
Loop Pipelining in Hardware-Software Partitioning

Jinhwan Jeon and Kiyoung Choi
School of Electrical Engineering

Seoul National University
Seoul, Korea 151-742
Tel: +82-2-880-5457
Fax: +82-2-887-6575

e-mail: {jeonjinh,kchoi}@poppy.snu.ac.kr

Abstract
This paper presents a hardware-software partitioning algo-

rithm that exploits a loop pipelining technique. The partitioning
algorithm is based on iterative improvement. The algorithm tries
to minimize hardware cost through hardware sharing and
hardware implementation selection without violating given per-
formance constraint. The proposed loop pipelining technique,
which is an adaptation of a compiler optimization technique for
instruction level parallelism, increases parallelism within a loop
by transforming the structure of an input system description. By
combining this technique with our partitioning algorithm, we
can further reduce the hardware cost and/or improve the per-
formance of the partitioned system. Experiments show about
19% performance improvement and 44% reduced hardware for
a JPEG encoder design, compared to the results without loop
pipelining.

1. Introduction
Mixed hardware and software implementation is common

in the design of digital systems such as communication sys-
tems, DSP applications, and embedded systems. In general,
software is easy to modify, maintain, and upgrade, though it is
slow compared to hardware. Hardware can be made faster
than software but the cost for all hardware solution is usually
too high. An issue raised in designing such systems is to find
an optimal point in between all hardware solution and all
software solution where we obtain maximum performance at
a minimum hardware cost. This process is called hardware-
software partitioning.

There are some heuristics proposed for hardware-software
partitioning problem [1, 3, 4, 5, 6, 7, 9, 11]. Gupta et al.[4]
proposed a hardware-oriented approach in which all the op-
erations except for the data dependent delay operations are
initially mapped to hardware. Then the partitioner repeats
moving a node to software while performance constraints are
met. Selection of the node to be moved to software is done by
a greedy method. Ernst, Henkel, and Benner [3, 5] proposed a
software-oriented approach in which all the units of parti-
tioning(called BSB) are initially mapped to software. They
used a simulated annealing algorithm for partitioning. Vahid
et al. [11] proposed a binary-constraint search algorithm
which searches the design space while changing the hardware
constraint in a binary-search fashion. For each hardware con-
straint, they run a simulated annealing algorithm and check to
see if the performance constraint is met. Kalavade et al. [6, 7]
proposed a global criticality/local phase(GCLP) driven algo-
rithm and hardware-software mapping and implementation

bin selection(MIBS) algorithm. The key feature of the algo-
rithm is the adaptive objective mechanism by global and local
measures. This algorithm applies two objectives according to
global-time criticality. If the global time is critical, the objec-
tive function is to reduce the latency. Otherwise, the objective
function is to minimize the hardware resources. Since GC
does not contain the information on each node, local-
phase(LP) is used to represent the preference of each node.
MIBS is the extension of GCLP. This algorithm not only
partitions the nodes but also finds the implementation method
of a hardware node to minimize hardware resource. Knudsen
et al. [9] proposed a dynamic programming algorithm. This
algorithm assumes an execution model in which software
cannot execute other jobs while hardware is running, and
assumes a realistic communication model. Based on this
model, the algorithm finds an optimal solution using dynamic
programming method. Adams et al. [1] proposed a multiple-
process behavioral synthesis algorithm for heterogeneous
systems. They use an inter-process code motion to partition
and allocate an input system description which is originally
composed of one process. To schedule code segments within
a process, intra-process code motion is used. Such code mo-
tions are made at random to increase concurrency between
processes and to improve performance and cost, while overall
performance and cost is optimized by simulated annealing.

The approaches in [3, 5, 9, 11] assume an execution model
that does not allow parallel execution of hardware and soft-
ware, leading to limited performance improvement. Though
other approaches [1, 4, 6, 7] exploit the parallelism that
resides in the system, they only utilize the explicit parallelism
given by the input description. Therefore, codesign approach
for software acceleration seems to have little advantage over
pure software solution [12].

