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ABSTRACT - This paper presents a new design flow, FPD-
SIMPA, and a set of techniques for synthesizing high-perfor-
mance sub-half micron logic circuits. FPD-SIMPA consists of
logic partitioning, floorplanning, global routing, and timing
analysis’budgeting steps, followed by technology remapping and
detailed placement of the selected logic clusters. The strength of
the approach lies in the dynamic programming-based algo-
rithm, SMPA-D, used for performing simultaneous technology
mapping and linear placement of logic clusters. This algorithm
generates a set of solutionsfor each cluster, all of which arenon-
inferior (in terms of gate area, cutwidth and delay), and hence
permits trade-offs between total area (gate plus wiring) and
total delay (gate pluswiring). Experimental resultsfrom alarge
number of MCNC benchmarks have proved the effectiveness of
the proposed flow.

|. INTRODUCTION

As IC fabrication capabilities reach down to the sub-half-micron,
the significance of interconnect delay and area can no longer be
ignored. The existing enhancements to both synthesis and physical
design tools (such as non-linear delay modeling, custom wire load
models, back annotation of calculated delays, statistical wire length
estimation) have not been capable of solving the problem. Therefore,
trade-offs between logical and physical domains must be addressed
in an integrated fashion. Huge business opportunities will be lost
unless more revolutionary changes to the design flow are made.

When designing high performance VLS circuits, designers often
find that their designs do not meet the timing and/or area constraints
after layout. This predicament is mainly a consequence of the weak
interaction between logic synthesis and physical design tools. Logic
synthesis, capable of significantly atering the timing and area of the
circuits as it proceeds from Boolean minimization to technology
mapping, uses arelatively simple model of wires. In contrast, physi-
cal design which has accurate wire information from back-end
extraction tools is incapable of altering the gate implementation, and
hence cannot change the timing/area profile of the circuit drastically.

Design technologies for methodology, design flow, tool, and stan-
dard must thereby be advanced so as to produce chip designs incor-
porating an excess of a 100 million transistors in the same time and
using the same number of designers currently consumed in the pro-
duction of 5 million-transistor chips. Without these advances, the
semiconductor and electronics industries will suffer an economic
death asthey fall off the productivity curve [Be97].

This paper proposes a solution to these design difficulties by intro-
ducing anew algorithm, SIMPA-D, in addition to anovel design flow,
FPD-SIMPA, which properly takes advantage of SIMPA-D’s
strength; SIMPA-D (Simultaneous Technology Mapping and Linear
Placement Algorithm based on Digjoint Combination) is a polyno-
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mial complexity, dynamic programming based agorithm which
simultaneously performs technology mapping and linear placement
for tree-like circuits by generating an area-delay trade-off curve con-
taining a set of non-inferior area-delay solutions for the tree.
Throughout this algorithm, which acts as a bridge between the syn-
thesis and physical design worlds, the exact delay and area values for
each solution (considering both gates and wires) are known. SIMPA-
D may not find the minimum area implementation as a part of its pro-
posed solution set but, the total area of each solution is proved to be,
at worst, a constant factor away from the corresponding optimal area
implementation. In that sense, it is an approximation agorithm and
not simply a heuristic one with unbounded error. The set of solutions
generated by SIMPA-D reveals a near optimal way of trading area for
delay and vice versa. This feature has been exploited by FPD-SIMPA
(Floorplan Driven Simultaneous Technology Remapping and Linear
Placement Algorithm); FPD-SIMPA partitions a given mapped cir-
cuit into a set of non-overlapping trees (clusters) each of whichislin-
early placed. Subsequently, the clusters are floorplanned using the
exact area and delay information for each cluster. FPD-SIMPA then
identifies those clusters which determine the size and delay of the
whole chip. Each of the critical clusters in turn gets remapped and
placed using SIMPA-D or SIMPA-E described in [LSP97]. The exact
knowledge of delay and area trade-off provided by SIMPA-D makes
the outcome of FPD-SIMPA predictable at each step.

This paper is organized as follows: In section 1, background and
prior works about placement, synthesis and the methodol ogies com-
bining these two are introduced. Section |11 describes our proposed
methodology in combining placement and technology resynthesis. It
also introduces SIMPA-D and other techniques used in this method-
ology. In section IV, the experimental results are given and analyzed.
Concluding remarks and the references used in thiswork are stated in
sections V and VI, respectively.

