
Optimized Array Index Computation in DSP Programs

Rainer Leupers, Anupam Basu�, Peter Marwedel

University of Dortmund
Department of Computer Science 12

44221 Dortmund, Germany
e-mail: leupersjbasujmarwedel@ls12.cs.uni-dortmund.de

Abstract| An increasing number of components in

embedded systems are implemented by software run-

ning on embedded processors. This trend creates a

need for compilers for embedded processors capable

of generating high quality machine code. Particu-

larly for DSPs, such compilers are hardly available,

and novel DSP-speci�c code optimization techniques

are required. In this paper we focus on e�cient ad-

dress computation for array accesses in loops. Based

on previous work, we present a new and optimal al-

gorithm for address register allocation and provide an

experimental evaluation of di�erent algorithms. Fur-

thermore, an e�cient and close-to-optimum heuristic

is proposed for large problems.1

I. Introduction

A promising approach to achieve reduced design cy-
cle times for embedded VLSI systems is indicated by the
recent trend to migrate from hardware to software imple-
mentation of system components. In contrast to custom
hardware, software executed on embedded processors o�ers
higher exibility and also facilitates reuse of prede�ned
system components.
Even though construction of software compilers for

programmable processors has been subject to intensive
research for decades, recent surveys [1, 2] show, that
software development still is a bottleneck for embed-
ded processors, because of unacceptable code quality of
high-level language compilers. Therefore, time-consuming
assembly-level programming is often the only feasible al-
ternative. In particular, this holds for digital signal pro-
cessors (DSPs). Many current C compilers for DSPs have
been shown to produce very poor code [1].
While compilers for general-purpose computers usually

have to be very fast, lower compilation speed is accept-
able for embedded software development. Based on this
paradigm, progress in code quality has been made by
novel techniques for phase coupling, i.e., a tight integra-
tion of code selection, register allocation, and scheduling
during code generation [3].
A rather new area of DSP code optimization is memory

address generation. DSPs are equipped with dedicated
address generation units (AGUs), capable of performing
pointer arithmetic in parallel to the central data path.

�On leave from IIT Kharagpur, India, supported by Humboldt
Fellowship

1Publication: ASP-DAC, Yokohama/Japan, Feb 1998, cIEEE

High utilization of AGUs achieved by special compilation
techniques increases potential parallelism and therefore
allows for more compact machine code.
In this paper, focus is on e�cient generation of memory

addresses for array references in loops. More speci�cally,
we present algorithms that answer the question: Given a
loop with a certain array reference pattern, what is the
minimum number of address registers (ARs) needed to
avoid code size and speed overhead due to explicit address
computations ? We discuss two heuristic algorithms and
combine them to a new and optimal AR allocation algo-
rithm. Furthermore, we provide experimental results for
all three algorithms.
The organization of the paper is as follows. In section

II, we de�ne the problem of AR allocation encountered in
DSP programming. Section III outlines related work in
the area. In sections IV and V, we summarize two heuris-
tic algorithms for AR allocation. In section VI we show
how to utilize both algorithms for an optimal branch-and-
bound procedure. Section VII gives an experimental eval-
uation of the three algorithms, and the paper ends with
concluding remarks.

II. Problem definition

The design of address generation units (AGUs) in DSPs
is guided by the general observation, that DSP algorithms
such as digital �lters show a high locality in accessing ele-
ments of data arrays. That is, the address distance of sub-
sequently accessed array elements is frequently bounded
by a small constant. Furthermore, array index expressions
tend to be rather simple and mostly require an addition
of a loop control variable and a constant. In many other
cases, such a simple form can be constructed by induction
variable elimination [4].
In order to e�ectively support these special circum-

stances, AGUs in DSPs are capable of post-modify op-
erations on ARs. For an AR R, a post-modify operation
is an assignment R := R+ d, which increments (or decre-
ments) R by some constant integer modify value d. If the
address computations for two subsequent array references,
say A[i] and A[i + d], are implemented by the same AR
R, then executing the post-modify operation R := R + d
on R after the access to A[i] provides the necessary next
address for accessing A[i + d].
This AGU scheme is found in many DSPs, such as Mo-

torola DSP56k and Texas Instruments TMS320C2x/5x.
The corresponding AGU architecture is sketched in �g.

