
CHDStd - A Model for Deep Submicron Design Tools

D. Cottrell D. Mallis J. Morrell

Silicon Integration Initiative Software Experts IBM Corporation

Austin, TX 78759 Austin, TX 78752 East Fishkill, NY 12533

Tel: 512-342-2244 Tel: 512-451-7191 Tel: 914-892-9196

Fax: 512-342-2037 Fax: 512-342-2037 Fax: 914-892-2066

e-mail: cottrell@si2.org e-mail: mallis@cactus.org e-mail: jmorrell@vnet.ibm.com

Abstract SEMATECH, a US based consortium of ten major
semiconductor manufacturers, is developing a comprehensive
system for the design of ICs below .25 µm, which exploits
hierarchy, constraint directives, incremental processing, and
concurrent design and analysis. This development of
SEMATECH's Chip Hierarchical Design System (CHDS)
includes major technological investments in algorithms for
design planning, parasitic extraction, and signal integrity
verification. The foundation of CHDS is an open design model
and API upon which these tools are integrated. This model must
support a number of critical requirements including:

• A data scope that includes connectivity, electrical
data, physical data, and timing;

• Design hierarchy and incremental access to data;
• A central delay architecture;
• Efficient, application-selected views of the data.

This paper introduces the Integrated Data Model technology
being used for CHDS Beta development and its use as the basis
for the design of an industry-open specification called the CHDS
Technical Data Specification (CHDStd).

I. INTRODUCTION

In order to exploit the transistor capacity of ICs with
shrinking feature sizes and increasing die sizes, engineering
requires advanced EDA support that can improve design
productivity by a factor of 2 to 3 every three years. Without
the advent of significant algorithm advances, such as the
paradigm shift due to synthesis, the best chances to achieve
this improvement will probably come from design reuse and
constraint-driven design tools exploiting incremental
cooperation. To achieve the tighter levels of integration
between EDA tools required by the latter, the need for a
single design model, directly accessible by both logical and
physical tools, becomes increasingly critical.

Critical design loops that depend on sequential processing
using ASCII files for design data transfer will suffer
significant file translation overhead as those files grow along
with transistor counts [8]. Faster clock frequencies and larger
die sizes will mandate more sophisticated interconnect

modelling, particularly for global interconnects, to analyze
cross-coupling effects of mutual capacitance and reflections
due to inductive properties of transmission lines. Further, the
number of interconnects that behave as transmission lines will
increase at a rate higher than the total number of nets on the
IC. Reliability problems, due to electromigration of
interconnects, must also be analyzed as current densities
along signal paths increase. All of these issues will add to
increased complexity within IC design loops and the number
of iterations required. Today, according to over 75% of
respondents to a recent survey of SEMATECH companies,
the biggest detriment to design productivity is the number of
design iterations required. Tomorrow, this problem will be
even worse without a paradigm shift in the design system
architecture.

Access to a logically central repository eliminates non-
functional data translations among design and analysis tools.
Hierarchical representation and processing of the design and
selected views of data within the hierarchy support
incremental processing, which can reduce cycle times of
design iterations. Constraint driven design and concurrent
analysis of design changes can minimize the number of these
iterations. A common information model, combined with
standardized methods for data access and manipulation,
facilitates inter-company design and tool reuse by creating
portability across EDA systems.

The scope of the critical IC design loop covered by CHDS
includes synthesis, floorplanning, parasitic extraction, noise
analysis, timing, and power/clock network design, through
physical layout [5]. The CHDStd is a specification of an
information model [3] and an application programming
interface (API) − a comprehensive set of C/C++ classes and
methods used to create, modify, or analyze design data [7].
The CHDStd does not specify the actual format of a data
repository, any data caching strategies, techniques for loading
data from or saving it to persistent files, or any data
repository implementation details.

CHDStd requirements are extensive and far-reaching [1].