I1. BACKGROUND AND PRIOR WORKS

11.1. Technology M apping

The problem of technology mapping for general circuit structures
isNP-hard [HS96]. In 1987 Keutzer [Ke87] pointed out the similarity
between the library binding problem and optimal code generation in
a compiler. In his agorithm, the circuit is partitioned into tree sub-
graphs and each tree sub-graph is mapped using a dynamic program-
ming algorithm which finds the minimum gate area mapping of the
tree in polynomial time. This work was later extended by Rudell
[Ru89] to minimum delay technology mapping and by Touati et al.
[TMBW90] who minimized area mapping under delay constraints. In
[CP92], Chaudhary and Pedram presented a dynamic programming
algorithm in order to construct the set of all possible mappings of a
tree with different area-delay trade-offs. However, neither of the
these works considers wiring area or delay during technology map-
ping.
11.2. Linear Placement

The linear placement problem of a graph has been extensively
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G. 2: AN EXAMPLE FOR LA
studied. The MINCUT problem isto find alinear placement that min-

imizes the maximum cutwidth. This problem is NP-hard for the gen-
eral graphs[Ya85].
I1.2.a Lengauer’s Algorithm

Lengauer’s algorithm (LA) gives an approximate solution for
MINCUT placement of a tree. At worst, the cutwidth of its output
placement can be a factor of two away from the minimum cutwidth.
LA, which is a bottom-up, dynamic programing based agorithm
solves the problem for sub-trees first and then merges these solutions
together recursively. At each step of dynamic programming, LA pre-
serves the aready constructed placement solution for each subtree,
sorts these solutions decreasingly with respect to their cutwidth (ties
are broken by giving priority to the balance placements), and places
them in that order around the root node as shown in Fig.1. Therefore,
the farthest sub-trees (on the right and left) are those with the highest
cutwidth. Furthermore, LA places the sub-solutions such that their
heavier side (in terms of cutwidth around the root of each sub-solu-
tion) faces away from the root [Le82]. Fig.1 shows the heavier sides
of each sub-tree with thicker lines.

Example: Fig. 1 showsasimple examplefor LA.

Lemma 1: For any given tree, the cutwidth of the placement made
by LA isat most 2X away from the optimal value. [Le82]
11.2.b Yannakakis's Algorithm

Yannakakis's algorithm (YA), a dynamic programming based bot-
tom-up algorithm, is an exact solution for the tree MINCUT problem.
At each level of dynamic programming, YA does not preserve the
already constructed placement solution for the subtrees; instead, it
merges them together in a very complicated manner in order to
achieve the optimal solution. The reader is referred to [Ya35] for
more details and to [L SP97] for a brief outline of YA.

Lemma 2: For any given tree, YA finds the placement with the
lowest possible cutwidth. [Ya85]
11.3. Combining Synthesis and Physical Design

The problem of eliminating the gap between synthesis and physi-
cal design phases can be attacked from two directions. The first
approach starts with synthesis techniques and extends down to the
world of physical design. The other approach, on the other hand,
begins with physical design techniques and extends upwards to the
synthesis domain. The methodology proposed in this paper is based
on a hybrid approach which enjoys the benefits of both approaches. It
is hybrid because it simultaneously works in the synthesis and physi-
cal domains.
I1.3.a From Synthesisto Physical Design

Pedram and Bhat's work in [PB91] is the first attempt to combine
physical design with logic synthesis. They introduced the notion of
coupled mapping and placement in order to consider the effect of
wires during mapping. The key idea was to generate a “ companion”
placement during the mapping phase. The placement information is
used to evaluate the cost of a gate match during the mapping process.
The placement is dynamically updated in order to maintain the corre-
spondence between the logic and layout representations. In the end, a
mapped network along with a placement solution is generated. This

algorithm assumes that during the bottom-up process of concurrent
mapping and placement, the dynamic programming principle holds,
which is only an approximation.

SIMPA-E (Simultaneous Technology Mapping and Linear Place-
ment Algorithm for Exact-Area) proposed in [LSP97] is a major
extension in Pedram and Bhat's work. SIMPA-E, in contrast to the
other technique, performs optimal technology mapping and place-
ment simultaneously for tree-structure circuits. In that work YA and
KA were merged together and the technology mapping and linear
placement of each tree is done simultaneously and optimally with
respect to the total area. SIMPA-E can also be used by FPD-SIMPA, a
short description of which comes later in this paper.

