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Abstract

The importance ofefficient area and timing estimation techniques for hierarchical de
sign methodology is well-established in High-Level Synthesis (HLS), since the estimation
allows more realistic exploration of the design space, and hierarchical design method
ology matches well with HLS paradigm. In this paper, we present ChipEst-FPGA, a
chip level estimator for designs implemented using a hierarchical design methodology
for Lookup Table Based FPGAs. In FPGAs, the wire delay may contribute up to 60%
of the overall design delay.ChipEst-FPGA uses a realistic model which takes the com
ponent area/delay as well as wiring effects into account.We tested our ChipEst-FPGA
on several benchmarks and the results show that we can get accurate area and timing
estimates efficiently.
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1 Introduction

Theability to shorten development cycles has made Field Programmable GateArrays(FPGAs)

an attractive alternative to standard cells and Mask Programmed Gate Arrays (MPGAs)

for the realization of Application-Specific Integrated Circuits (ASICs). High Level Synthesis

(HLS), on the other hand, is becoming the methodolog\- ofchoice for shortening the design

time by allowing the user to start from a behavioral specification. Thus, the marriage of

these two concepts provides an ideal testbed for fast prototyping starting from an idea to a

final product.

HLS generates an architecture from a behavioral specification subject to constraints on

area and delay. Following that, the design process of FPGAs can be decomposed into three

major steps as shown in Figure 1(a). First, partitioning (ortechnology mapping), which

includes Lookup Table (LUT) mapping and Configurable Logic Block (CLB) construction,

partitions the incoming logic into a netlist of CLBs. Following that, placement determines

a good assignment for the CLBs in the FPGA array. Once the placement is known, routing
decides the type of routing resources and route for each net. This is a flat design approach

since the netlist fed into partitioning is a gate level netlist and the partitioning is done on

the whole netlist (more detailed discussion can be found in [9]).

ehavioral descriptK^

Partitionmg ,?
(mapping)

Behavioral description

chamceri.^ |
components

ContrajnS^*^^

Figure 1: Flat HLS design flow vs. hierarchical HLS design flow targeted for FPGAs; (a)
flat design flow (b) hierarchical design flow.

Contrast to this flat design flow. Figure 1(b) shows a hierarchical HLS design flow tar-



geted for FPGAs. It has an RT level technology mapping step which partitions the

incoming netlist onto RT level components ^ and maps them into pre-characterized compo
nents or uses layout tools do the components layout. This way, the structural information

is preserved in each component.

Behavioral description

jDonstraints.

Pre-
characterized
components

Component
design

RT level technology.mapping. ^

Contraints
•---^met2-^

Placement

Routing

Figure 2: The importance ofestimation in a typical hierarchical HLS design flow targeted
for FPGAs.

Maintaining this hierarchy is beneficial because of the following reasons.

• It is easy to do debug, easy to add or change logic since design changes in one com

ponent can be made without affecting the placement and routing of the rest of the

design.

• It is easy to adapt to different technology.

'we refer to individual registers, counters, adders, muxes, RAM arrays etc as RT level components.



• It is easy to improve the design routability by grouping and floorplanning the RT
components according to thedata flow. It is easy to improve thedesign's performance.

• It matches well with the HLS design paradigm since the hierarchy is maintained

through out the design process.

In the hierarchical HLS design flow targeted for FPGAs, placement and routing make

the design very unpredictable and the resultant design may violate the constraints. The
reason is that in most FPGA designs, the wire delay, which is not considered in HLS, may

contribute up to 60% of the overall design delay. The problem becomes especially acute
when the design process starts at the behavioral level using HLS. In this case, a large
number of candidate RTL designs are generated and must be evaluated to select the best
design. Abstract cost measures which do not consider layout effects are likely to result in
suboptimal designs. Thus, the design process may have to go through several iterations to
reach anacceptable solution. Since placement and routing are usually quite time consuming,
this may offset any turnaround time advantages of FPGAs and HLS. Indeed, such common
situations have been reported in [1]. To avoid unnecessary iterations and shorten the design

cycle, it is very helpful to have an estimator giving area and timing estimates quickly
before actually going through the time consuming placement and routing phases as shown
in Figure 2. It is very important that the estimator has a more realistic and accurate model
which takes into account not only component area and timing, but also wiring effects.