High performance access to design data through a common
API by such a broad set of applications is not something that
can be developed without a great deal of foresight and
detailed planning. Indeed, several attempts to develop
sophisticated central database solutions for EDA have failed.
Rather than attempt to build a new solution from scratch,
SEMATECH chose to leverage industry-proven solutions.
The central delay architecture is implemented with the Delay
and Power Calculation System Draft Standard (IEEE 1481)
[6]. Interfaces for parasitic extraction data are built from
technology developed by Lucent Technologies. The CHDStd
information model and API are based on modular technology
developed by IBM, which is being used for advanced IC
design both internal to IBM and by its semiconductor
customers [2]. The IBM Integrated Data Model (IDM) system
was selected from submissions to a Request for Technology
from Si2. Its characteristics and features are described in the
following paragraphs.

II. CHDSTD OVERVIEW

The CHDStd is data-centric in that complete design
information and interrelationships are centrally managed in
memory, maintained persistently, and surfaced to applications
via standardized access methods. Components include:

• a common model incorporating required IC design and
constraint information;

• an API for access to data and relationships of that model
hierarchically, incrementally, and by application-related
subset;

• an API that implements a central delay (and power)
architecture;

• an API for exchange of geometric and parasitic data
between all-net and multi-net extractors;

• a syntax and API for defining and accessing (respectively)
technology parameters and constraints;

• a syntax for defining engineering change order (ECO)
information.

A. CHDStd Operational Model

The CHDStd Operational Model provides access to the
design data elements for the IC. This data includes the
original design, application derived data, and metadata
elements that describe the design. The architecture provides a
modular API that allows an application to select only certain
subset views of that data, subsets of the hierarchy, or even
individual objects, as is appropriate for its needs.

1. Design Data Scope

The CHDS system integrates design processes from early,
high-level abstract physical design and timing estimation,

through timing-driven synthesis, timing-driven detailed
wiring, parasitic estimation, hierarchical timing back-
annotation, and design rule verification. The objects within
the CHDStd Operational Model include the netlist (both a
folded, hierarchical instance view and a fully elaborated,
hierarchical occurrence view), physical data, electrical data
(including parasitics), shape information, technology models
and constraints, and design assertions. The scope includes
data currently supported by various EDA industry-standard
interchange formats: specifically, EDIF, SDF, SPEF, PDEF
and GDSII. Because of the advanced nature of the CHDS
design and analysis tools, the Operational Model also
includes data not common in today’s EDA exchange
standards. This data includes design objects such as parasitics
based on process variations and parasitic models that
accurately represent effects of mutual capacitance and
inductance.

The organization of the CHDStd data allows information to
be presented selectively to an application. Although the
design repository contains a very broad range of data objects,
an application need only work with a view of that data that
has an information scope confined more closely to its
requirements. It need only work with subsets of design
information defined by data type or hierarchical depth (level
of occurrence expansion), ignoring data not of immediate
concern. For example, one application may require the
occurrence view of the design unfolded down to the transistor
level, plus all electrical properties, to perform its task. Yet,
another application may only require the folded view of the
netlist at the gate level, with the physical characteristics, but
no electrical data.

2. Core Model: Folded and Occurrence Netlist

The IDM core model contains elements typically required by
all CHDS applications. It provides the base on which
additional data views (electrical, physical, layout) are built.
There are two related parts of the netlist: the folded and
occurrence models. Each of these provides methods to create,
delete, read, modify and traverse its objects. The core model
also provides data extension objects (such as property, group,
rule_box, and rule_pin) and registration of event-based
callbacks.

Folded Netlist

The folded (or instance) model provides the basic structural
description (only the netlist) of the design (blocks, ports, nets,
etc.). The term folded is used because each block is described
only once, even though there may be multiple instances of it
within the design, so the model appears to have been folded
back upon itself. The fundamental folded model objects
include the following:

• A context defines the domain of active objects − blocks,
nets, etc. It provides an anchor point (container) for all
objects in a design. An application can create multiple
contexts, if desired, switching among them dynamically.

