
Power Reduction in Microprocessor Chips by Gated Clock Routing*

Jaewon Oh and Massoud Pedram

Electrical Engineering – Systems
University of Southern California

Los Angeles, CA 90089
Tel: (213) 740-4480

e-mail: joh, massoud@zugros.usc.edu

Abstract - This paper presents a zero-skew gated clock routing
technique for VLSI circuits. The gated clock tree has masking
gates at the internal nodes of the clock tree, which are selectively
turned on and off by the gate control signals during the active
and idle times of the circuit modules to reduce switched
capacitance of the clock tree. The clock tree topology is
constructed based on the locations and the activation frequencies
of the modules and whereas the locations of the internal nodes of
the clock tree (and hence the masking gates) are determined
using a dynamic programming approach followed by a gate
reduction heuristic.

1. INTRODUCTION

Clock gating methods recently gained attention as a way of
reducing power dissipation in digital circuits. In a typical
synchronous circuit, especially in a general purpose
microprocessor, only a portion of the circuit is active at any
given time. The remaining parts of the circuit are idle but may
experience unnecessary switching, thereby dissipating power.
In addition, instructions of the processor are not executed at
the same rate. Some instructions are more frequently executed
than others. This fact motivated the development of Reduced
Instruction Set Computer (RISC) architecture. Our work is
also motivated by this same fact, that is, the instruction
frequencies are used for power optimized clock routing.

We assume that the modules are Moore-type sequential
machines (see Figure 1) or a cluster of such sequential
machines. This assumption is made because in a Moore
machine, there is no switching activity once the clock is shut
off. In contrast, in a Mealy machine, activity in the external
input lines can cause a switching activity in the combinational
logic even when the clock is shut off. The basic idea of clock
gating is to mask off the clock to registers of the modules that
are idle. This keeps the inputs of the combinational logic block
steady, preventing any switching, and hence dynamic power
dissipation in the circuit.

In this paper, we address the gated clock routing problem. We
insert gates immediately after every internal node of the clock
tree to minimize the dynamic power consumption (see Figure
2). These gates can also serve as buffers and can be sized for
fine tuning the phase delay of the clock signal. A gate in the

* This research was funded in part by DARPA under contract no.
F33615-95-C1627 and by NSF NYI under contratct no. MIP-
9457392.

clock tree should be enabled (the control signal is true)
whenever any of its descendant gates are enabled. This
suggests that the control signal of a gate is the successive OR
function of the control signals of its descendant gates. One
should design the control circuit carefully in order to avoid
hazards to the operation of the entire circuit. Some of the
difficulties in designing the control circuit and their solutions
are discussed in section 4.4.

In [7], a gated clock tree topology construction was suggested
for DSP chips. The authors used high-level synthesis
information to determine the tree topology. However,
geometric locations of the registers were not considered. In
contrast, our method applies to microprocessor chips and
considers the placement of the registers. In addition, we
propose a method for clock tree construction based on the
instruction frequencies of the processor. Instruction frequency
refers to the average percentage of the time an instruction will
be executed in the real programs. This can be extracted from
instruction level simulation of the processor with a number of
benchmark programs. The instruction frequencies are used to
extract the module activities as will be discussed in the
following sections. We will investigate how the probabilistic
information (instruction frequencies) and the geometrical
information (sink locations) are used to guide the low power
clock routing.

The remainder of this paper is organized as follows. Section 2
gives some terminology and the precise problem statement.
Section 3 describes how activities of the clock tree nodes are
calculated. Section 4 describes the clock tree construction
based on activities and sinks’ geometry. Sections 5 and 6
show our experimental results and conclusions.

Figure 1: Modules are moore-type machines

Combinational
Logic

R
egister

State

In

Clock

Out

2. PROBLEM DEFINITION

We assume that the topology of the clock tree is full binary,
that is, every non-leaf node has exactly two children.
However, the tree is not necessarily a balanced tree (depth of
leaf nodes may not be the same). Let T be the rooted clock
tree topology. Let {M1, M2,…,MN} be the modules. If there
are N modules, there are N–1 internal nodes. Let {v1,
v2,…,v2N-1} be the nodes of the clock tree where {v1, v2,…,vN}
are leaves and the rest are internal nodes of the tree. Let {e1,
e2,…,e2N-2} be the edges of the tree. We identify each point vi,
except the root, of the rooted topology T with edge ei, ei

connects vi to its parent in T (see Figure 2). Let | ei | be the
length of edge ei.