11.3.b From Physical Design to Synthesis

Physical design consists of a myriad of techniques designed spe-
cifically for the different problems which arise in this field ranging
from physical partitioning and floorplanning to placement and rout-
ing. Most of the connections already created between this field and
synthesis are established through placement. Placement algorithms
that apply local netlist transformations, after an initial placement,
have the advantage of using accurate information about delay and
area for performing a good synthesis. The algorithm proposed in
[KSF94] starts from an initial placement followed by timing optimi-
zation using fanout buffering and gate resizing transformations. Esti-
mations of the net delays based on the initial placement are used for
selecting the most useful transformations. In [LPPD93], the authors
proposed to resynthesize the logic in the most congested regions of
the chip so asto reduce the routing area. Stenz et a. in [SRRJ97] pro-
posed a technique, which performs iterative timing driven netlist
transformations on a companion placement. All of these techniques
perform resynthesis on an already mapped and placed circuit while
using different types of resynthesis techniques. None of these tech-
niques integrate placement and resynthesis.

IIl. THE PROPOSED M ETHODOLOGY

I11.1. Introduction

We focus on technology mapping and placement. This paper pre-
sents a new technique which combines these two steps and provides
the designer with a set of solutions each with a different area and
delay trade-off. This technique does not place any restrictions on the
rest of the design flow.

FPD-SIMPA consists of two main components, a delay model and
a simultaneous placement and mapping technique. This flow is not
sensitive to the selection of the delay model and therefore many dif-
ferent models can be used. For the simultaneous placement and
remapping part, there are two candidates, SIMPA-D (Simultaneous
Technology Mapping and Linear Placement Algorithm based on Dis-
joint Combination) and SIMPA-E (Simultaneous Technology Map-
ping and Linear Placement for Exact-Area). SIMPA-D, proposed for
the first time in this paper, because of its capability to generate a set
of area-delay trade-off solutions, fits very well in this flow. Also,
SIMPA-E is a very powerful tool for finding the minimum area
implementation of a decomposed tree-like circuit [LSP97]. These
algorithms along with our delay model are introduced in the forth-
coming sections in more detail.

I11.2. The Outline of the M ethodology

The steps constituting FPD-SIMPA are shown in Fig.3. A mapped
circuit istheinput to FPD-SIMPA. That mapping is treated as a start-
ing point and it may later be changed by SIMPA-D/E. Therefore, the
method by which the mapping has been generated is not really rele-
vant to our discussion. Any conventional minimum-area or mini-
mum-delay technology mapping method such as [Ru89] and [CP92]
is acceptable in this step.

Partitioning the given circuit (called the primary graph hence-
forth) into a set of maximally non-overlapping trees (called clusters
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FIG. 3: THE DESIGN STEPSIN FPD-SIMPA

in this paper) is the first task done in FPD-SIMPA. Subsequently, the
generated clusters are treated as macro-cells. The interconnections
among these macro-cells generate a directed-acyclic graph which is
named the secondary graph. The tree partitioning can be achieved in
a straight-forward manner during a depth-first traversal of the pri-
mary graph.

Having finished the partitioning step, FPD-SiMPA finds the mini-
mum-arealinear placement for each cluster. We should point out here
that the clusters are already mapped and hence their gate-areas are
known; therefore, finding a minimum area placement of a cluster
means finding the minimum cutwidth placement of that cluster which
is smply a MINCUT placement problem (c.f. Section I11.4). YA
solves this problem exactly and thus finds the absol ute minimum total
area implementation for each cluster. Beginning with the minimum
area placement of clusters is an appropriate starting point for FPD-
SIMPA, because it later corrects the timing violations by carefully
trading area for lower delay.

Since the gates inside each cluster have been placed, the area and
delay for al the clusters is known. This information may now be fed
into a floorplanner. The floorplanner is aso a minimum-area floor-
planner, because a minimum area implementation is desired as the
starting point. The outcome of the floorplanning phase on the second-
ary graph is an actually placed circuit. The next step is the global
routing of the floorplanned circuit to construct routing trees for each
net present in the secondary graph.