• Definition blocks (def_box) define each block's interface.
A definition pin (def_pin) further describes the
characteristics of each input and output of the block. Every
block used in a model has a def_box associated with it.
There is, however, only one def_box for each unique block
(cell, macro) used in the design, independent of the number
of times it is used. Def_box is analogous to cell within the
EDIF-DR Core Model for Electronic Design (CMED) [4].

• Prototype blocks (proto_box) define the implementation
details for a particular def_box. This includes the next
hierarchical level of sub-blocks that are used, and the
interconnections between them. Every def_box in memory
that is not a leaf (lowest order node in a hierarchy) will
have one or more proto_box objects associated with it.
Proto_box is analogous to the cell_representation within
CMED.

Multiple proto_box objects can be used to define different
implementations of the same def_box (each with the same
I/O interface). This feature allows an application to
manage multiple alternative representations of a def_box to
exist concurrently during run-time and persistently in the
repository.

The proto_box has proto_pins that correspond to the
def_pins on the def_box bound to it. These proto_pin
objects provide the connection points to interconnects (net
object), and are ports in CMED.

• Instance blocks (usage_box) are the sub-blocks used by
proto_box objects. A usage_box is a particular instantiation
of a def_box object, and is analogous to instance within
CMED.

The usage_box has usage_pins that can be connected to a
net. A usage_pin compares with a portInst within CMED.

• Net objects describe how proto_pin and usage_pin objects

are connected to each other to form a logical interconnect.

Occurrence Netlist

The occurrence (or articulated) model provides the expanded
representation of the design, presenting a fully articulated set
of occurrence-specific objects (blocks, pins, and nets). This
is sometimes referred to as a "flattened" version of the netlist,
however, in IDM all hierarchical boundaries and relationships
remain, and their integrity within the Operational Model is
maintained. Occurrences are full-fledged, data-managed
objects. Within the occurrence model, each block and pin is
represented as often as it is used in the design (as an AimCell,
AimPort, respectively), along with the nets that interconnect
them (AimNet objects). (CMED specifies how to expand the
occurrence hierarchy via occurrence, port.occurrence,
signal.occurrence.)

3. Facilities for Extensibility

The CHDStd must include features for application extension
of the design model without requiring changes to the
underlying model implementation. Extension facilities
available within the IDM are being tested against real design
situations as they arise within the CHDS development, and
being analyzed for their applicability within the final CHDStd
specification.

While private extensions to the model can be made on
demand by any application for its own use, some extensions
are generally useful for other applications, as well.
Conventions for the names, data content, and semantics of
specific extensions, such as properties, groups, and rule_box
data, will be included formally as part of the CHDStd
specification. This is done in order to support commonly
needed features in an open plug-and-play environment.

Property

IDM provides a general-purpose property mechanism for
adding application-defined information of arbitrary type
(including character, integer, double, float, and application-
defined structures) to most design objects. Properies can be
made persistent or may exist only for the duration of the
session in which they are created. Storage and retrieval of
persistent property data is integrated with the standard
load/save mechanisms for their owner objects (def_box,
proto_box, etc.), so that other application processes can use
this data (assuming it is intended to be public and there is
agreement on its semantics) without separate I/O actions.
Property data may be publicly advertised, or used only in a
proprietary manner.

The property has proven to be a very important feature in
support of quick extensions to the model independent of its
implementation. For example, properties have been used by
CHDS to extend the IDM Operational Model to contain
decoupling adjustment factors and net sensitivity to glitches,
which were not in the IDM definition. Further, properties can
be used for metadata about the design. CHDStd uses