2.1 Switched Capacitance

Consider a clock tree without gates. For a particular edge e,
the power dissipation on the edge e is given by

2
0

2

1
)(ddVfecepower α=

where c0, α, f , Vdd are the unit wire capacitance, switching
activity of the clock net, the clock frequency, and the supply
voltage, respectively. For the clock net, α = 2 since there is
one rising and one falling edge in every clock cycle. So the
above equation becomes

2
0)(ddVfecepower =

If we can block the clock signal from reaching the edge e
without causing any hazard to the entire circuit, the power
dissipation in the clock tree can be reduced. We define node
activity as the percentage of the time a tree node v is

connected to the root of the clock tree through a series of
enabled gates from the root to the node and denote it as δ(v).
Since there is one edge for every node, this may be also called
edge activity. With activity control, the power dissipation in
edge ei is

2
0)()(ddiii Vfvecepower δ=

where the ei, vi relation was defined earlier.

During layout synthesis step, Vdd and f are user-specified
parameters, hence we use switched capacitance as a measure
of the power dissipation. The switched capacitance w(ei) of an
edge ei is given by

)()(0 iii vecew δ=

There can be a load capacitance associated with each node.
Including the node capacitance Ci at vi, the switched
capacitance is given by

)()()(0 iiii vCecew δ+=

The objective of our low power clock routing is to minimize

∑
∀

δ+=
ie

iii vCecTW)()()(0

subject to zero skew constraints.

3. ACTIVITY COMPUTATION

To get W(T), we need to compute δ(vi) for all the nodes. Let
P(Mi) be the probability that Mi is active (i.e. Mi receives the
clock signal). By default, δ(vi) = P(Mi) for any leaf node vi.
Suppose a non-leaf node vk merges two leaf nodes vi and vj.
Then the activity of vk is given by

)()(jik MMPv ∪=δ

In general, for any internal node vk,

)()(21 lk MMMPv ∪∪∪=δ � (1)

where M1, M2,…,Ml correspond to the leaf nodes of the
subtree rooted at vk.

If a Register Transfer Level (RTL) simulation is used to find
the probabilities in Equation (1), a huge number of clock-by-
clock module usages have to recorded. Certainly, the time
complexity will be very large. So we propose a method for
computing activities using more efficient instruction level
simulation of the processor and knowledge about RTL
description of the processor.

Figure 2. Gated clock tree

M1 M2 M3 M4

Gate
Control
Logic

CLOCK IN

Modules

v1 v2 v3 v4

v5 v6

v7

e1

e6e5

e2 e3 e4

3.1 Instruction Frequencies

By simulating the processor at the instruction level with a
number of benchmark programs, we can find out how often
each instruction is executed on the average. This information
is often vital to processor optimization at the architectural
level. Furthermore the RTL description of each instruction
tells us what modules are used to execute each instruction. For
example, we may have the following probabilities shown in
Table 1. For each instruction, the probability of its occurrence
is shown along with modules that are needed to execute the
instruction.

Instruction Used modules Probability(%)
I1 M1, M3, M6 15
I2 M1, M6 7
I3 M2, M3, M5 12
I4 M4, M10 20
I5 M5, M7, M9, M12 10
I6 M8, M13, M14 18
I7 M1, M6, M9, M11, M13 9
I8 M5 2
I9 M7 3
I10 M2, M4, M15 4

total 100 %

Table 1: Instruction frequencies and module usages

3.2 Activity Computation

Suppose vk has leaves{M1, M3, M5, M11}. Notice that if any
module in {M1, M3, M5, M11} is active at any time, vk must be
connected to the root. That is, for each instruction, if any of
its used modules appear in {M1, M3, M5, M11}, it should be
added up to the activity of vk. Such instruction list includes
{ I1, I2, I3, I5, I7, I8} and hence the activity of vk is 55(%).