Timing analysis follows global routing. In this step, using the
delay model (c.f. in Section I11.5) and the global routes, the timing
information for each node in the placed circuit is calculated. This
information is later used to identify the timing-critical clusters which
need to be resynthesized for further optimization.

To proceed to the next step in FPD-SIMPA, we first need to define
the following terms; delay-critical, height-critical, and width-critical
clusters:

Definition 1: Using the delay model, the critical path(s) of the
placed circuit is (are) found. All the clusters located on the critical
timing path(s) are called delay-critical clusters. Obviously, each clus-
ter can occur only once on the critical path due to the acyclic nature
of theinitial circuit.

Definition 2: For each row, we can sum up the width of al the
clusters located on each row to find the row widths. The clusters
located on the longest row(s) are width-critical clusters. For example,
{T1, T2, T3} isthe set of all width-critical cellsin the example given
inFig. 4.

Definition 3: Height-critical clusters are all the clusters building
up the height of the chip. For example in Fig.4, {B2, M2, T3} is the
set of all height-critical clustersin that placement.

FPD-SIMPA next finds the sets of clusters which are located on
geometrical and timing critical paths. The “cluster selection” proce-
dure picks one critical cluster at atime. The critical cluster is chosen
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FIG. 4: AN EXAMPLE SHOWING HEIGHT AND WIDTH CRITICAL CLUSTERS

by a heuristic which is dependent on the objective function, allowing
different strategies to be used for different problems. We will not dis-
cuss possible heuristics for different cases, in Section 111.3, we will
discuss the behavior and characteristics of the general problem which
can be used as helpful hints to engineers responsible for devising a
heuristic for an application.

The selected cluster is then decomposed
into 2-input NAND and inverter gates, and
then SIMPA-D/E is run on it. The output of
SIMPA-D/E is a set of non-inferior solutions
represented in the form of an area-delay SIMPA-D
trade-off curve. This curve is visited by a OR

aselected critical cluster

) . . SIMPA-E
“solution selection” procedure which exam-
ines all available solutions and selects the
best, according to the objective function. s
ig.

Fig.5 showstheinterna flow of this step.

After choosing a satisfactory solution for
the chosen critical cluster, the size and timing information for the
whole chip are updated to reflect the changes in the cluster.

Finally, FPD-SIMPA decides whether the convergence has
occurred and/or the goals have been achieved. If the circuit needs
more optimization, it is sent back to the cluster selection step, where
another critical cluster is selected and the same resynthesis processis
repeated.

The next sections will present further detail and analysis on some
steps of FPD-SIMPA.

111.3. Critical Cluster Selection

Few simple observations are helpful in devising and employing a
good cluster selection procedure. A good performance in this step
allows FPD-SIMPA to be more effective in performing the area/delay
trade-off.

Let's call the sets of delay, height, and
width critica clusters, D, H, and W,
respectively.

Observation 1: There is at least one
cluster in common between H and W.

Observation 2: Each member of D, H
and W which is not a member of the other
sets (d, h, and w sections in Fig. 6) can be
optimized independently to afirst order approximation. For example,
reducing the height (cutwidth) of a member of h will not change the
set of width critical clusters W, unless the cluster whose height was
reduced happens to get too wide and becomes a member of W. How-
ever, this situation can be avoided by considering the available space
on the left and right sides of the candidate cluster.

Observation 3: For the clusters located in WH, HD, and WD sec-
tions, optimization may still be possible without sacrificing the other
parameter. The only cases in which we have to sacrifice area/delay
for meeting the delay/area design constraints are the clusters located
in the WHD section of Fig.6.

Observation 4:The critical clusters which are more relaxed with
respect to the other parameters are more likely to improve the design
parameters without any penalty. For example, a delay-critical cluster
which has lots of free space in its neighborhood is more likely to be
sped up by enlarging its area to occupy the adjacent free regions




without increasing the chip area.

Many different cluster selection strategies can be conceived based
on the above observations. For example, we use a simple method
which starts by selecting clusters from w, h, and d in the decreasing
order of their flexibility to the other parameters. If the design con-
straints are not satisfied as such, we process the other clusters and try
to improve the design parameters for the chip with as small penalty as
possible.