FIGURE 1: NETLIST M ODEL

Path

Proto_Pin

Usage_PinUsage_Box

Net

Proto_Box

D
ef

in
ed

B
y

Contains

C
on

ta
in

s

C
ontains

C
onnects

C
on

ne
ct

s

1

m
1

m 1

m 1

1

m1

1

1

m

1

m

Def_PinContains

1

m

1

m

1 m

C
on

ta
in

s

AimCell

AimNet AimPort

Contains

Connects

Presents

C
on

ta
in

s

D
ef

in
ed

B
y

D
ef

in
ed

B
y

W
h

er
eU

se
d

D
ef

in
ed

B
y

m 1

m

m
m

m

m

1

1

m

1

1

1

1

m

O
cc

ur
re

nc
e

M
od

el
F

ol
de

d
M

od
el

Presents

Rule_Box Rule_Pin

D
ef

in
es

m

m
m

Def_Box
Owns

m

D
ef

in
es

m

1
Contains

1 DefinedBy
1

1

m

properties on proto_box, usage_box, and net objects to
provide persistent, incremental change information that
allows downstream applications to process only those objects
in the design that have changed since those applications were
last run.

Rule_box

IDM also has rule_box, rule_pin, and associated objects that
allow definition of one or more named sets of data extensions
independent from the persistent load and save of other design
data objects. Unlike property data, rule_box data will be
loaded/saved only if an application requests it. This allows
data of interest only to a certain class of tools to be available
independently. Tools that don't need rule_box data do not
have to pay any performance overhead for it.

IDM also allows association of custom I/O routines for
load/save of rule_box data to/from a persistent repository,
which may be physically separate from the netlist data. (Of
course, public use of such a custom I/O scheme would require
either knowledge of the data format or a linkable library
implementing the access.)

Hide

IDM also provides an ability to hide data objects, so that they
will not appear in normal iteration lists. Hiding power nets is
a typical use, since some applications may not be prepared to
deal with these, should they appear during a traversal of the
design. Special iterators do exist, however, to allow
identification of all objects, hidden or not.

Callbacks

IDM supports a callback feature that allows an application to
register methods to be invoked on specific object events. For
example, in an application that has been modularized to
separate design and analysis subroutine components, a routine
that analyzes interconnects can be invoked automatically
whenever the pins on any interconnect are changed. Callbacks
can be registered for add, delete or modify events on many
objects. Examples include creation or destruction of a
usage_box, connection of a pin to a net, or setting a particular
property value. Pre-callbacks, invoked just before, and post-
callbacks, invoked just after a specified event, are available.
Callback registration includes the function to be called,
optional application-data to be passed, a priority, and the
“application name”, which is a unique tag that identifies a
callback as part of a set associated with a particular
application function. This allows convenient disabling or
removing of one set of callbacks without affecting other sets.

Within a single tool, program code can be easily modularized
to take advantage of this event-driven processing. However,
to open up such incremental cooperation between two
separate programs, allowing plug-and-play of either, it would
be necessary to standardize control interfaces among the
component modules. This level of standardization has not
been performed and is beyond the scope of the CHDStd.
Therefore, plug-and-play substitution of application modules

integrated in this way is only granular to the total set of
modules sharing the single process space. Over time, standard
control interface specifications for common service tools,
such as timing analysis, noise analysis, and parasitic
extraction, may be specified allowing these functions to be
developed analogous to the Delay and Power Calculation
Standard (DPCS).

Group

In certain cases, use of the callback feature can have adverse
effects on performance. For example, a placement function
might go through many iterations before it is ready for timing
evaluation. Recalculating delay and analyzing path timing for
each placement move, incrementally as it happens, could
cause unacceptable performance degradation. Instead of using
callbacks at an object level of granularity, application
developers may wish to collect affected objects into a set, and
then process that set when it is complete.

IDM provides a group mechanism for logically collecting
objects. One application may, for example, create a group of
all interconnects within a noise sensitivity range, so that a
successor signal integrity application can access this subset of
interconnects directly, without having to search for them
throughout the design.