One important class ofFPGAs, implemented by Xilinx, uses LUTs to implement combi
national logic and is called LUT based FPGAs. Xilinx has three logic ceU array families of
LIT based FPGAs including XC2000, XC3000 and XC4000. They share a common struc

ture: an array ofCLBs surrounded by configurable interconnect and they differ in details of
the logic and interconnect structures. In this paper, we will concentrate on chip level area
and timing estimation for LUT based FPGAs for designs implemented using a hierarchical
design methodology. To be specific, we target the Xilinx XC4000 series because of their
popularity. As stated before, our intended application domain is HLS since this is where
fast and accurate estimation is most needed to support a high quality rapid prototyping

environment.

2 Overview of Xilinx XC4000

Xilinx XC4000 consists of an array of CLBs embedded in a configurable interconnect

structure and surrounded by configurable I/O blocks as shown in Figure 4(a). The Xilinx
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Figure 3: XC4000 family members.

XC4000 family consists of ten members as shown in Figure 3. The family members differ

in the number of CLBs, (ranging from 8x8 to 24x24), and I/O blocks, (ranging from 64 to

192). The typical gate capacity varies from 2000 to 13000.

2.1 XC4000 Configurable Logic Blocks and Lookup Tables

lOB Interconnect

i ibed efgh
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ODOQDDOQ b|\L ll-i—
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8x1-bit configurable memory
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8 to 1 multiplexer

Figure 4: Xilinx XC4000 architecture (a) XC4000 (b) abbreviated CLB architecture (c) a
LUT implementing x = mn + np.

Xilinx XC4000 CLBs mainly consist of two 4-input LUTs, which are called F-LUT and



G-LUT respectively, and one 3-input LUT, which is called H-LUT as shown in Figure 4(b).
A K-input LUT is a memory that can implement any Boolean function of K variables.
The K inputs are used to address a 2'̂ xl-bit memory that stores the truth table of the
Boolean function. For example, Figure 4(c) illustrates the structure of a 3-input LUT for
implementing function x = mn +np. The truth table of the function is stored in an 8xl-bit
memory, and an 8 to 1 multiplexor, controlled by the variables m, n. p, selects the output
value X. All the CLB outputs can be either direct, inverted or registered.

Note that one XC4000 CLB, although it can accept 9 distinct inputs, is not equivalent

to a 9-input LUT. A9-input LUT can implement any functions of 9distinct variables while
one XC4000's CLB can implement any functions of5 distinct inputs and some functions of
6 to 9 variables. For example, expressions in both (a) and (b) in Figure 5 have 9 literals,
but (a) needs 1 CLB whereeis (b) needs 2 CLBs.

I abed •! ? ?

F-LUT G-LUT

CLB

•t —-

F = abed + efgh + i F = ab + ode + adef

Figure 5: One XC4000 CLB can not implement all the functions with less than 10 distinct
inputs (a) 9 literals, 9 distinct inputs need 1 CLB (b) 9 literals, 6 distinct inputs need 2
CLBs.

2.2 XC4000 Programmable Interconnect Point and Routing Resources

Xilinx XC4000 routing resources are connected by switch matrices. There are 8 (6 for smaller
devices) intersections containing 6programmable interconnect points (PIPs) each. The PIP,
shown schematically in Figure 6(c), is a pass transistor controlled by aconfiguration memory
cell.

XC4000 routing resources include single-length (general-purpose) lines (SLs), shown in
Figure 6(a), double-length lines (DLs). shown in Figure 6(b) and long lines (LLs). LLs run



configurate
memory ceil x

Figure 6: Wiring architecture (a)single length hnes (b)double length lines (c) the XC4000
switch metric, connections and PIP.

the width or the height of the chip with neghgible delay variations. SLs connect every pair
ofadjacent switch matrices ^and DLs by-pass alternate switch boxes Thus, the wirability

of a net is no longer a simple function ofits length and the congestion of its routing region.

On the other hand, since signal delay depends more on the number of PIPs through which

a signal passes than on the length of the segments, the double-length lines allow a signal
to travel twice the distance in the same amount of time, or to travel a same distance in

half the time as the single length lines do The delay of a wire is also no longer a simple

function of its length.

2.3 Xilinx hierarchical design flow support

In later versions of their CAD tools, Xihnx appears to be moving towards promoting hier

archical design flow by introducing Hard Macros, hmgen, and RPMs.