In this paper, we propose a loop pipelining technique whi-
ch increases parallelism for more effective hardware-software
partitioning. In addition, we propose yet another partitioning
algorithm which maps nodes to hardware or software consid-
ering various hardware implementation alternatives and
hardware resource sharing. Though the proposed loop pipe-
lining technique is not a new idea, we show that a simple
combination of pipelining technique with partitioning algo-
rithm gives more room for software acceleration with less
hardware cost than existing algorithms, which is the contribu-
tion of our work. Our partitioning algorithm with loop pipe-
lining is suitable for computation-intensive applications
mainly composed of loops, as is common in most DSP appli-

cations. Bakshi et al. recently proposed a method [13] which
also deals with the same subject: partitioning and pipelining.
They perform hardware-software partitioning by simply map-
ping a node to hardware if it cannot meet throughput con-
straint in software by itself. Then they repeat an optimization
process consisting of pipelining, scheduling and processor
allocation until the throughput constraint is met. However,
their simple partitioning scheme does not work - that is, all
the nodes are mapped to software - when every node meets
the throughput constraint, as is often the case when small
granularity is used. In that case, they prefer all software solu-
tion in multi-processor target architecture to mixed hardware-
software solution. However, multi-processor solution is not
always cheaper than one-processor solution with small ASIC.
In our approach we perform pipelining before partitioning.
Therefore, we can consider all the nodes as hardware candi-
dates. Moreover, we can combine our loop pipelining tech-
nique with any other existing partitioning algorithm.

Our paper is organized as follows. In section 2 we give an
overview of our partitioning algorithm. In section 3, we pro-
pose a loop pipelining technique for partitioning and an algo-
rithm for solving the extended hardware-software partitioning
problem. Section 4 shows experimental results before we
conclude in section 5.

2. Overview
Figure 1 illustrates the steps used to partition an input sys-

tem description. The first step is to transform an input be-
havioral description into a CDFG which is used as an inter-
mediate format for hardware-software partitioning. The
CDFG is formally defined as a graph G=(N, E), where each
node represents an operation or a set of operations (e.g., task,
process, and code grouping) and each edge represents data
and control dependency between nodes.

C D F G

In p u t D e s c r ip tio n
(C , V H D L)

H a rd w a re S y n th e s is
In fo rm a t io n

S o ftw a re P ro f il in g
In fo rm a t io n

P a r tit io n e rE s tim a to r

C o s t F u n c tio n

P e r fo rm a n c e
C o n s tra in t

L o o p P ip e lin in g

Figure 1. Overview of hardware-software partitioning steps.

The second step is to obtain hardware synthesis and soft-
ware profiling information for partitioning. Task(leaf proce-
dure or function) level granularity is used to obtain such in-
formation from the CDFG. Hardware synthesis is done by
Hyper [2]. Hyper is a performance-constrained area-

minimizing high-level synthesis tool. We can obtain many
implementation alternatives by changing the performance
constraint. The synthesis information from Hyper includes the
number of used execution units, the number of register files,
total execution delay, and the cost for each execution unit.
For the purpose of hardware synthesis, we must translate the
CDFG into Silage [2]. Since we have not implemented an
automatic translator yet, the translation is done manually.
However, we have implemented a tool for translation from
CDFG to C code and we use it to obtain software profiling
information including execution delay and invocation count
of each task.

The final step is to partition the CDFG into hardware and
software part to satisfy the performance constraint given by
the user. The hardware synthesis information and the software
profiling information obtained in the previous step are used
for estimating the execution time and the hardware cost. The
partitioning step is composed of loop pipelining stage and
iterative improvement stage. Loop pipelining is performed
before the iterative improvement stage in order to increase
parallelism within a loop. In the iterative improvement stage,
hardware-software partitioning is performed such that the cost
is minimized while maintaining the performance above the
constraint. In this stage, we consider various hardware im-
plementation alternatives to select possibly the best one, share
hardware modules, as well as perform hardware-software
mapping.

Currently our target architecture consists of a single gener-
al purpose processor and multiple ASICs, although the pro-
posed algorithm can be extended to the case of multiple proc-
essors by replacing the performance estimation method(in
section 3.2) with a scheduling method proposed in [4]. We
assume a memory mapped communication model where no
hardware is dedicated for communication - that is, software is
blocked until communication completes.

3. Partitioning Approach

3.1. Notation
Our partitioning algorithm focuses on performance-

constrained hardware cost minimization. The performance
constraint given by the user is denoted as D. We denote a
node in a CDFG as ni and an edge from ni to nj as ei,j. Each
node ni has information including the execution delay(di) and
hardware-software mapping. Each node ni has hardware im-
plementation alternatives which can be represented by an
implementation curve IHi. Such curves can be obtained using
Hyper [2].

We denote the set of all the predecessors(successors) of ni

as pred(ni)(succ(ni)). If a node ni is chosen to be implemented
in hardware and the predecessors(successors) are imple-
mented in software we insert a communication nodes between
ni’s predecessors(successors) and ni. We denote the commu-
nication node between nj and ni(ni and nk) as ncj,i(nci,k) , and
the communication delay as dcj,i(dci,k), where
n pred nj i∈ § ¨(n succ nk i∈ § ¨).