As an example, the parasitic extraction tool within CHDS has
a choice of different extraction algorithms that can be invoked
based on the required level of accuracy for an interconnect.
Highly accurate extraction is required for global interconnects
within a critical timing path, but this level of accuracy
typically requires more processing time than does a lower
accuracy algorithm. Local interconnects not within a critical
path typically require a much less accurate extraction, and can
take advantage of higher speed extraction algorithms. Within
CHDS, design plan applications must communicate the
required level of extraction accuracy via the persistent
repository to a parasitic extractor. Accuracy values could be
saved as net properties, but this would require the extractor to
traverse all interconnects within the design to locate those
accuracies of interest to it. Since the design planner traverses
the nets needing extraction as a natural part of its processing,
it can easily collect all interconnects requiring the same level
of extraction accuracy together into groups. The extractor can
then go right to the accuracy groups it wants and access the
nets without a second traversal of the design. The use of
group can be effective for a number of other similar situations
as well, such as indicating sets of interconnects that need to
be re-routed due to electromigration problems, etc.

4. Articulated Instance Model (AIM) Views

The classes, methods, functions, and objects comprising the
folded and occurrence netlist models are the terse, minimal
set required to represent the design structure. This
information is augmented by additional collections of classes
called views. Views contain additional methods and data
objects that maintain appropriate relationships to base objects
within the netlist model. Views elaborate the basic netlist

with additional design information and methods for operating
on it. The organization of these additional view classes was
done to provide an optimal tradeoff between performance and
memory. Views have been carefully constructed to be coarse
enough to load efficiently, but granular enough to conserve
memory by allowing applications to load only those parts of
the design that are relevant to them. Design objects that are
typically used together are grouped into a view, and an
application may load zero or any number of views, depending
on its requirements.

Two classes of views are defined within IDM. Base views
define new design objects beyond those in the core model and
present them to applications as a group of related information.
Application views do not contain new design objects, but
present data transformed from base views, plus application
derived information, in a way designed to be more useful to a
particular type of application. Some views are oriented
toward specific kinds of tools. For example, a wiring view
may be of use primarily to the different wiring tools available
in a design process. Other views, such as an interface view,
are likely to be needed by many different tools. IDM defines
three application views, however, additional views could be
defined via standard C++ subclassing.

Base Views

The base views manage application access to data relating to:

• Electrical − Electrical properties for blocks, pins and nets,
such as parasitics, voltage drops current, delays;
constraints information such as min or max capacitance for
a net or max delay for a source-sink pin pair; technology
related data, such as wire characteristics (ohms per length,
farads per length, coupling characteristics, etc.), via and
pad characteristics.

• Physical − Substrate characteristics, such as pad and via
models, reserved areas, layers, levels, planes, constraints,
technology information, and signal plane or porosity
constraints.

• Layout − geometric coordinates and shapes.

Application Views

Three “higher-level” views manage data of the following
types:

• Interface − (i.e. "external" description) constraints, legal
locations, port area/shapes, and terminal port initialization.

• Placement − (and floorplanning) constraints, images
(including hierarchical), snap-to-grid, aspect ratios, fixed-
in-location properties, move/blocked bounds, wiring
buffers, floorplan groups/stacks, checkpoints, external
circuits, placeability.

• Wiring − images, porosity, power, constraints, wire/via
models, power shapes, area/net labels, spacing, blockages,
demand, congestion, wiring buffers (for placement), quad
trees, and wiring layers.

5. Model Services

Implicit and explicit services in IDM maintain data integrity
and relationships among objects in the Operational Model in
the face of complex run-time changes to design data. These
include creation/deletion/change of objects, load/store data
between the Operational Model and the persistent repository
(at the granularity of both the hierarchical and individual box
object levels), elaboration of occurrence model objects,
selective view expansion, and technology specification. A set
of memory management functions also allows application
control over in-memory resources.

B. Auxiliary Interfaces

Two auxiliary interfaces augment the Operational Model.

1. PDL (Physical Design Language)

PDL is an ASCII language format for specifying technology
parameters and constraints. A standard file syntax provides a
convenient way to transfer the technology characteristics with
a design, augmenting design reuse. PDL includes:

• Technology and package groundrules − wiring layers,
placement area, wiring area, I/O area, terminal placement,
via and pad models, wiring models and constraints, power
models and constraints, placement models and constraints,
and any pre-placed elements.