Let P(Ii) be the instruction frequency of Ii, and let 0(Ii) and
0(vk) be the set of used modules of Ii and the set of leaf nodes
of vk respectively. Then δ(vk) is found by the procedure given
below.

PROCEDURE ComputeActivity(vk)
begin
 δ(vk) ← 0;
 for each instruction Ii

 if 0(Ii) ∩ 0(vk) ≠ φ then
 δ(vk) ← δ(vk) + P(Ii);
 end for
 return δ(vk);
end PROCEDURE

Let K be the total number of instructions. Also let L = max
(|M(Ii)|) for all i. For the above procedure, we can implement
disjoint set data structures on modules with which
FIND_SET(Mi) and UNION(Mi) can be done in O(1) and O(N)
respectively. The if statement can be done by performing
FIND_SET(Mi) for every used modules in the instruction,

which takes at most O(L). Thus the above procedure takes
O(KL).

4. CLOCK TREE CONSTRUCTION

4.1 Delay modeling

To estimate the phase delay of the clock tree, we used Elmore
delay modeling which was used in [8] for zero-skew clock
routing. Our zero-skew clock routing method is the same as
[8] except that we have gates at the internal nodes of the tree.
Inserting gates reduces the subtree capacitance in the Elmore
delay computation, thereby reduces the phase delay.

4.2 Minimum switched capacitance heuristic

Bottom-up merging followed by top-down placement method
is commonly used in clock routing. In [4], merging sector is a
line segment with slope ±1, which represents the possible
locations of Steiner node where its two subtrees are merged,
and these merging sectors are found in bottom-up. The actual
locations of nodes in the merging sectors are determined in
top-down fashion (see an example in Figure 3). The nearest-
neighbor heuristic of [5] greedily merges two nodes when the
geometric distance between the two corresponding merging
sectors is minimum. Our method is also greedy, but the
merging sequence is determined by the switched capacitance.

Let ms(vi) be the merging sector of vi. Suppose we try to to
merge (ms(vi), ms(vj)) and the root of the merged tree is vk. We
can uniquely determine |ei|, |ej| such that the zero skew
constraint is satisfied. Then the switched capacitance SC after
the merge of (ms(vi), ms(vj)) is

)()()()(),(00 jjjiiiji vCecvCecvvSC δδ +++= (2)

When we merge subtrees bottom-up, we merge sectors that
result in the smallest switched capacitance as given in
Equation (2). Without δ(vi) and the load capacitance Ci, Cj,

Figure 3: An example of bottom-up merging sequence

source

Steiner�nodes

Sinks

Merging�sectors

the problem is identical to that in [5]. Our entire algorithm is
outlined below.

PROCEDURE GatedClockRouting
Input : Instruction Frequency,
 Used modules for each instruction,
 Sink locations
Output : Clock Tree Layout with gates

begin
 // initially, every sink location is a merging sector itself
 for each pair of ms(vi), ms(vj)
 determine |ei|, |ej| satisfying zero-skew;
 compute SC between vi, vj (Equation (2));

end for

 // bottom-up merge
 repeat
 pick the pair ms(vx), ms(vy) whose SC is minimum
 create new node vk;
 0(vk) ← 0(vx) ∪ 0(vy);
 δ(vk) ← ComputeActivity(vk);
 find ms(vk);
 remove node vx, vy;

 for each remaining node vn

determine |ek|, |en| satisfying zero-skew;
compute SC between vk, vn (Equation (2));

 end for
 until only the root is left

 // top-down placement
 place internal nodes vk within each ms(vk);
end PROCEDURE

The repeat loop iterates N times and within each iteration, the
dominating complexity is either ComputeActivity which takes
O(KL) or the for loop which takes O(N). So the overall
complexity of our algorithm is O(N (N + KL)) (N, K, L are
defined previously).

Small switched capacitance means that

• the distance between vi, vj is short

• the activity of vk will be small.