+

address
register
pointer

value d

address
register

modify

memory

d

d

file

instr word-length

instr code

instr code

|d| <= M: 1-word instruction

|d| > M: 2-word instruction

b)a)

Fig. 1. a) Partial AGU architecture, b) zero-cost and unit-cost
address computation

1 a). The address register pointer is usually part of the
instruction word, so that switching between ARs does not
require an extra instruction.
In such an architecture, the range of modify values that

can be implemented e�ciently is restricted to amaximum
modify range M . For d 2 [�M;M] a post-modify opera-
tion R := R + d can be executed by AGU resources only
and thus in parallel to other data path operations. We
call this a zero-cost address computation.
Larger modify values are still possible, but for jdj > M ,

an extra instruction word in the machine code is neces-
sary, since the encoding of large d values no longer �ts
into the limited instruction word-length. Since such an
address computation cannot be parallelized, also an ad-
ditional cycle in the machine program is incurred. Thus,
whenever the address distance between two subsequent
memory accesses is larger than jM j, and both accesses
take place via the same AR, then a unit-cost address com-
putation is required (�g. 1 b). For sake of exposition, we
assumeM = 1 (auto-increment/decrement) in the follow-
ing, although the presented algorithms work for arbitrary
M values.
Given a sequence of array references in a loop, one must

organize address computations in such a way, that the
use of unit-cost address computations is minimized. If
the organization is such that only zero-cost address com-
putations are required, we call this a zero-cost solution.
Zero-cost solutions are highly desirable, since the speed
penalty of each unit-cost address computation is multi-
plied by the (usually large) number of loop iterations.
Due to the limited number of available registers, it is rea-
sonable to minimize the number of registers used for array
index computation by sharing of ARs. An extension of
the work presented here, capable of handling register con-
straints, is described in [5].
Two array references a1 and a2 within a loop body can

potentially share an AR, if the distance of the memory
locations accessed by a1 and a2 is constant over all loop
iterations. The relation "a1 and a2 can share an AR" is
normally static so that it can be analyzed at compile time.
It induces a partitioning of the set of array references in
a loop into disjoint groups. We now consider optimized

address computation for each of these groups separately,
that is, we focus on loops of the form

for (i = N1; i <= N2; i += S)

{ array reference a_1

array reference a_2

...

array reference a_n

}

Each array reference aj = A[i+d] is characterized exactly
by its integer o�set value f(ai) = d. As an example,
consider the following reference pattern with respect to
some array A.

for (i = 2; i <= N; i++)

{ /* a_1 */ A[i+1] /* offset 1 */

/* a_2 */ A[i] /* offset 0 */

/* a_3 */ A[i+2] /* offset 2 */

/* a_4 */ A[i-1] /* offset -1 */

/* a_5 */ A[i+1] /* offset 1 */

/* a_6 */ A[i] /* offset 0 */

/* a_7 */ A[i-2] /* offset -2 */

}

A naive approach to obtain a zero-cost solution is to
allocate a separate register Ri for each reference ai. Be-
fore the loop is executed, each register Ri is initialized
with the address of the �rst array element that will be ac-
cessed by reference ai in the loop. Within the loop body,
only a zero-cost address computation (auto-increment) on
Ri is required in order to generate the address for ai in
the next loop iteration. However, this solution consumes
many registers. Now consider another extreme solution
using only a single AR R1. This would lead to the follow-
ing addressing scheme for the above example, given in a
C-like notation:

R1 = &A[3] /* initialize R1 with &A[2+1] */

for (i = 2; i <= N; i++)

{ /* a_1 */ *R1 -- /* access A[i+1] */

/* a_2 */ *R1 += 2 /* access A[i] */

/* a_3 */ *R1 -= 3 /* access A[i+2] */

/* a_4 */ *R1 += 2 /* access A[i-1] */

/* a_5 */ *R1 -- /* access A[i+1] */

/* a_6 */ *R1 -= 2 /* access A[i] */

/* a_7 */ *R1 += 4 /* access A[i-2] */

}

All array references share the same AR, and except for
the initialization, each array reference is computed by a
post-modify operation on R1. In the last control step (7),
the address for the �rst reference in the next loop iteration
needs to be computed. One obtains a solution with a cost
of 5, because there are 5 unit-cost and only 2 zero-cost
(auto-decrement) address computations. This implies an
overhead of 5 extra instructions for address computation
in each loop iteration.
In order to minimize such overhead, code optimization

techniques are required which read an array reference pat-
tern of a loop body and compute good address generation
schemes. This can be done based on the graph model
speci�ed as follows:

De�nition: Let (a1; : : : ; an) be a sequence of array ref-
erences in a loop. For all ai; aj, with 1 � i < j � n,

a_1
A[i+1]

a_2
A[i]

a_3

A[i+2]

a_4

A[i-1]

a_5
A[i+1]

a_6
A[i]

a_7

A[i-2]

Fig. 2. Distance graph for the example loop

the intra-iteration distance �(ai; aj) := f(aj) � f(ai)
is the (constant) o�set di�erence between ai and aj in a
�xed loop iteration. Let S be the loop step-width. The
inter-iteration distance �0(ai; aj) := ��(ai; aj) + S is
the (constant) o�set di�erence between aj in the current
loop iteration and ai in the following iteration.
Let M denote the maximum modify range. The dis-

tance graph G = (V;E) is a directed acyclic graph
(DAG) with V = fa1; : : : ; ang. The edge set E con-
tains all edges e = (ai; aj) with 1 � i < j � n and
j�(ai; aj)j � M .

An edge e = (ai; aj) is present in E, if using the same
AR for both ai and aj allows for generating the address
for aj from the address for ai with a zero-cost address
computation. Fig. 2 shows the distance graph for our
above example loop and M = 1. According to the de�-
nition of the distance graph G = (V;E), any subsequence
(ak1 ; : : : ; akm) of an array reference sequence (a1; : : : ; an)
can be implemented by zero-cost address computations,
only if for all ki; kj with i < j the edge e = (aki ; akj)
is present in E. That is, there must exist a path P =
(ak1 ; : : : ; akm) in G. However, since the address of ref-
erence ak1 for the next loop iteration must be computed
from the address of akm in the current iteration, it must
be also ensured that the di�erence between those two ad-
dresses does not exceed the maximum modify range M .
Otherwise, a unit-cost address computation would be re-
quired.
In summary, minimizing the number of ARs required

for a zero-cost solution is equivalent to solving the follow-
ing problem.

De�nition: Let G = (V;E) with V = fa1; : : : ; ang be
the distance graph of a loop, and let M be the maximum
modify range. The problem of AR allocation is to �nd
a minimumpath cover of G, i.e., a minimumnumberK of
node-disjoint paths P1; : : : ; PK in G, such that all nodes
in V are touched by exactly one path, and for each path
Pk = (ak1 ; : : : ; akm) it holds that j�

0(ak1 ; akm)j �M .

III. Related work

There is a large amount of results on general com-
piler optimization techniques aiming at maximizing
instruction-level parallelismwithin loops. However, DSP-
speci�c loop optimizations are still few. Nicolau et al. [6]

a_1
A[i+1]

a_2
A[i]

a_3

A[i+2]

a_4

A[i-1]

a_5
A[i+1]

a_6
A[i]

a_7

A[i-2]

Fig. 3. Solution computed by the matching-based algorithm
(selected edges in boldface)

have proposed assignment algorithms for data registers in
loops without emphasis on memory address generation.
Bartley [7] has proposed an algorithm that optimizes ad-
dress computations for scalar variables. His work has later
been improved and generalized [8, 9, 10].
Liem [11] has implemented a tool for a variant of the AR

allocation problem for arrays. Unfortunately, no concrete
algorithms have been published, but his results indicate
that optimizing array index computation yields signi�cant
improvements in code size (up to 30 %) and speed (up
to 60 %) for C programs, as compared to non-optimized
array addressing.