• Hard Macros are encoded files representing segments of XC4000 Logic Cell Array

(LCA) logic that are mapped into LCA logic blocks, then placed and routed for a
specific FPGA part.

• hmgen is the program togenerate hard macro. It is often used to force a high degree of
structure on a design since a well designed hard macro can boost design performance.

^The wire between two adjacent switch matrices is a SL segment.
®The wire connect every other switch matrices is a DL segment.
*Experiments show that SL segments and DL segments have approximately the same delay.



• RPMs are pre-designed netlist (soft macros) but no routing is accomplished until final
chip assembly. They group logic into logic configurable array blocks where appropri

ate. RPMs enhance hard macros and achieve higher flexibility.

By using Hard Macros or RPMs, the component placement information is preserved in
hard macros.

2.4 Wiring Delay in FPGAs

In Xilinx architecture, there are three types of wiring, i.e. single-length lines, double-length

lines, and long lines. Thus, the delay of a net is mainly decided by the number of seg
ments and the number of PIPs it goes through. As a result, net length does not necessarily

correlate well with either routability or performance. For example. Figure 7(a) shows that

nets with the same distance may have different delays, while Figure 7(b) shows that nets

with different distances may have the same delays. Because of this, standard delay models

cannot be directly applied to FPGAs.

• •

_ T „ „ jdoubto
• • • • length lin«

• •

Ungth<AB) - Ungth (CD)
D«tay(AB)• 3 x D«lay(pips)♦ 4 x
DalayfCO) • 2 x Datay(pips) ♦ 3 x
D*l«y(AB) >D«tay(C6)

(D«lay(s«gs)
(D«lay(Mga)

TalnglaT®
lenglRnne^

CD • Dd •

Langth(AB) < Langth(CO)
Datay(AB) • 1 x Dalay(pipa)♦ 2 x OalaWaaga)
Dalay(CD) • 1 x Deiaylpipa) ♦ 2 x Datayiaaga)
DalayjAB) • D«tay(Cu)

Figure 7: Net length does not necessarily correlate well with performance (a) same Manhat
tan distance connections with different delays; (b) different Manhattan distance connections
with same delays.

3 Previous Work

Several fast mapping heuristics for LUT based FPGAs are surveyed in [6]. Such heuristics
can be used to obtain estimation of CLB count. However, techniques for timing estimation

haven't been proposed so far.



Xilinx's [3] Partitioning, Placement and Routing (PPR) software package has its own

built-in estimation tool. This estimation is very accurate since it performs the actual

mapping using Chortle [4], but the tool does not provide performance estimation.

Other than Xilinx, Synopsys [5] also provides accurate area estimation by doing actual

mapping. Moreover, it can provide estimation of the number of logic levels for the design.
Nevertheless, it doesn't take into account wiring delay.

The research presented in [2] empirically examines the performance of multi-level logic

minimization tools for a LUT based FPGA technology and suggests that there is a linear

relationship between the number of literals and the number of routed CLBs. It provides

estimation for both area and timing but the work is only applicable to the XC3000 series.

CompEst-FPGA [9] presented an area and timing estimation for LUT based FPGAs

approach. It takes into account gate area/delay as well as wiring effects. It can handle
Xilinx XC4000 estimation.

AU those approaches are suitable to estimate component level design and chip level de

sign but with flat design methodology. None ofthem supports hierarchical design method
ology.

The work presented here is the extension ofour work presented in [9]. It has a realistic

and accurate model since it takes into account not only the component area/delay but

also the wiring effects. It mainly handles hierarchical design methodology for high level
applications. Additionally, our approach is easy to adapt to other Xilinx series such as
XC2000 and XC3000 with minor modifications.

4 Chip Estimation

4.1 Problem Definition

Given an RT level description, the goal of Chip Area Estimation is to predict the area of

the chip in terms of number of CLBs as well as the most proper device it may fit by using
the area information of all the RT level components.

Given an RT level description, the goal of Chip Timing Estimation is to estimate the

performance of the chip in terms of clock cycles by using the delay information of all the

RT level components along with the estimated topology information obtained from Chip
Area Estimation.



4.2 Chip Area Estimation

Our chip level area model uses a slicing tree techniques derived from [8] for evaluating the
area of designs implemented using RT level components.