It has been shown that merging the nearest neighbors is
effective in reducing the total wire length [5]. Also, if we
merge small activities, the resultant activity will be also small.
That is, if we merge nodes with higher activities first, in the
merging sequences that follow, the activity of nodes will be
constantly higher because activities increase monotonically as
we go up the tree. This means that we want to bring the high
activity nodes to the tree as late as possible so that the overall
activity in the tree will be reduced. Our method is similar to
the tree construction of Huffman encoding [3] except that our
method considers geometry of nodes in addition to the
probability of nodes.

4.3 Reduction of Gates

Inserting gates at every node of the clock tree may result in
large area and increase complexity of the control circuit and
the routing of the enable signals. There are cases when
inserting gates hardly reduces switched capacitance. We can
think of three cases when a node does not need a gate.

1. activity of the node is close to 1

2. switched capacitance of the node is very
small

3. activity of the parent node is almost the same
as activity of the node

Case (1) is obvious since there is no time frame during which
the node can be shut off. In case (2), the node's switched
capacitance is so small that having a gate can only reduce
switched capacitance marginally. In case (3), there is very
little increase in activity when we go up from the node to its
parent. In this case, it is not necessary for both the node and
its parent to have gates. Only the parent will have a gate, and
the resulting switched capacitance is at most slightly higher
than the case that both nodes have gates.

However, these gate removal schemes may remove so many
gates in the tree that the phase delay of the clock signal may
increase rapidly. So we included a rule for enforcing a gate
insertion regardless of those three schemes whenever the
subtree capacitance of the node reaches, say 20Cg, where Cg is
the input capacitance of a gate.

4.4 Design Issues in Gated Clock Routing

In this subsection, we discuss some of the issues in designing
the control logic. Assume that all the registers are triggered
by the clock rising edge or the clock `high'. The gated clock
should be designed so that every sink must see the clock pulse
as if the clock signal is never gated. Both the timing of the
clock rising edge and the clock pulse duration should be
preserved for correct operation of the entire circuit. To pass
the correct clock pulses, all the gates from the root to the
active module must be enabled before the clock edge comes
in. That is, if a module is to be active in the current clock
cycle, this fact must be known in the previous clock cycle.
This can be done, for example, in a microprocessor with
pipeline; instruction decoding stage determines the instruction
type and modules to use, and then the control logic enables
gates necessary to deliver clock signal from the root to the
specific modules in the execution stage.

Processors generate data path control signals for enabling tri-
state buffers or for addressing MUX outputs to feed the data
from the registers to specific combinational circuits.
Naturally, these data path control signals have similar timing
as the gate control signals. Some gate control signals may
even be shared with existing data path control signals.
Therefore gated clock control logic can be easily integrated
with the existing control circuitry for processor.

If the gate enable signal comes while the clock is high, the
sink may see unwanted transitions. Thus, the enable signal
should be on/off only when the clock is low. Besides, the
enable signals should not have glitches while the clock is high
because this may introduce extra clock pulse. In practice
however, designing glitch-free circuit is difficult. [1]
suggested to use a latch in addition to the gate to filter out
glitches while the clock is high. However, we do not need to
place latches at every internal nodes of the clock tree. It is
sufficient to use latches only at the last stages of the tree (the
gates immediately before the modules). The timing diagram
of an enable signal is shown in Figure 4.

Suppose a module is active for a number of consecutive clock
cycles. It is a waste of energy if enabling signals go on/off
when the module is active for a number of consecutive cycles.
To prevent this, the gate enable signal may be designed to
remain high for one or two clock cycles even after the module
is gone idle. This prevents unnecessary switching of the
enable signal between the consecutive active cycles of the
module. Note that it is harmless to feed the clock during the
idle time of the module.