IV. The matching-based algorithm

In [12] is has been proposed to apply a matching-
based algorithm developed in the area of graph theory
[13] to AR allocation. This algorithm computes a min-
imum path cover of the distance graph, however with-
out considering post-modify operations across loop itera-
tion boundaries. That is, in our terms, the constructed
paths Pk = (ak1 ; : : : ; akm) do not necessarily satisfy
j�0(ak1 ; akm)j � M . As a consequence, unit-cost address
computations can be incurred, unless the computed cover
by coincidence represents a zero-cost solution.
The matching-based algorithm works as follows. Given

a distance graph G = (V;E), a bipartite graph G0 =
(V 0; E0) is built. For each v 2 V , its node set V 0 contains
two nodes v0 and �v. For all (u; v) 2 E, the edge set E0

contains (�u; v0). On G0 a maximum cardinality matching
Z � E is computed. Z is a maximum set of non-incident
edges in E. Since G0 is bipartite, computation of Z can

be performed in O(jE0j �
p
jV 0j).

It is shown in [13] that an edge e = (u; v) of the orig-
inal graph G is part of an optimum path cover, if and
only if the corresponding edge e0 = (�u; v0) is contained
in the matching Z. Fig. 3 shows the result of applying
the matching-based algorithm to the example from �g.
2. The number of allocated ARs can be easily computed
from G, G0, and Z: Remove all edges e = (u; v) from E,
for which the corresponding edge e0 = (�u; v0) is not con-
tained in the matchingZ. Then, the number of registers is
equal to the number of connected components (i.e. node-
disjoint paths) in G. This number can be determined in

O(jV j+ jEj).
Using the matching-based algorithm, we obtain the fol-
lowing address generation scheme with two ARs:

R1 = &A[3] /* initialize R1 with &A[2+1] */

R2 = &A[4] /* initialize R2 with &A[2+2] */

for (i = 2; i <= N; i++)

{ /* a_1 */ *R1 -- /* access A[i+1] */

/* a_2 */ *R1 -- /* access A[i] */

/* a_3 */ *R2 -- /* access A[i+2] */

/* a_4 */ *R1 -- /* access A[i-1] */

/* a_5 */ *R2 -- /* access A[i+1] */

/* a_6 */ *R2 += 3 /* access A[i] */

/* a_7 */ *R1 += 4 /* access A[i-2] */

}

Since the matching-based algorithm neglects inter-
iteration distances, two unit-cost address computations
on R1 and R2 must be executed at the end of each iter-
ation. The algorithm presented in the following section
guarantees to avoid such overhead at the expense of ad-
ditional registers.

V. The path-based algorithm

If address computations between subsequent loop it-
erations are neglected, then the matching-based algo-
rithm computes an optimal solution in polynomial time.
However, if each path Pk = (ak1 ; : : : ; akm) must satisfy
j�0(ak1 ; akm)j � M , then the problem becomes more com-
plex. This can be seen by including inter-iteration dis-
tances in the distance graph model:

De�nition: Let G = (V;E) with V = fa1; : : : ; ang be
the distance graph of a loop. The extended distance
graph is a DAGG0 = (V 0; E0) with V 0 = V [fa0

1; : : : ; a
0

ng,
where each node a0

i 62 V represents the array reference ai
in the following loop iteration, and

E0 = E [f(aj; a
0

i)j1 � i � j � n ^ j�0(ai; aj)j �Mg:

Presence of an edge e = (aj; a
0

i) in E
0 indicates, that if

the references ai and aj share an AR R, then the address
computation on R between loop iterations can be imple-
mented at zero cost. Thus, computing a zero-cost solution
with a minimum number of ARs is equivalent to covering
all nodes fa1; : : : ; ang in the extended distance graph by a
minimumnumber of node-disjoint paths P1; : : : ; PK, such
that if a path Pk starts in node ai it must end in node
a0

i. As a special case, this problem comprises the deci-
sion whether a DAG can be covered by two node-disjoint
paths with given start and end nodes. Since this problem
is NP-complete [14] the AR allocation problem is (most
likely) of exponential complexity.
One can compute a (potentially suboptimal) solution

e�ciently by the following path-based heuristic, a variant
of which has been described in [15].

1. Given a distance graph G = (V;E), construct the
extended distance graph G0 = (V 0; E0) with V =
fa1; : : : ; ang [fa

0

1; : : : ; a
0

ng, and assign a unit weight
to each edge e 2 E0.