4.2.1 Component Shape Function

To improve the density of the chip, designers may try different floorplans by varying
the topological placements of each component. Component shape function represents the
different topological placements in the actual layout and their corresponding delay infor
mation. For example, a 4X1 mux needs four CLBs. It can have three different topological
placements in the actual layout Figure 8(a). These results in a shape function are shown in
Figure 8(b).
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Figure 8: An Example: (a) Topologies for 4X1 Mux, (b) Shape Function for 4X1 Mux

At RT level, the shape function of some components can be obtained from our library
which is a collection of hard macros with shape function and delay information. The

collection of hard macros includes components those are frequently used in the design so

we pre-characterized their shape function. Also, it includes vendor supplied pre-designed
components such as hard macros in Xilinx library etc. For the components whose shape
function is not known a priori, (controller for example), their shape function can be obtained
by invoking the Component Estimator, CompEst-FPGA, described in [9].



4.2.2 Chip Level Area Model

ti

/

laH@

Datapath Multiplier Controller Memory

Figure 9: Constructive/analytical area estimation technique

The chip level slicing tree technique involves slicing down to the leafblocks which consists

of either RT level components or controller. This constructive approach does not consume

excessive runtime since the number of leaf blocks are limited to a relatively small number.

This technique is illustrated in Figure 9. The slicing tree is built by recursively partitioning

the input design. Because of specific characteristics of FPGA, partitioning objectives have

to be selected accordingly. One of them is minimization of routing resource consumption.

It is mainly accomplished by devising data objects that will partition in such a way as to

permit the greatest number of signeds to traverse the shortest distances along the fewest

routing channels with the least crossovers. This most often means placing interconnected

objects adjacent to each other with related elements aligned to the routing axes.

Because of the granularity of FPGA ( the area is in terms of CLBs rather than in terms

of micron, e.g. the Xilinx XC4013 has 24 by 24 CLBs rather than thousands by thousands

square microns in the custom design), reducing unused area is a very important objective.

To achieve this, objects with similar sizes are placed adjacent to each other because this can

minimize the wasted area. Sometimes, this will conflict with the objective to put strongly

connected blocks adjacent to each other. We introduce a cutting edge threshold in our

algorithm to trade off between area and performance. The cutting edge threshold actually

is a parameter obtained by calculating the average size of all the blocks to be partitioned.



if some block's size exceeds the cutting edge threshold (that means it is far bigger than

the rest of the blocks, it will be isolated from the rest of the blocks and be a sub-slice of
the current slice. For example shown in Figure 10(a), the netlist contains 4 components.

Mult needs 60 CLBs, two registers needs 16 CLBs each, one Mux needs 8 CLB. If we only
consider the interconnection between them, we wiU end up with a 12x12 CLB device as

shown in Figure 10(b) , if we consider the cutting edge threshold, the Mult wiU be isolated
from the rest of the blocks and be one sub-slice for slice 1234. The result with cutting edge

threshold is a 10x10 CLB device as shown in Figure 10(c), we can see that slicing with the

cutting edge threshold produces more area-efficient result.

12X12 CLB

• • •••••••DDO

nn

• • D • • •

Figure 10: An Example:(a) Netlist; (b) Slicing without the cutting edge threshold;(c) Slicing
with the cutting edge threshold

The shape function ofthe entire design is computed by constructively adding the shape
function of these leaf blocks. In addition to the area of leaf blocks, the routing area used

by the nets connecting these blocks also needs to be accounted for.
Because of the flexibility and symmetry of the CLB architecture, it facilitates the place

ment and routing. For leaf blocks, the inputs, the outputs and the function generators
themselves can freely swap positions within CLBs of the components to avoid routing con

gestion. So, when we build up the shape function for the slice using shape function of
two sibling slices at level i, our main concern about routing is the routing area between
those two sibling slices. Routing budgets are given to each routing area, when the expected
routing resources needed exceed the budget, the upper level slice wiU correspondingly be
"dilated" so as to meet the need ofrouting. The expected routing resources canbe obtained

by estimating the interconnection count between two sibling slices, as described next.



,D a D O'fl'33
Block A

iD . iQ , lO "id(

•Ingta ttngSi wtM tfeubto

Figure 11: Wire budget (a) with horizontal slice line (b) with vertical slice line.