111.4. Area Calculation

The total area for one-dimensional standard-
cell layout is given as following: [ —— ( C

A=W.(h+B.c) where
Wis the summation of the widths of all the cells “m

Fig. 7

used in the design: W= z width(cell,) where,
cel Ii

histhe cell height, a constant determined by the ASIC library,

B is the minimum distance between the centers of two adjacent wires:

B= (minWirewidth + minWireSpacing)
and c is the maximum cutwidth (also known as cut-density) of the
design.

Lemma 3: The total width of any linear placement for a mapped
circuit is the summation of the widths of its gates.

Theorem 1: For a mapped tree circuit, YA gives the minimum
total arealinear placement implementation.

Proof: Regardless of the placement order, the total width W is
constant, Lemma 3. In a given standard-cell design style, h and  are
constants too, therefore, for a given mapped tree circuit, a linear
arrangement has the minimum total area iff it has the minimum cut-
width. This minimum cutwidth linear placement isfound by YA. m

Theorem 2: The placement given by LA for a given mapped tree
circuit T is at most 2X away from the corresponding minimum area
implementation.

Proof: Similar to the previous proof, W, h, and § are constants.
Call the minimum possible cutwidth of atree c,,. According to The-
orem 1, the total area of the minimum areaimplementation of the cir-
cuitis Apin = W. (h+ B . ¢yip). The cutwidth of the placement built
by LA (c_p) isat most 2X larger than ¢y, Lemmal. Thus, A =W
(h+ B .cLp), isa most 2X away from the optimum value (Aqip).
This upper bound is reached if h=0and T is abalanced tree. m

Theorem 3: Twotrees T and T' are similar except in certain mini-
mal subtrees; cal them sy, sp, ..., syinTand sy, s, ..., Sy InT. If
LA finds placements with lower or equal cutwidth for al s, sp, ..., S,
compared to their counterparts in T, it also finds a placement with
lower or equal cutwidth for T.

Proof: The proof is omitted due to the space limitations.

111.5. Delay Calculation

The delay model used in this work is similar to the one proposed
in [LSP9I7]. Interested readers are referred to that work for the details.
111.6. SMPA-D

SIMPA-D uses KA and LA to do simultaneous technology map-
ping and linear placement for delay minimization. The dynamic pro-
gramming (DP) nature of both KA and LA facilitates coupling these
two design steps. At every stage of the bottom-up decision making in
DP, the solution is built from the solutions to the sub-problems which
are aready known. All the solutions to the sub-problems are disre-
garded except for the one (assuming a single parameter cost function)
which minimizes the cost function. This process of pruning the infe-
rior solutions at every stage of DP provides the polynomial complex-
ity of the algorithm.

Although the objective is to minimize the total area, total areais
not a sufficient cost function in this DP algorithm by which to mea-

sure the cost of the solutions and eliminate them accordingly. It is
easy to see that when we place two sub-solutions, S; and S, next to
each other, the cutwidth of the resulting placement is a function of
MAX operation over the cutwidths of the two sub-solutions. This
property causes the violation of the dynamic programming principle
for total area. In other words, with respect to that cost function, the
final optimal solutions does not consist of the optimal solutions of the
sub-problems. Fortunately, the principle of dynamic programming
holds when we define the cost function as a two-tuple of (cutWidth,
gateArea). In SIMPA-D, since LA is used, cutwidth is the total num-
ber of horizontal wires crossing any vertical line in a placement.
However, in SIMPA-E where YA is used, cutwidth is the cost func-
tion used in YA which is a generalized form of cut capamty, CCE
Since SIMPA-D uses LA, the
final placement of atreeisasimple
combination of the placement of
each sub-tree (sub-solution) which
is different from what happens in :
YA and SIMPA-E. That means Fig. 9
while constructing the final place- 3-D SOLUTION CURVE
ment, the inside structure of the
sub-problems are not changed. Therefore, the calculated timing
information for each sub-solution remains valid through SIMPA-D
(more details are given later). This guarantees that the dynamic pro-
gramming principle in SIMPA-D for delay is valid (subject to the
unknown-load problem). This opportunity lets us use a three parame-
ter cost function (cutwidth, gate area, delay) and perform optimiza-
tion with respect to both geometry and timing at the same time. At
every node during this DP-based algorithm, a three-dimensional
curve (Fig.9) of the solutions is calculated and the inferior points
(defined below based on the definition of the cost function) are
dropped out to maintain the polynomial complexity of the algorithm.
Definition 4: In SIMPA-D, we define the solution S, to be inferior

with respect to S, iff the following condition holds:
gateArea(S;) >= gateArea(S;) AND cutWidth(S;) >= cut\Wdth(S,)

AND delay($;) >= delay(S,)
where, cutWidth is the maximum number of horizontal wires of the
placement crossing any vertical line.