A[i+1]
a’_1

A[i]
a’_2

A[i-2]
a’_7

A[i-1]
a’_4

A[i+1]
a’_5

A[i]
a’_6

A[i+2]
a’_3

a_1
A[i+1]

a_2
A[i]

a_3

A[i+2]

a_4

A[i-1]

a_5
A[i+1]

a_6
A[i]

a_7

A[i-2]

Fig. 4. Extended distance graph

2. Let ai be the source node in fa1; : : : ; ang � V 0

with minimum index, i.e., there is no node aj with
(aj; ai) 2 E0 and j < i. Compute the longest path
P = (ai; ak1 ; : : : ; akm ; a

0

i) in G0 between ai and a0

i.
If P does not exist then stop, because no zero-cost
solution is possible.

3. Allocate a new AR for the array references rep-
resented by the nodes fai; ak1 ; : : : ; akmg in path
P . Remove these nodes as well as the nodes
fa0

i; a
0

k1
; : : : ; a0

km
g from G0, and remove all their in-

cident edges.

4. If G0 is not empty goto step 2, else stop and return
the number r of allocated registers.

Computation of longest paths takes O(jV 0j � jE0j). In
the worst case, each execution of step 3 removes only a
single node pair (ai; a

0

i) from G0. Therefore, the runtime
of the algorithm is bounded by O(jV 0j2�jE0j). Fig. 4 shows
the extended distance graph for our example loop. The
path-based algorithm produces a zero-cost solution with
four ARs:

R1 = &A[3] /* initialize R1 with &A[2+1] */

R2 = &A[1] /* initialize R1 with &A[2-1] */

R3 = &A[4] /* initialize R1 with &A[2+2] */

R4 = &A[0] /* initialize R1 with &A[2-2] */

for (i = 2; i <= N; i++)

{ /* a_1 */ *R1 -- /* access A[i+1] */

/* a_2 */ *R1 ++ /* access A[i] */

/* a_3 */ *R3 ++ /* access A[i+2] */

/* a_4 */ *R2 ++ /* access A[i-1] */

/* a_5 */ *R1 ++ /* access A[i+1] */

/* a_6 */ *R2 /* access A[i] */

/* a_7 */ *R4 ++ /* access A[i-2] */

}

VI. The branch-and-bound algorithm

The matching-based algorithm computes an optimal
number of registers for a relaxed problem de�nition, and

thus gives a lower bound on the minimum number of
ARs. The path-based algorithm emits a potentially sub-
optimal number of ARs, but guarantees a zero-cost solu-
tion. Therefore, it provides an upper bound. Using these
bounds one can decide, whether or not a certain edge e of
the distance graph must be included in the minimumpath
cover. An optimumsolution to the AR allocation problem
is therefore obtained by the following branch-and-bound
algorithm:

algorithm MinRegs
input: distance graph G = (V;E)
output: minimal number of ARs

1. If E = ;, then stop and return jV j.

2. Call the matching-based algorithm for G, which re-
turns a number rM of ARs. If the matching-based al-
gorithm (by coincidence) yields a zero-cost solution,
then stop and return rM because in this case rM is
the minimum number of registers.

3. Compute an initial upper bound U on the minimum
number of registers by the path-based algorithm.

4. Select a feasible edge e = (ai; aj) 2 E. An edge
e = (ai; aj) is feasible, if and only if there exist a
path (aj ; : : : ; a

0

i) in the extended distance graph forG.
Only feasible edges can lead to a zero-cost solution.
If there are no more feasible edges, then stop and
return U .

5. Construct a new distance graph G�e = (V;E � feg)
which results from G by deleting edge e from E. G�e

represents the problem if edge e is explicitly excluded
from the path cover.

6. Construct a new distance graph Ge = (V 0; E0), so
that V 0 = V � fajg and

E = ((E � f(ai; ak) 2 E j ak 2 V g)
� f(ak; aj) 2 E j ak 2 V g)
[f(ai; ak) j (aj ; ak) 2 Eg

This construction corresponds to merging the nodes
ai and aj , so that Ge represents the problem if e is
explicitly included in the path cover.

7. Compute lower bounds L�e for G�e and Le for Ge by
the matching-based algorithm.

8. If L�e > U then all solutions for G�e are suboptimal,
and edge e must be selected. Return MinRegs(Ge).

9. If Le > U then all solutions for Ge are suboptimal,
and e must be discarded. Return MinRegs(G�e).

10. If Le � L�e then compute re := MinRegs(Ge). If
re < U then set U := re.
Compute r�e := MinRegs(G�e).

Otherwise (Le > L�e) compute r�e := MinRegs(G�e).
If r�e < U then set U := r�e.
Compute re := MinRegs(Ge).