3.2. Estimation
The partitioner evaluates the quality of a partitioned sys-

tem based on two metrics; total execution delay and total
hardware cost. First, the total execution delay is estimated by
a simple list scheduling algorithm, which is similar to the one
proposed in [10]. For the list scheduling of hardware nodes,
priority is given to a node with the largest sum of its own
delay and all successors’ delays, thereby allowing the most
critical hardware node to be scheduled first. For software
nodes, priority is given to a node which has a hardware suc-
cessor with the highest priority, thereby allowing a software
node that leads to the most critical hardware node to be
scheduled first. We prioritize software nodes only for a better
scheduling of hardware nodes because ordering of software
nodes does not affect the performance of the software when
we use a single processor. According to this scheme, priority
value pi of a node ni is defined as











 +

= ∅≠∩∧∈

∈

∩∈

∈
∑

otherwise

p

dd

p HWNinsuccSWNinif

HWNinif

k
Nnsuccn

i
nsuccn

k

i
HWik

ik

0

)(max))(()(
)(

)(

where NHW(NSW) denotes the set of all hardware(software)
nodes. We consider hardware sharing effect during list sched-
uling by making the sharing nodes have the same resource id.
This list scheduling algorithm is applied to each basic block
in the CDFG to obtain an estimation of the execution delay
for each basic block. Then, by recursively summing up all the
values obtained by multiplying invocation count of each basic
block to the block’s execution delay, we can calculate the
total execution delay.

We estimate the total hardware cost based on the synthesis
information provided by Hyper. In Hyper, this cost is hard-
ware area. If there is no sharing among hardware nodes,
hardware cost is estimated simply by summing up the hard-
ware cost of each hardware node. If multiple hardware nodes
share hardware resources, the total cost is reduced by the
amount of shared resources. To consider resource sharing, we
need to example the hardware architecture. The target archi-
tecture of Hyper is composed of execution units, register files,
a control unit, and multiplexers which are connected by a
crossbar network. Currently, among these hardware re-
sources, we consider only the execution units as hardware
resources that can be shared. We estimate the total hardware
cost by subtracting the cost of shared resources from the sum
of all the hardware nodes’ costs. We ignore the area increase
due to the added multiplexers and wiring.

3.3. Loop Pipelining
Since loop is generally the most time-critical part in the

computation-intensive applications, there have been many
loop optimization techniques for parallel computing. Software
pipeline is one of those techniques, which overlaps the ex-
ecution of code blocks in different iteration steps. To allow
such an execution overlap, there must be no data dependency
between subsequent loop iterations. Most data processing

algorithms, which receive an input data stream and generates
an output data stream, have a structure suitable for this kind
of optimization.

Loop pipelining technique for partitioning, which we pro-
pose in this paper, is an adaptation of software pipeline tech-
nique to increase the parallelism within a loop. We can ex-
ploit the parallelism through concurrent execution of hard-
ware and software as well as concurrent execution of hard-
ware modules. Our loop pipelining technique for partitioning
consists of the following three steps. We assume that user
gives the number of pipeline stages(Nps) beforehand.

1. Find feedback edges which represent data dependencies
to the next iteration of the loop. Then, for each feedback
edge ei,j, make a cluster node which consists of nodes that
exist between ni and nj. Finally, recursively merge cluster
nodes that share a node into a cluster node such that there
are no common nodes among cluster nodes.

2. By grouping nodes and/or cluster nodes in topological
order, make initial pipeline blocks which can be over-
lapped within the loop. Then by repeatedly moving a node
from one pipeline block to the neighboring pipeline block,
find an optimized set of pipeline blocks such that the
communication between pipeline blocks is minimized and
delays of all the blocks are balanced. During this process,
we make the number of pipeline blocks equal to Nps.

3. Transform the loop such that all the pipeline blocks can
run in parallel.

The purpose of the first step is to prevent a feedback edge
from being cut by pipeline block boundary. All the nodes
connected by a feedback edge are put into a cluster node.
Otherwise, the pipelining may cause data dependency viola-
tion. Figure 2 (a) shows this step.