The available routing resource budget will depend on the shapes and sizes of the two

sibling blocks as shown in Figure 11. In the intervening routing channel between the two
sibling blocks, there are six single-length lines between every pair ofadjacent switch matrices
that are parallel to the slice orientation. In addition, we assume that double-length lines
perpendicular to the slice orientation are also used in that channel, while the ones parallel
to the slicing orientations are reserved for the parent level in the slicing tree. Let Wp be
the width of the current parent slice, Hp be the height of the current parent slice, the total
available routing budget can be calculated based on the size of the slicing cut (i.e. the
length of the routing channel) between the two sibling blocks as follows:

totalJToutingJiudget =
_ j a*Wp +2* (Wp + l) for horizontal slicing

a* Hp+ 2* {HpI) for vertical slicing

where a is the single Unes count: 6 for bigger devices and 4 for smaller devices.

Once we get the routing resources budget for the parent slice from the shape of two
sibling slices, we can decide whether or not adjustment is needed according to whether or
not the number of interconnection is exceeding the budget. If there is a need to adjust,

(whether horizontal or vertical), the budget will then be appropriately increased by having
more single length lines. Take a vertical slice as an example, whenever we increase one CLB
in the horizontal direction, we will have two additional columns' worth of single length lines.

Again, let Wp and Hp be the width and height of the parent slice, num.con be the expected
number of interconnection between two sibling slices, we can estimate the increased area

and the increased area can be added to the total estimated area of block AB by using the

following equations as shown in Figure 12(b):



total-area
_ j Wp* (Hp +^Hp) for horizontal slicing
~ \ Hp *{Wp +AWp) for vertical slicing

AWp = Maa:{0, {numxon - totaLrouting-budget)/2 *Hp* a};
AHp = Max{0, {numxon - total-routing-budget)/2 *Wp* a};

BlockrlBtock Hp

Hoiizontal tile* Vertical tlle«

Figure 12: Constructive prediction: (a) the slicing tree, (b) possible AB decomposition, and
(c) predicted shape function of AB (points shown as block squares)

This process of building the composite blocks is performed in a post-order manner
from the leaves of the slicing tree towards the root. Thus determining the area of the
entire design. For each two sibling blocks, there exists two possible ways of generating
the parent block depending on the orientation of slice. Since only a prediction of the chip
dimensions is desired, we need not perform an actual floorplan ofthe chip from the slicing
tree. Therefore, we need not decide on the orientation of the slice line when traversing the
slicing tree bottom up. For each two siblings, two shape functions of the parent block are
generated: one assuming a horizontal slice and another assuming a vertical slice. The two
curves are then superimposed and a "lower bound" curve is generated by keeping only the
smaller ofthe two slice orientations at each x as shown in Figure 12(c). The resulting shape
function is taken as the set of predicted dimension pairs for the optimal layout area of the
parent block.



At the end of this phase, we can estimate the area of the overall chip, according to the

number of I/O, we can predict whether the design can be fitted into one FPGA device or

not, if it can be fitted, we can also predict the specific XC4000 device which will be the

best choice. Let W, H, numJo be the estimated width , height, and number of IDs of the

chip respectively, Wi, W^, Hi, H2, numJoi, numJo2 be the width, height and number of

lOs of two consecutive devices: devicei, device2 respectively.

if

((VFi <W< W2)A'ND{Hi < H < H2)AN'D{numJoi < num.io < numJo2))

then device2 is the best choice.

At this moment, we also have an approximate topology of the chip which can be used in

the subsequent timing models described next. Figure 13 shows one approximate topology

of our one example: HAL [10].

MULT2

M2x1 ^
N R6

^ r- M2x1 S
S m

S < M2x1
R8 R4

R1

X X

I * '
M2x1 S S

Figure 13: Approximate topology for HAL



4.3 Chip Level Timing Estimation

The Chip delay includes component delays, wire segment delay, and Programmable inter
connection Point(Pip) delay. The Chip timing estimation model has the following phases:

• Predict the pin location on each leaf block

• Predict wiring delay

• Predict chip clock cycle

4.3.1 Predict the Pin Location on Each Leaf Block

Given an input RT level design, our chip level area model described in Section 4.2.2
outputs an approximate floorplan which provides estimates of the relative locations of the
constituent blocks. To better estimate chip level timing, pin location must be either known

or estimated. On those blocks which have been pre-designed, the pin location are known.