• Constraints − cell size, placement and wiring porosity, net
length, net resistance, net capacitance, and net delay.

• Application areas − placement and power area constraints.

IDM Model Services automatically populate the application
selected data views with most generally required PDL data
elements, such as constraints and wire/via models.
Additionally, API functions are supplied that allow

FIGURE 2: IDM V IEWS

Inter face Place Wir ing

Phys ical L ayout E lectr ical

Folded Occurr ence

A
p

p
lic

a
tio

n
 V

ie
w

s

B
a

se
 V

ie
w

s

C
o

re
 M

o
d

e
l

(N
e

tlist o
n

ly)

Pers is tent
S tore

Load/S ave

Legend

Transformation of data (derived
data only, no new data)

Objects between views are related
and these relationships are
maintained implicitly and/or
explicitly inside the model

applications to directly and selectively read any of the data
elements specified by PDL.

2. ECO (Engineering Change Order)

ECO is an ASCII command language for engineering change
order specifications against the design model. Changes can be
specified to add, delete, or modify cells, ports, nets and
properties. Using ECO, changes to the design need not be
committed immediately but can be saved persistently for later
use. ECO is used to record the results and sign-offs required
for these changes in a managed way across the design team.

III. INTERFACING WITH IDM

Application developers can choose from a number of methods
by which they can interface with IDM. Each of these methods
has certain strengths and weaknesses with respect to
performance and applicability to specific problems.

A. Integrated Applications

"Integrated applications" are those with core algorithms that
have been modified to use the IDM Operational Model as the
primary (native), in-memory representation. (This does not
preclude the use of auxiliary, tool-specific data structures,
e.g., for performance and algorithm reasons.) There are two
variations on this method:

(a) Two or more applications in a single executable (and,
therefore, the same process space) share the same, in-
memory Operational Model. This allows a high degree of
incremental cooperation on the design data. One application
can be made aware of changes made to the design by
another application by means of callbacks. The level of
granularity can be down to a change event on a single
model element, as soon as it happens or at any arbitrary
point in the process. This eliminates storing/reloading
design information from the repository between iterations.

For this to work, EDA functions originally existing as
physically separate application programs, must be
configured into modules of a single program and managed
by driver code. Such a configuration allows exploitation of
very high performance incremental processing. This
interface technique offers the greatest potential for
performance improvement in the “tight loops” of a design
flow.

 (b) An application uses the IDM Operational Model for its
analysis, communicating with other tool processes solely
via the persistent repository. This could be accomplished in
a nested execution scenario (where one tool fork/execs
another) if design changes are first saved to the repository.
Incremental change information can be communicated
between these applications only via the persistent repository
(via properties, or groups, for example).

B. Interfaced Applications

In this style of integration, applications use the API to access
design data from the logically central repository, but that data
is translated to the application’s native format on which its
algorithms operate. This technique is likely to be used as a
migration strategy to allow rapid interfacing, without having
to change core product code in the short term. The degree of
integration with the application’s core algorithms may vary:

(a) The application uses its own in-memory representation
of the design, but still uses the IDM API as part of a native
code layer for access to the persistent data.

(b) None of the original application code is modified to use
the API. Instead, data import/export tasks from the
persistent repository are handled by a separate, stand-alone
translation utility which, in turn, interfaces to the
application’s native data format. The translation, including
management of any intermediate files (whether in
proprietary or industry-standard formats) must be
automated and transparent to the user. Though this method
may add additional overhead, it may be the easiest way to
port existing tools to CHDStd.

IV. SUMMARY AND CONCLUSIONS

A goal of the CHDS Program is to achieve a 4X productivity
gain over existing design systems while supporting an
effective capability for "best of kind" tool substitution within
a design flow (plug-and-play). In measuring that productivity,
it is important to move from a focus on individual point-tool
performance to a more realistic measurement of the total time
from design-start to silicon. A faster tool algorithm may not
help the overall flow if it has to wait while a two-gigabyte
ASCII exchange file is being created and then re-parsed. Nor
will it help if some other step in the flow must be repeated
because adequate timing information is not available early
enough, or if the lack of incremental capabilities force
redundant processing of design data.