11. If re < r�e, then select e, otherwise discard e. Return
min(re; r�e).

a_1
A[i+1]

a_2
A[i]

a_3

A[i+2]

a_4

A[i-1]

a_5
A[i+1]

a_6
A[i]

a_7

A[i-2]

Fig. 5. Optimal solution computed by the branch-and-bound
algorithm (selected edges in boldface)

The worst case runtime of this branch-and-bound algo-
rithm is exponential in jEj. However, pruning the search
space in steps 7 { 9 guarantees much lower runtime in
most cases. Applying this algorithm to our example loop
yields the following zero-cost solution with only three reg-
isters (�g. 5):

R1 = &A[3] /* initialize R1 with &A[2+1] */

R2 = &A[2] /* initialize R2 with &A[2+0] */

R3 = &A[0] /* initialize R3 with &A[2-2] */

for (i = 2; i <= N; i++)

{ /* a_1 */ *R1 -- /* access A[i+1] */

/* a_2 */ *R2 -- /* access A[i] */

/* a_3 */ *R1 -- /* access A[i+2] */

/* a_4 */ *R2 ++ /* access A[i-1] */

/* a_5 */ *R1 ++ /* access A[i+1] */

/* a_6 */ *R2 ++ /* access A[i] */

/* a_7 */ *R3 ++ /* access A[i-2] */

}

VII. Experimental results

In order to obtain reliable results on the average perfor-
mance of the heuristics, we have performed a statistical
analysis. The performance of the algorithms is inuenced
by three parameters: the array reference sequence length
n, the maximum modify range M , and the maximum
o�set di�erence D between all pairs of array references,
so that each o�set value f(ai) is in [�D=2; D=2]. We
have considered the parameter sets n 2 f5; 10; 15;20;25g,
M 2 f1; 3; 7; 15g and D 2 f4; 8; 16; 32g. For each parame-
ter combination, we have run the algorithms on 100 array
reference sequences, where the o�set value for each array
reference was given as a random number in [�D=2; D=2].
The results are listed in table I. Each line in the ta-

ble refers to a �xed setting of one of the parameters n,
M , or D, while varying the other two parameters. Col-
umn 2 gives the average number of ARs computed by the
matching-based algorithm. The average number of unit-
cost address computations incurred by this algorithm is
given in column 3. Columns 4 and 5 show the average
number of registers computed by the path-based and the
optimal branch-and-bound procedure, respectively. Col-
umn 6 shows the average computation time (in SPARC-20
CPU seconds) consumed by the branch-and-bound proce-

TABLE I
Experimental results

parameter # registers # unit-cost # registers # registers CPU sec overhead
matching-based address comp. path-based B&B B&B path-based

n = 5 2.05 0.18 2.18 2.15 < 0.01 1.39 %
n = 10 2.65 0.36 2.87 2.79 0.01 3.19 %
n = 15 2.94 0.54 3.27 3.11 0.13 5.10 %
n = 20 3.18 0.66 3.58 3.36 2.63 6.84 %
n = 25 3.29 0.79 3.81 3.49 31.01 9.06 %

D = 4 1.54 0.21 1.65 1.56 5.48 5.37 %
D = 8 2.07 0.39 2.30 2.17 14.78 5.94 %
D = 16 3.05 0.61 3.44 3.24 4.45 6.23 %
D = 32 4.63 0.81 5.18 4.94 2.30 4.93 %

M = 1 5.11 1.09 5.75 5.63 15.89 2.18 %
M = 3 3.08 0.53 3.41 3.17 10.29 7.61 %
M = 7 1.84 0.28 2.05 1.85 0.73 10.49 %
M = 15 1.25 0.12 1.36 1.26 0.11 7.91 %

average 5.86 %

dure. The measured CPU times both for the matching-
based and the path-based algorithm are always less than
10 ms, and can thus be neglected. Finally, column 7 shows
the average overhead in percent of the path-based heuris-
tic as compared to the optimum number of registers.
The matching-based heuristic performs better than ex-

pected with respect to the incurred unit-cost address com-
putations: For almost all parameter settings, the average
incurred cost is less than 1, so that the code size penalty
is very low. However, as array references within loops
may be executed thousands of times, the program speed
penalty is still signi�cant. This penalty is avoided by
the path-based algorithm which consumes more registers.
However, comparing its results to the optimum solutions
shows that the path-based algorithm performs very well
in most cases, with an average overhead of less than 6 %.
The branch-and-bound algorithm always produces opti-
mal results, but an acceptable computation time is prob-
ably exceeded beyond n = 20. For realistic problems,
however, this is a relatively large number of array refer-
ences.