For other components which have not been laid-out yet, we must estimate preferred
location for each pin. location can be determined by evaluating the approximate topology
of the design. Chip area estimation process determines the approximate locations of the
blocks in the design taking routing area into account. For each net, first, we identify the
source pin, then we identify load pins and their associated blocks. By evaluating the mean
location of blocks associate with load pins, a "preferred" side location of each source pin is

first determined. Then, by finding the shortest Manhattan distance between each pair of
source and destination blocks, a preferred location ofeach sink pin can also be determined.

For example shown in Figure 14, the source pin ofsource block S have four destination
blocks D1 through D4 as it's loads. By evaluating the mean location of D1 through D4,
we can get the preferred source pin location shown in Figure 14(a). Then, by finding the
shortest Manhattan distance between S and Dl, S and D2, S and D3, S and D4, preferred

location ofeach sink pin can also be determined shown by circles in Figure 14(b).

4.3.2 Predict wiring delay

To predict the delay between point Aand B, D{A, B), in Figure 15, the Manhattan distance
Xand y segments are first calculated using following formulas:

— \Ax —Bx



X: Preferred source pin location
O: Preferred sink pin location
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Figure 14; Pin Location: (a) Determine source pin location; (b) Determine sink pin location
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Then, wire type (single-length line, double-length line and long line) is assigned to that

wire as described in the following section. This decides the number of PIPs and number of

segments between points A and B. Subsequently, the point-to-point delay (without fanout

effects), Dpp{A,B), can then be calculated. FinaUy, the delay with fanout effects, D{A,B),
can be obtained by adjusting the Dpp{A,B) with a fanout factor as described below.

To predict the wire type, the algorithm mainly checks the interconnect wire length x

and y respectively. First, long lines are assigned to all the wires which are longer than

8 CLBs in either direction. Then, single-length lines are assigned for all wires which are

shorter than 2 CLBs. Note that single-length line can not be connected to double-length

lines. Thus, if one segment of a wire is assigned to a single length line in one direction, then

the other segment of the wire on the other direction is also assigned to a single length line
if its length is between 2 and 8 CLBs. Finally, double-length lines are assigned to the rest

of the interconnect wires.



point-to-point delay:

for single/double lengtti lines —
Dpp (A, B) = #PIP xdp„ + #segxdseg

for long lines —
Dpp (A. 8) = d II (x+ y)
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Figure 15: Point-to-point delay model and associated parameters.

The detailed algorithm is shown in Figure 16.

From Section 2.4, we know that net length does not necessarily correlate well with the
actual delay. Therefore, we use an empirical model to characterize the delay-vs-wiring-type
relationship. Our empirical model is based on a large number of observations obtained by
using Xilinx's XDM layout tool to place and route a set of benchmarks and analyzing the
delay of each point-to-point connection using Xdelay, the Xilinx timing analysis tool. We
found that it is satisfactory to approximate the delay as a function of (1) the number of
PIPs it goes through in both X and Y directions respectively, and (2) the corresponding
segment delays. Let's denote the delay for each PIP in the programmable switch matrices
as dpip, and the delay for each segment as d,eg- Note that we use the same variable d^eg
for both single-length and double-length segments since experiments show that their delays
are approximately the same For a 2-point net (A, B), the point-to-point delay will be
the summation of such delays in both X and Y directions. Let x and y be the Manhattan
distances of (A, B) in X and Y direction respectively. Ifonly single-length lines are used,
they will pass through x and y PIPs, and through x-f-1 and y-|-1 segments in the X and Y
directions respectively. Double-length lines need one PIP in every other CLB and, similarly,
for segments on same distance as single-length line interconnection. Long lines with same
length will not go through any PIPs and eventually the long line delay is approximated as
being proportional to the wire length. Thus, the point-to-point delay will be.

' dpip *X-t- d,eg *(i + 1) + dp,p *y-b *(j/ + 1) for single length lines
Dpp{A, B) = dpip *f + ds,g *(f + 1) + dp,p *f + d,,g *(I +1) for double length lines

dii *{x + y) for long lines

®The model can be easily modified to account for different delays of single-length and double-length
segments, if needed.