5. EXPERIMENTAL RESULTS

We implemented our algorithm in C++ for Sun Sparc 20
workstations. For sink locations (module locations) and the
sink load capacitance, we used the benchmark r1-r5 from [8].
The instruction frequencies and the used modules for each
instruction are generated according to a probabilistic model of
the CPU when it executes typical programs. An instruction
can have a number of different operand addressing modes. If
an instruction has k different addressing modes, we consider it
as k different instructions because each addressing mode will
use different modules. The benchmark characteristics are
shown in Table 2. The number of instructions in the table is a
reasonable guess for a RISC machine when addressing modes
are considered. The average number of used modules per
instruction is made to be 40% for all the benchmarks (this can
be seen in the column labeled Ave(0(Ii))). That is, about 40%
of the modules are active at any given time on the average.
Note that the power consumption of the gated clock tree will
be at least 40% of the ungated clock tree as a result.

Bench No. of sinks No. of instr Ave(0 (Ii))
r1 267 64 107
r2 598 89 240
r3 862 108 345
r4 1093 120 438
r5 3101 160 1240

Table 2: Benchmark characteristics for gated clock routing

Our program takes from 1 second to 2 minutes on a Sparc 20
workstation for the above benchmarks. Detailed CPU times
are shown in the tables. We used 20 different random seeds to
generate module usage of the instructions for each benchmark.
The averages are shown in Table 3. In this experiment,
buffers/gates are inserted at every node of the clock tree. The
buffered clock tree is a commonly used method in current
clock routing. The buffered clock tree is constructed with
buffers whose size is half the size of AND-gates, which is a
reasonable assumption.

Gated clock trees are constructed using two heuristics, the
nearest neighbor heuristic and our proposed minimum
switched capacitance heuristic. The table shows that the
switched capacitance of the gated clock tree is much less than
the buffered clock tree with only marginal increase in wiring
costs over buffered clock tree. The power savings are almost
40% on the average, that is, the gated clock rooting consume
only 60% of the power consumed by the buffered clock trees.
Besides, our minimum switched capacitance heuristic further
reduces switched capacitance about 9% over the nearest
neighbor heuristic.

Another experiment shown in Table 4 uses gate reduction
scheme presented in section 4.3. Buffers are inserted using the
same scheme except that activities are disregarded. It can be
seen that reductions in switched capacitance are still
significant, that justifies the use of the gate reduction method.
Due to the reduced number of gates, switching reductions of
the gated clock trees are less than the previous experiment.
However, the number of gates is about 15 - 20% of the
previous experiment, which is a significant reduction in the
area occupied by the gates.

6. CONCLUSION

We presented a gated clock routing which has significantly
lower switched capacitance over buffered clock trees. We
presented a clock topology generation heuristic based on the
module activities and the sink locations. We proposed a
method that takes advantage of instruction level simulation to
find the node activities of the clock.

Our experimental results showed that the gated clock routing
significantly reduces power dissipation over buffered clock
routing with marginal increase in routing area and the number
of gates. Furthermore, our proposed minimum switched
capacitance heuristic further reduced power dissipation over
the nearest neighbor heuristic.

Figure 4: Timing requirements of the gate enable
signals

CLK

Enable

Gated CLK

idle active idleModule

In our power estimation of the clock tree, we have not
included the short circuit power, the power associated with the
additional control logic and with the routing of the enable
signals. However, also not included is the power saving on
modules, which is a more significant saving than the power
saving in the clock tree itself. We believe that the power
saving in the clock tree and the modules are large enough to
compensate the additional power consumption due to the
control logic and the enable signal routing. Furthermore, a
module in this paper refers to, from coarse to fine grain, a chip
(PCB, MCM) or a large functional unit (Floating-Point
Arithmetic) or any sequential elements in a circuit. In case the
module has several clock sinks, the sink location of the
module should be approximated as the geometric center of the
module’s original sinks. A designer should consider trade-off
among the power, area and the complexity of the gate control
logic. If the granularity is too coarse, the benefit of power
saving is less. On the contrary if it is too fine, the complexity
of gate control logic and the routing of the enable signal is too
high. A simulation of different design styles may be needed to
get optimum module granularity.

References

[1] Mazhar Alidina, José Monteiro, Srinivas Devadas, Abhijit Ghosh,
Marios Papaefthymiou, “Precomputation-Based Sequential Logic

Optimization for Low Power,” IEEE Transactions on VLSI Systems,
vol. 2, no. 4, pp. 426-436, December, 1994.