VIII. Conclusions

In this paper, we have discussed algorithms for DSP
address register allocation, which aim at minimizing code
size and speed overhead caused by address computa-
tion for array references in loops. We have shown how
two earlier heuristic algorithms can be embedded into a
branch-and-bound procedure which avoids any overhead
and emits the minimal number of registers. Our experi-
mental evaluation indicates that it is fast enough for most
practical problems. For very large problems, it may be
substituted by the proposed path-based algorithm. This
heuristic was shown to be e�cient and to produce close-
to-optimum results. The algorithms are easy to imple-
ment and can be immediately used as subroutines in DSP
compilers. Future work could deal with generalizing the
algorithms for nested loops.

References

[1] V. Zivojnovic, J.M. Velarde, C. Schl�ager, H. Meyr: DSPStone {
A DSP-oriented Benchmarking Methodology, Int. Conf. on Signal
Processing Applications and Technology (ICSPAT), 1994

[2] P. Paulin, M. Cornero, C. Liem, et al.: Trends in Embedded Sys-
tems Technology, in: M.G. Sami, G. De Micheli (eds.): Hard-
ware/Software Codesign, Kluwer Academic Publishers, 1996

[3] P. Marwedel, G. Goossens (eds.): Code Generation for Embedded
Processors, Kluwer Academic Publishers, 1995

[4] A.V. Aho, R. Sethi, J.D. Ullman: Compilers - Principles, Tech-
niques, and Tools, Addison-Wesley, 1986

[5] A. Basu, R. Leupers, P. Marwedel: Register-Constrained Address
Computation in DSP Programs, poster presentation, Design Au-
tomation & Test in Europe (DATE), 1998

[6] D.J. Kolson, A. Nicolau, N. Dutt, K. Kennedy: Optimal Regis-
ter Assignment to Loops for Embedded Code Generation, 8th Int.
Symp. on System Synthesis (ISSS), 1995

[7] D.H. Bartley: Optimizing Stack Frame Accesses for Processors
with Restricted Addressing Modes, Software { Practice and Expe-
rience, vol. 22(2), 1992, pp. 101-110

[8] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, A. Wang: Storage As-
signment to Decrease Code Size, ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 1995

[9] R. Leupers, P. Marwedel: Algorithms for Address Assignment in
DSP Code Generation, Int. Conf. on Computer-Aided Design (IC-
CAD), 1996

[10] B. Wess, M. Gotschlich: Constructing Memory Layouts for Ad-
dress Generation Units Supporting O�set 2 Access, Proc. ICASSP,
1997

[11] C. Liem, P.Paulin, A. Jerraya: Address Calculation for Retar-
getable Compilation and Exploration of Instruction-Set Architec-
tures, 33rd Design Automation Conference (DAC), 1996

[12] G. Araujo, A. Sudarsanam, S. Malik: Instruction Set Design and
Optimizations for Address Computation in DSP Architectures,
9th Int. Symp. on System Synthesis (ISSS), 1996

[13] F.T. Boesch, J.F. Gimpel: Covering the Points of a Digraph with
Point-Disjoint Paths and Its Application to Code Optimization,
Journal of the ACM, vol. 24, no. 2, 1977, pp. 192-198

[14] N. Robertson, P.D. Seymour: An Outline of Disjoint Path Al-
gorithms, pp. 267-292 in: B. Korte, L. Lovasz, H.J. Pr�omel, A.
Schrijver (eds.): Paths, Flows, and VLSI Layout, Springer-Verlag,
1990

[15] R. Leupers: Retargetable Code Generation for Digital Signal Pro-
cessors, Kluwer Academic Publishers, 1997