SIMPA-D starts from the primary inputs (PI’s) and using a pos-
torder traversal tries al the possible library matches at every node of
the decomposed tree circuit. At each node n, a set of non-inferior
solutions are stored for use in the subsequent steps. For a match, say
m, SIMPA-D retrieves all the non-inferior solutions for the subtrees
connected to the inputs of m, where every solution for a subtree con-
tains the corresponding mapping and linear placement (using LA).
The set of placements for any combination of sub-solutions along
with m when passed to LA generates a placement solution for n,
where for every generated solution the corresponding cutwidth, gate
area, and delay can be easily extracted and stored in n. In general, for
every combination of theinput subtree solutions, LA should be called
once. However, the number of trial combinations may be signifi-
cantly reduced (it becomes polynomial) with the use of a suitable
ordering scheme similar to the one given in [CP92]. Having calcu-
lated all the necessary solutions for n, SMPA-D will then drop out
the inferior solutions in the solution set of node n and the resulting
solution set is stored for future use by SIMPA-D.

Dueto the availability of al the physical informationin SIMPA-D,
the total delay of a circuit (gate plus wire delays) can be calculated
accurately at every step and the wire load and delay can be captured
exactly using the placement generated by LA. The following example
will confirm the validity of this claim (Fig.11). During the bottom-up
mani pulation process, the placement information is known for match
mand all of itsinput gates, i.e., input,, input, and inputz. Therefore,

cutWidth




INPUT: atree network N, alibrary L

OUTPUT: a mapped and linearly placed netlist of N

1. Decompose N using a technology decomposition algorithm
2. Perform a Depth-First-Search from PO to Pl in N

3. For each node n in the reverse DFS order

4. For every match m of n

5. gateArea = sum of accumulated gate area of all inputs of m
+ gateareaof m

6. cutWidth= cutwidth of the linear placement generated by LA

for mand all the connected subtrees.

7. Update the delay values of all inputs because of the load
change by the match and the placement

8. delay=ouput signal arrival time of min the current impl.

9. Store the solution <gateArea, cutWidth, delay> in 3-D curve of n

10.  Prunetheinferior solutionsin 3-D curve of n
11. Select the best solution from the PI, and recursively select the
solutions of all the inputs which lead to this best solution.

Fig. 10: PSEUDO CODE FOR SIMULTANEOUS TECHNOLOGY MAPPING

AND LINEAR PLACEMENT ALGORITHM BASED ON DISJOINT COMBINATION (SIMPA-D)
the topology and lengths of wire;, wire, and wire; are known. The
capacitance and resistance values for these wires can be calculated
exactly, and the loads on input,, input, and inputs, which consist of
the input load of match m and the corresponding wire load, are pre-
cisely known. Therefore, the gate delays of these inputs can be calcu-
lated exactly. Moreover, the delays of wire;, wire, and wirez can be
precisely calculated using the ElImore Delay Model. So the arrival
times at the inputs of current match are known exactly.
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Fig. 11

Total delay calculation

The exact calculation of the total delay (due to the availability of
exact wire load and wire delay) is however subject to the “unknown
load” problem; that is, the actual loading at the node is unknown
since its fanout nodes have not been mapped yet. Consequently in
this paper, al discussions regarding delay are also subject to the
unknown load problem. This problem is summarized as follows; dur-
ing each step of dynamic programming, the mapping and placement
information of the fanouts of the current node are unknown. There-
fore, the fanout load of the current node n and the gate delay of match
m cannot be determined accurately (Fig. 11). Thus, we use a heuristic
solution similar to that presented in [Ru89] and [TMBW90] for per-
forming delay re-calculation as a means for solving this problem.
During each step of DP, we assume a constant load ahead which is
the input capacitance of a 2-input NAND gate and the capacitance of
a wire segment whose length is estimated by the fanout count of the
node [VP95]. We can calculate the load change at the fanins of a
match since they are already mapped and placed. We update the delay
of all the fanins of this match (inputy, input, and inputs in Fig.11) in
order to use the correct load information. Therefore, the error gener-
ated by the unknown load effect in the previous step will not propa-
gate to the next step.