[2] Luca Benini, Giovanni De Micheli, “Automatic Synthesis of Low-Power
Gated-Clock Finite-State Machines,” IEEE Transactions on Computer-
Aided Design, vol. 15, no. 6, pp. 630-643, June, 1996.

[3] T. Cormen, C. Leiserson and R. Rivest, “Introduction to Algorithms,”
The MIT Press, pp. 337-343, 1990.

[4] Kenneth D. Boese and Adrew B. Kahng, “Zero-Skew Clock Routing
Trees With Minimum Wirelength,” Proc. IEEE International
Conference on ASIC, pp. 1.1.1-1.1.5, 1992.

[5] M. Edahiro, “Minimum Path-Length Equi-Distance Routing,” Proc.
IEEE Asia-Pacific Conf. on Circuits and Systems, pp. 41-46, 1992.

[6] David Patterson and John Hennessy, “Computer Architecture: A
Quantitative Approach,” Morgan Kaufmann Publishers, Inc., 2nd
Edition, 1996.

[7] Gustavo E. Téllez, Amir Farrahi, Majid Sarrafzadeh, “Activity Driven
Clock Design for Low Power Circuits,” Proc. International Conference
on Computer-Aided Design, pp. 62-65, 1995.

[8] R-S Tsay, “Exact zero skew,” International Conference on Computer-
Aided Design, pp. 336-339, 1991.

Bench r1 r2 r3 r4 r5
total wiring 1297790 2550399 3288430 6755468 9971453
switched cap [1] 56236 119395 164935 354116 555859

Buffered
Tree * (NN)

CPU time(sec) 0.36 1.58 3.34 15.67 41.34
total wiring 1297790 2550399 3288430 6755468 9971453
switched cap [2] 30699 78710 96465 212117 306425
CPU time(sec) 0.41 1.8 3.76 17.42 45.97

Gated Clock
Tree
(NN)

([1]-[2])/[1] (%) 45.4 34.1 41.5 40.1 44.8
total wiring 1537978 3187166 4064631 8353696 12164903
switched cap [3] 27878 72763 88016 194129 277833
CPU time(sec) 0.64 3.23 6.73 33.91 88.95

Gated Clock
Tree
(MSC)

([2]-[3])/[2] (%) 9.2 7.6 8.8 8.5 9.3

Table 3: Routing costs and switched capacitances of buffered clock tree vs gated clock tree. Buffers/gates are placed at every node.
Note: * - buffer size = 1/2 gate size, NN - Nearest Neighbor heuristic, MSC - Minimum Switched Capacitance heuristic, wiring
cost in λ, capacitance in femto Farad(fF).

Bench r1 r2 r3 r4 r5
total wiring 1320155 2664806 3389032 6842366 10247289
switched cap [1] 43784 92464 124646 261174 405375
no. of buffers 102 220 312 648 1000

Buffered
tree (NN)

CPU time(sec) 0.37 1.59 3.30 15.73 41.34
total wiring 1321959 2662414 3381709 6829282 10198714
switched cap [2] 25936 57045 65393 155272 256748
no. of gates 118 248 348 732 1108
CPU time(sec) 0.41 2.06 3.77 17.62 46.35

Gated Clock
Tree (NN)

([2]-[1])/[1] (%) 40.7 38.3 47.5 40.5 36.7
total wiring 1702113 3489634 4643665 9812025 14101057
switched cap [3] 22767 49930 61076 148869 235117
no. of gates 176 348 456 1006 1444
CPU time(sec) 0.77 6.97 8.07 40.85 107.92

Gated Clock
Tree (MSC)

([2]-[3])/[2] (%) 12.2 12.5 6.6 4.1 8.4

Table 4: Routing costs and switched capacitances of buffered clock tree vs. gated clock tree with gate reduction scheme. Buffer s are
inserted when a node's subtree capacitance is more than 20Cg.

	CD-ROM Home Page
	ASP-DAC98
	Front Matter
	Table of Contents
	Session Index
	Author Index