Algorithm routing(x, y)

Inputs; Distance between one pair of source-sink pins in the approximate topologies: x, y.
Output: numjpipsx, num.pipsy, num.segx, num.segy, total.num.jpips

begin Algorithm

if (x > 8{CLBs)) then x use long line;
if (y > 8{CLBs)) then y use long line;
if (x < 2{CLBs)) then x use single-length line;

num.pipsi - x;

num.segx = num.pipsx -(-1;
if (y < 8{CLBs)) then y use single-length lin;

num.pipSy = y;
num.segy = numjpipsy -|- 1;

end if;
end if;
if (y < 2{CLBs)) then y use single-length line;

num.pipsy = y;
num.segy = num.pipsy -|-1;
if (x < 8{CLBs)) then x use single-length line;

num.pipsx = x;
num.segx = num.pipSx + 1;

end if;
end if;
for the rest of x and y use double-length lines;

num.pipsx = x/2;
num.segx —num.pipsx -t-1;
num.pipSy = y/2;
numsegy = numjpipSy + 1;

end for;

end Algorithm
Figure 16: Routing rule algorithm.



Algorithm point-to-point delay(x, y)

Inputs: X, y,num.pipsx, num.pipsy, num.segx ,num.segy .
Output: point to point delay: delay.pp

begin Algorithm

if ((i > 8{CLBs)) AND (y > S{CLBs))) then /^assume long line*/
delayjpp = a -t- p/; ♦ (n 4- y -f- 1);

end if;
if ((a; > S{CLBs)) AND (y < 8{CLBs))) then /* assume x use long line */

delayjpp = 2*a -{• pii * x -{• d,eg * num.segy -I- dpip * num-pipSy,
end if;
if ((y > 8{CLBs)) AND (x < 8{CLBs))) then /* assume y use long line */

delay.pp = 2*a -j- pu *y + d,eg * num.segx -h dpip * num.pipsx,
end if;
if ((x < S{CLBs)) AND (y < 8{CLBs))) then /*assume no long lines are used*/

if{{num4)ipsx == 0)AND{num.pt>Ss, == 0)) then
/* assume direct interconnect without going through pips */

delay.pp = /?;
else /* assume single/double-length interconnection */

delay.pp = cc -1- dpip *(num.pipSx -b Tium.pipsy^ -b dsej *(^num.segsy -b num.segsx),
end if;

end if;

end Algorithm
Figure 17: Delay Prediction Algorithm.
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Figure 18: The parameters for the delay model and timing optimization.

and the detailed algorithm is shown in Figure 17 and the associated parameters are listed
in Figure 18.

When the number of fanout of a net is larger than one, say /, the delay on each sink

pin j {j = 1,.../) will be affected by the delay on the rest of sink pins k{k = 1,.../;k^ j)
on the net. Let i be the source pin, for each sink pin j {j = 1,.../). The point-to-point

delay without fanout effect, Dpp{i,j), is first computed. Afterwards, we denote D{i,j) as
the delay with fanout effects, and it can be obtained by adjusting the point-to-point delay
without fanout effects, Dpp(i, j), using the following formula:

D{iJ)=Dpp{i,j)+^ Dppii,k)

Where, e, a fanout adjustment factor, is experimentally obtained as 2.5. we can see that



the fanout delay effects at the chip level is quite big. This is because at the chip level, part

of fanout effect could be masked by the components. For example in Figure 19, net n fans

out form block A to two other blocks, B and C, so its RT level fanout is 2. However, the

net actucdly feeds 5 CLBs when the design is flattened.
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Figure 19: Fanout Effects

At the end of this step, we have a netlist which contains components' delay and the

estimates of net delay.

4.3.3 Predict Clock Cycle

A typical timing model for digital systems is shown in Figure 20. The datapath part
is composed of datapath logic blocks and the data registers. Data registers are used to
store data inputs, outputs, and intermediate values in the data path. The controller can be

implemented either as a Mealy or a Moore model. A Moore model is more widely used for
high-speed synchronous systems and is also easier to synthesize automatically. Thus, our
timing model assumes that the controller is implemented as a Moore Finite State Machine.
A Moore controller consists of two combinational logic blocks: the next state logic and

the output logic, one or more control registers store the current state information. The
data path consists of combinational logic blocks (composed of functional units and muxes)



bounded by data registers

DataPath

Controller
Data raglatar

Data ragl***''

Datapath
Logic

Figure 20; Typical Timing Model for a Digital System

Thus, the overall system can be modeled as a network of combinational logic blocks
separated by registers. In this case, the worst case register-to- register delay is estimated
and is output as a lower bound on the clock period for single phase clocking.