YA cannot be used in SIMPA-D, because as mentioned in Section
11.2.b, while merging the placements of the subproblems YA may
break a subtree and place the rest inside the generated gap in order to
minimize the cutwidth. In this case, the wire load and the wire delay
of the broken subtree along with the total delay will be drastically
changed. Consider the following examplein Fig.12, where we have 3
subtrees T, T1 and T,. We assume the mapping and the placement

for each subtree have aready been done, and a 3-D curveincluding a

root root

To T

Fig. 12.a Fig I2.

set of non-inferior solutions for each subtree has been generated. YA
may bresk the tree To and put T, and T, in its gap to achieve the min-

imum cutwidth. As we can see, wire; which connects the left and
right parts of Ty, will then be elongated. As aresult, the delay calcu-
lation based on the previous length of wire; is no longer vaid. This

violates the principle of dynamic programming since the delay value
for subtree Tp may change depending on the structure of other sub-
trees, T, and T,. Throughout its calculation of the final result, YA
does not guarantee to preserve the inferiority of some solutions with
respect to delay. Therefore, delay cannot be used as an optimization
parameter in YA. In contrast, as previously mentioned, while com-
bining the sub-solutions LA does not modify their internal place-
ment. This property makes LA a suitable placement algorithm when
delay parameter is used to distinguish between inferior and non-infe-
rior solutions. Another important characteristic of LA isthat it isan
approximation algorithm and is guaranteed to find a placement which
has at most twice the cutwidth of the optimal cutwidth placement for
a specific mapping. Thisimplies that for every solution the area pen-
alty due to delay consideration is bounded. Indeed, the difference
between YA and LA is less than or equal to one track in most of our
experiments making the area penalty negligible.

During SIMPA-D, inferior points can be safely discarded without
losing non-inferior solutions. Therefore, given the upper bound(s) for
any arbitrary subset of {tracks, gate area, delay} all the pointsin the
3-dimensiona curve with parameters less than the imposed upper
bound(s) constitute the non-inferior implementations of the circuit
satisfying the given constraint.

Theorem 4: Every point in the 3-D curve is at most 2X away, in
terms of total area, from the total area of its corresponding optimal
placement.

Proof: The proof follows from Theorem 2 and the method by
which SIMPA-D calls LA and prunes the inferior points. m

Theorem 5: For any area-optimal solution S (which is a solution
found by SIMPA-E), there existsa solution S on the 3-D curve with a
lower or equal gate area and with atotal areathat isat most 2X larger
than that of S

Proof: If these two solutions have similar mappings, the proof
directly follows from Theorem 2. Assume S’ to be a solution built by
running LA on the mapping of S The total areaof S’ is at most 2X
larger than S according to Theorem 2. The mapping of S’ differs
from the mapping of S in certain minimal sub-trees. These mappings
and their corresponding LA placements have been dropped during
SIMPA-D by their corresponding solutionsin S which possess lower
gate area and cutwidth. Therefore, according to Theorem 3, the total
areaof S issmaller than or equal to the total area of S', (and hence
within2X of §). m

Theorem 6: SIMPA-D is apolynomia complexity algorithm.

Proof: At every recursive step of SIMPA-D, the maximum num-
ber of non-inferior solutions is a polynomial function of n (the num-
ber of vertices in the decomposed tree as follows). Assuming the
width of the gates in the library are multiples of a constant unit and
the widest gate has a width of W, the maximum number of distinct
vaues for cutwidth is n-1, and the gate area is nW. For every combi-
nation of gate area and cutwidth values, SIMPA-D keeps one solution
at most (the one with the least delay). Therefore, the total number of
the points in any 3-D curve is bounded by n.(n-1).W. Since the runt-
ime of SIMPA-D is a polynomial function of the number of solution
points, the total runtime complexity is polynomial aswell. m

Toright




111.7. SMPA-E

The simultaneous technology mapping and linear placement algo-
rithm for exact area minimization, SIMPA-E, first proposed in
[LSP97], isasuperset of KA and YA. The exactness of KA and YA is
preserved in SIMPA-E making it an exact solution for minimum total
area. For adetailed discussion the reader isreferred to [L SP97].

