairs into higher-order constellations if they share individual
atoms. Thus, we arrive at a set of pairs we can use to recognize fu-
ture instances of the repeating event. Each acoustic event may be
result in dozens of nearby atoms, leading to many local pairings.
Detection does not require that all atoms and relations be success-
fully identified; it is frequently sufficient to detect only a small
fraction of these “landmarks” to correctly identify a structure.
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LSH requires a radius parameter be set to define how close
nearest neighbors must be. This is essentially the definition of
how “similar” the particular time-frequency structure of the char-
acteristic features of two events must be for them to be consid-
ered instances of the same event class. Here the radius is tuned by
hand, but this could easily be automated for instance based on an
estimate of the true number of event repetitions in this training set.

4. EXPERIMENTS

We test our approach on a 13 second sample from a video sound-
track, containing 38 instances of the sound of horse hooves. This
is a real recording, i.e. each hoof sound arises from a distinct phys-
ical event. We extract the top 3000 atoms with MP and perform
psychoacoustic pruning on the set of atoms, which reduces this
number by about half. We use a ±35 ms time window for pair
formation between atoms, which produces around 19,000 pairs.

We use a small LSH radius of 0.085 (in the normalized feature
space) to cluster this set of pairs; this radius was tuned to give a
relatively small number of hits, such that only very similar, hope-
fully characteristic pairs will be matched with each other. For this
radius, the most common pair pattern had 35 nearest neighbors.
We then select patterns with at least 20 nearest neighbors, which
yields 25 pair patterns, each of which we infer occurs in at least
half of the hoof sound events. Because the events we are describ-
ing here are very short in time, most of these pairs appear to be
nearly simultaneous (i.e. very little time offset between the two
atom locations) although some show a small but consistent time
skew between center frequencies.

4.1. Event Detection

To test our algorithm, we mix the signal with a second soundtrack
containing speech and general background noise. Listening to the
mixtures, as a second signal is added many of the horse hoof events
become less audible, especially those that overlap with speech, but
those that are audible remain distinctly identifiable; it is this ef-
fect that we hope to reproduce. Even as the confusing speech and
noise is increased, the atoms and pairs representing audible events
should hopefully remain reasonably similar.

Figure 2 shows the percentage of nearly identical atoms re-
tained from the original (pruned) atom represenation of the clean
signal, as the mixing proportion changes. Lower SNR corresponds
to more of the second, masking signal being added.

We perform our pair extraction process (MP, psychoacoustic
pruning, and pair formation) on the mixture at varying SNRs, form
atom-pairs and store them in an LSH database, then query this
database using our previously saved 25 queries generated from the
original clean signal. As an experimental variation, we try several
different LSH radii including the “true” radius used to define the
characteristic query pairs. At each SNR level, the matches found
for each of the 25 queries are scored as true or false positives; each
query is scored separately based on the locations of its matches
in the original signal. True positives are matches found within a
small window (5 ms) near the time of a similar query match in the
original signal. False positives are any other matches found in the
mixture. Although each of the hoof events usually contains multi-
ple pairs, one pair found within an event is considered sufficient to
detect that event.

Figure 3 shows the precision and recall of the system, at three
different LSH radii (0.025, 0.085, 0.15). Recall is defined as the
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Figure 2: Percentage of atoms from the original signal retained as
the noise increases.
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Figure 3: Detection, precision, and recall vs. SNR at three LSH
radii.

number of events (out of 38 total) with at least one match detected.
Precision is defined as the number of correct matches found over
all queries divided by the sum of all query matches.

Figure 4 shows a portion of the original signal, with the lo-
cations of query pairs marked; below it is the signal in a mixture,
with true matches (black) and false positives (magenta) marked.

5. DISCUSSION

Figure 2 shows that the pruned atom representation of the orig-
inal events degrades reasonably gracefully as a second signal is
added, with almost 25% of the atoms remaining essentially un-
changed even at -10 dB SNR. These many MP atoms that stay
nearly identical, even in noise, indicate that the atom pair patterns
have the potential to form a noise-robust basis for identifying the
sound events.

Figure 3 demonstrates that recall is reasonably stable over a
range of SNR. This follows from our simple approach of OR-ing
together all of the queries to detect the 38 events, with the corre-
sponding negative impact on precision. More complex comparison
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Figure 4: Original query patterns (top), and mixture detection results (bottom). Black pairs are correct detects; magenta are false positives.

of the relations between pairs, such as noting which pairs share
end-points in the original data and requiring that this sharing be
preserved at recognition time, could potentially improve precision
without impacting recall. It is promising, however, that nearly all
of the events maintain a similar enough representation so that at
least one nearly identical pair persists in each, even at fairly low
SNR. This indicates that the atomic representation of the original
events is staying relatively constant as the second signal is added.

The tradeoff between precision and recall is seen in the vari-
ation with radius. Results at a radius of 0.085 correspond to the
radius for which the queries were originally chosen. Choosing a
larger radius improves recall, if only slightly, at the cost of preci-
sion. A smaller radius will improve precision (slightly), but with a
low recall rate.

Figure 4 shows examples of successful and unsuccessful event
detection in noise. The top shows all instances of the 25 originally
selected patterns. Below, the atom pairs in black are those that
have been found nearly identically at low SNR as they were in the
original signal. The magenta pairs are false positives. There are
also a few events which have been lost entirely due to the presence
of noise.

6. CONCLUSIONS

We demonstrate a promising approach for the detection of repeated
events in large amounts of audio data. The patterns identified here
are robust enough to be useful for event detection, even in the pres-
ence of noise. Practically, the main shortcoming is probably low
precision, indicating that the patterns are not entirely unique to
the event under consideration. However, this can probably be im-
proved upon by tuning parameters such as the atom pruning thresh-
old and LSH radius in both the discovery and detection stages of
the algorithm. When selecting queries, we could also consider not
just its commonality in that event, but the frequency with which it
is found in other generic audio; this would allow us to select pat-
terns more unique to a specific event type and therefore improve
precision.

There are several obvious enhancements which could make
the algorithm more robust. Pair representations could be made
more specific by incorporating other atom parameters into the fea-
ture space, such as atom length or amplitude difference between
the pair. Pairs often found together could be joined into constella-

tions, producing something closer to a fingerprint (or realistically,
a set of potential fingerprints) for an event. A set of common con-
stellations could be stored as potential queries for the detection
task. Alternately, the pairs do not necessarily need to be explicitly
linked together; they could each form an individual event detec-
tor, the results of which could be combined probabilistically for
greater stability.

A set of atom pairs or constellations could be identified to de-
fine sets of events of different types. As demonstrated here, LSH
would allow for efficient searching of any generic audio recording
for the presence of patterns matching any of these events, which
could be very promising for audio-visual analysis, among other
applications.
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