The total execution time ofa design is given as the number of time steps times the clock

period. The number of time steps is determined by scheduling and allocation and is known
once the RT level design is generated. The minimum possible clock period is determined
by the worst case register-to-register delay. Given the delay of a combinational block, we
can determine the register-to-register delay between its input and output registers as shown
iji Figure 21. Let he the worst case delay through that block, and taetupi,^in} he the
propagation delay through the input register, and tsetupiRout) he the setup time of the
output register. The delay between i?,n and Rout is estimated as

Rout) — "F tab "F Getup(.^out)i (!•)

and the minimum possible clock period is estimated as:

^clock—min — niflXy,'Rj), (2)

Where Ri and Rj are assumed to be connected through a combinational logic block.

®This assumption, however, does not affect the validity of the overall approach since it is possible to
substitute different timing models for other types ofcontrollers should that be necessary.



tsetup(Rout)

Figure 21: Determining the minimum clock cycle time

5 Experimental Results

5.1 Experimental Procedure

In order to benchmark the accuracy of our ChipEst-FPGA, we used six benchmark de

signs: (1) the AMD 2901 cpu with a bitwidth of 4, (2) RISC microprocessor Zotl—citeZot

with 15 instructions and data path bitwidth is also 4, (3) The Differential Equation Exam

ple (HAL), (4) the Elliptic Filter[20] which with a bitwidth of4 and 13 time steps. (5) and
(6) are Fuzzy logic examples derived from [1]. Altogether, the RT-level implementations
spanned a reasonably large set of design variation that are likely to be considered during

high level design. The FPGA chips vary from XC4005 (with 12x12 CLBs) to XC4010 (with
20x20 CLBs).

AH the RT-level implementations were written in VHDL. For components that can be

pre-characterized, we can obtain their layout and timing information from the library. The

layout and timing information for the remaining of components either by invoking our area

and timing estimation described in [9] or by actually implementing the components. Since

we are interested in benchmarking the chip level estimation procedure, we use component

design whole procedure shown in [9] rather than run CompEst-FPGA to get the actual
layout and timing information.

The components are implemented by different tools such as xillnx hard macro library,

xblox and designware. Alternatively, use GENUS, a generic component generator to gen

erate logic equation (EQN) according to desired functionality [11]. Then we use Synopsys
do the optimization and synthesis. After synthesis, the component is translated to gate

level xnf netlist and fed into xilinx ppr by giving different constraints to get different aspect
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Figure 22: Experimental procedure

ratios. For each of those specific placement and routing, hmgen is invoked to generate a
corresponding hard macro and followed by Xdelay to get their delay information.

The Chip level design is finished by instantiating components as hard macros with
specific layout and timing information. Once we got the chip xnf files, again, they are fed
into xilinx ppr and Xdelay are used to get the delay for the whole chip. Because of the
non-deterministic nature of ppr, the designer tends to run ppr many times with different
seeds and select the best one (in the experiments we ran, the worst delay varied from 4.4%
to20.9% percent off the best case in ten runs). To be fair, we also pick the layout with best
performance to compare with our estimated results. In our experiments, ppr and Xdelay
are run 10-20 times with different seeds and the best design is selected for comparison.

In order to assess the accuracy of our chip level estimation, we feed same RT level
VHDL file into our ChipEst-FPGA to produce estimates of the chip area and delay using
the models described in previous sections.

5.2 Results

The estimation results are shown in Figure 23. First, we note that our area estimates are

very accurate. Our estimation accurately predicted the exact device type needed every time.
For performance estimation, there was some differences between estimated and measured
values. These differences can be attributed to the following factors:



• differences between estimated and final placements

• differences between routing rule assignment and final routing

• inaccuracies in the wiring delay model

Our ChipEst-FPGA can produce highly accurate estimates within very short run time. The
average estimation error for performance is about 6.0%, while the worst case error is 18.7%.
Even when one run of ppr/Xdelay is assumed, our estimation is still at least an order of
magnitude faster to obtain that the actual layout process. This clearly indicates that our
tool can be efficiently used to provide fast and accurate feedback to synthesis tools, allowing

them to make better informed design decisions.
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Figure 23: Experiment Results

6 Conclusion

We presented a set of area and delay estimation techniques to support a hierarchical
design model for Lookup Table Based FPGAs. The overall approach was benchmarked
and found to be accurate. Future work wiU concentrate on linking the estimation model to

synthesis so that better quality designs can be produced.
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