Theorem 7: Thefinal curve built by SIMPA-E includes all the cut-
width and gate area non-inferior solutions to the problem. [LSP97]

IV. EXPERIMENTAL RESULTS

FPD-SIMPA was implemented in the SIS environment [SRRJ97].
We compare the experimenta results from conventional flow and
FPD-SIMPA using SIMPA-D for delay minimization. Both flows use
the 4-parameter delay eguation for calculating gate delays [LSP97]
and use the Elmore delay model for wire delay calculation. The
library we use is a CASCADE standard cell library (0.5u HP CMOS
process). The areaand delay reported here are the total chip area, and
thetotal chip delay after detailed routing.

The input to both flows is a technology mapped netlist in which
the delay is optimized by the SIS mapper. The conventiona flow uses
GordianL and Domino for placement, TimberWolf for global routing
and YACR for detailed routing. In the FPD-SIMPA flow, we cluster
the netlist and linearly place each cluster using Yannakakis mincut
linear placement algorithm. BearFP is called to floorplan the clusters
and find the minimum area floorplan solution. After identifying the
timing critical paths, we choose the candidate clusters for re-mapping
and re-placement using SIMPA-D to minimize the delay. The run
time of FPD-SIMPA is comparable to that of conventional flow.

Our experimental results show that FPD-SIMPA successfully
improves the delay and area by as much as 54% and 53%, respec-
tively. On average, we improved the delay by 19% while reducing the
area by 13%. This improvement comes from both our design flow
and the strength of our simultaneous technology mapping and linear
placement algorithm. For some circuits, such as C7552, we were able
to reduce the delay by more than 50% while keeping the area
increase to within 10%, whereas for many other circuits, we were
able to reduce the delay and area simultaneously. However, there are
some circuits, such asfrg2, for which we could improve neither delay
nor area. We believe the reason to be the loss of our ability to perform
optimization across tree boundaries. For some circuits, however, opti-
mization across the tree boundaries may bring a significant improve-
ment in the circuit quality. We are currently working on a new logic-
replicating partition technique, which will enable us to perform opti-
mization across the tree boundaries.

Conventional FPD-SIMPA Ratios

CIRCUIT AREA DELAY AREA DELAY AREA DELAY
alud 4267136 20.93 4064043 17.32 0.95 0.83
apex6 4220940 11.63 3280464 9.18 0.78 0.79
dalu 8793378 27.81 9007605 26.30 1.02 0.95
Z5xpl 656750 11.59 513590 9.18 0.78 0.79
Z9sym 995196 8.41 980045 393 0.98 0.47
frg2 4967865 10.98 5294103 11.46 1.07 1.04
sao2 908283 9.41 620806 5.80 0.68 0.62
C432 2511441 13.98 1172676 14.29 0.47 1.02
C880 2740674 12.72 2283125 12.19 0.83 0.96
C499 3099603 9.56 3035760 8.48 0.98 0.89
C1908 f 4159199 17.36 2912016 12.78 0.70 0.74
C1355 J| 2267650 9.81 2739392 8.80 121 0.90
C3540 Q10057735| 27.36 7378446 20.67 0.73 0.76
C5315 Q11579390 | 15.99 9660618 13.66 0.83 0.85
C7552 | 12995712 | 2453 [14246148( 11.29 1.10 0.46
Average:| 0.87 0.81

V. CONCLUSION

This paper presents a novel algorithm, SIMPA-D, which performs
simultaneous technology remapping and linear placement for tree-
structured circuits while targeting minimum total chip delay and/or
area. The proposed algorithm which uses a dynamic programming
technique generates a three-dimensional area-delay trade-off curve of
gate area, cutwidth, and delay. This paper also describes a new meth-
odology, FPD-SIMPA, which exploits the above algorithm to synthe-
size high-performance sub-half micron logic circuits. This
methodology is capable of controlling the trade-off between area and
delay, and produces circuit implementations with highly predictable
performance characteristics. Experimental results proved the effec-
tiveness of the proposed flow and SIMPA-D.
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