FIGURE 3: MODEL INTEGRATION

$SSOLFDWLRQ

,QWHJUDWHG)XQFWLRQV

$SSOLFDWLRQ

0DS

,QWHUIDFHG)XQFWLRQV

$SSOLFDWLRQ

7UDQVODWH

$SSOLFDWLRQ

$SSOLFDWLRQ

2SHUDWLRQDO 0RGHO
6HUYLFH

CHDStd

Open
or

Proprietary?

1a
1b

2a

2b

Open
or

Proprietary?

The IDM central repository and open API architecture offers
the means to meet the CHDS productivity goals. However,
loosely-coupled applications that do not eliminate the costly
data translations, or exploit those flow-oriented IDM features
will fall short in achieving those goals. Applications that
treat CHDStd as just another interchange format may fail to
attain the desired benefits.

Legacy migration may necessitate some applications being
only marginally integrated to CHDStd. Business
considerations may dictate that an application be quickly
interfaced to CHDStd and more tightly bound later.
Consequently, the CHDStd architecture supports these
different levels of integration, as well. However, for the
biggest productivity gains, applications need to exploit the
power of tight integration to a common model, incremental
processing, hierarchical design techniques, and use of event-
driven callbacks to support critical design loops. Otherwise,
the overhead required to support a plug-and-play API and the
data integrity demands of a common model will not be
leveraged effectively.

IDM has been providing valuable experience about what
features are more or less critical to an open-industry solution.
Certain IDM capabilities may still be too advanced to
incorporate into CHDStd without definition of additional
standards. Commercial adoption and support may require
some changes to the existing model, and gate other features
from near-term acceptance. The sheer richness of the
specification may have an impact on the time required for
commercialization. Selection of which features should be
promoted to CHDStd and those that should not, will be based
on both technical and business considerations. The final
CHDStd specification is, therefore, subject to refinement as
the CHDS Beta testing takes place across 1998.

V. ACKNOWLEDGEMENTS

We are indebted to IBM for the donation of IDM as the basis
for development of the CHDStd specification, and as the
CHDS Beta development vehicle. We thank P. Adams, J.
Morrell, P.T. Patel, and J. Sayah for their contributions to the
development of IDM and its documentation.

VI. REFERENCES

[1] S. Grout et al, SEMATECH ECAD Program CHDS Technical Data
(CHDStd), 1995, unpublished (http://www.sematech.org).

[2] IBM, An Integrated Data Model for Hierarchical Design Assembly,
1996, unpublished (http://www.si2.org/CHDStd).

[3] A. Williams (University of Manchester) and David Barton
(Intermetrics), Information Model of IDM, Version 9/01/97, 1997,
unpublished (http://www.si2.org/CHDStd).

[4] H.Kahn (University of Manchester), "Design representation in EDIF
version 3 0 0 and CFI version 1.0", Electronic Design Automation
Frameworks Volume 4, Chapman & Hall, 1995, ISBN 0 412 71010 2.

[5] R.G.Bushroe et al, "Chip Hierarchical Design System (CHDS): A
foundation for timing-driven design into the 21st century",
SEMATECH, 1997, ACM 0-89791-927-0/97/0.

[6] Si2, Delay and Power Calculation System, IEEE Project Authorization
Request No. 1481, 1997, in press (http://www.si2.org/dcl).

[7] Si2, CHDStd Reference Specification, 1997, in press.

[8] D. Mallis, "Benchmark studies of bulk data transfer methods", Si2,
1995 (ftp://si2.org/public/si2/Information/itc-benchmarks.ps).

	CD-ROM Home Page
	ASP-DAC98
	Front Matter
	Table of Contents
	Session Index
	Author Index