In the second step, an initial set of pipeline block is built
by grouping nodes such that the number of pipeline blocks is
equal to Nps. In Figure 2 (b), two pipeline blocks, b1 and b2,
are built by the procedure listed in step 2. The criteria for
grouping is the execution delay of each pipeline block and the
communication between subsequent pipeline blocks. First, it
is desirable that the execution delay of each pipeline block be
equal in order to reduce the critical path of the transformed
loop and increase parallelism among partitioned blocks. Sec-
ondly, since variable copy instructions (s7 in Figure 2 (c))
should be inserted to compensate for the cut edges, it is desir-
able that the communication between subsequent pipeline
blocks be minimized in order to reduce the overhead induced
by variable copy instructions and communication overhead
from or to hardware nodes. For these optimizations, we use a
greedy method which reduces cost function fL defined as

∑∑
−

==
⋅+−=

1

11

)(
P

i
icomm

P

i

loop
bL bn

P

d
df

i
α

where P, dbi, dloop, ncomm(bi), and α are number of pipeline
blocks, delay of a pipeline block bi, execution delay of the
loop, communication overhead from bi to bi+1, and weighting
factor, respectively.

In the final step, we transform the loop such that all the
pipeline blocks can run in parallel, as shown in Figure 2 (c).
Note that variable y in s3 in the loop is renamed as y2 so that
b1 and b2 can run in parallel, and s7 is added as an epilogue
code of the loop so that b2 can use the updated value of vari-
able y in the next iteration. Recall that in the second step of
loop pipelining technique, we try to reduce the overhead of
this epilogue code.

s5: a := f3(z, b);

s2: x := f0(i);

s3: y := f1(x);

s4: z := f(a, y);

x

y

za

loop: i (0 ... N)

a

b

s1: b := g0();

s6: c := g1(a);

b

s5: a := f3(z, b);

s2: x := f0(i);

s3: y := f1(x);

s4: z := f2(a, y);

x

y

za

loop: i (0 ... N)

a

b

s1: b := g0();

s6: c := g1(a);

b

s5: a := f3(z, b);

s2: x := f0(0);

s3: y := f1(x);

s4: z := f(a, y);

x

y

za

loop: i (1 ... N)

a

b

s1: b := g0();

s6: c := g1(a);

b

s5: a := f3(z, b);

s2: x := f0(i);

s3: y 2:= f1(x);

s4: z := f2(a, y);

x

y2

z b

s7: y := y2;

b1

b2

b1

b1b2

b2

(a) merging nodes connected
 by a feedback edge

(b) making pipeline block (c) overlapping pipeling blocks

Figure 2. Loop transformation by loop pipelining.

This method can also be used as a post optimizer to im-
prove the performance of a partitioned system. Figure 3 illus-
trates the performance improvement by loop transformation.
Assume Figure 3 (a) is the partitioned system by hardware-
software partitioner, where s4 and s5 is mapped to hardware.
In the original structure, the processor should be idling while
s4 and s5 are running because there are no jobs to execute in
parallel. However, if we transform the structure of the loop as
shown in Figure 3 (b), the processor can execute s2 and s3
while the hardware is running s4 and s5.

s 5 : a := f3 (z , b) ;

s 2 : x := f0 (i) ;

s 3 : y := f1 (x);

s 4 : z := f2 (a , y) ;

x

y

za

lo o p : i (0 . . . N)

a

b

s 1 : b := g 0 () ;

s 6 : c := g 1 (a);

b

s 7 : S e n d (y);

s 8 : a := R e c v ();

a

s 5 : a := f3 (z , b) ;

s 2 : x := f0 (0);

s 3 : y := f1 (x);

s 4 : z := f2 (a , y) ;

x

y

za

lo o p : i (1 . . . N)

b

s 1 : b := g 0 () ;

b

s 7 : S e n d (y);

s 5 : a := f3 (z , b) ;

s 2 : x := f0 (i) ;

s 3 : y 2 := f1 (x) ;

s 4 : z := f2 (a , y) ;

x

y 2

z

a

b

s 6 : c := g 1 (a);

s 9 :y := y 2 ;

s 8 : a := R e c v ();

a

y

(a) p a r t i t io n e d sy s tem (b) tra n s fo rm e d sy s te m

Figure 3. Loop transformation as a post optimizer for a parti-
tioned system.

3.4. Partitioning Algorithm
Our partitioning algorithm makes decisions regarding the

implementation of a hardware node, sharing among hardware
nodes, and hardware-software mapping, subject to given per-

formance constraint. Figure 4 shows a pseudo code of the
partitioning algorithm, where total_delay() procedure and
total_cost() procedures are total execution delay estimator
and total hardware cost estimator, respectively. The Reduce-
Cost() procedure used in the algorithm tries to incrementally
reduce and update total hardware cost according to the proce-
dural steps listed below:

1. Find a pair of hardware modules which reduce total hard-
ware cost maximally by sharing, while satisfying the per-
formance constraint.

2. Find a node n Ni HW∈ which reduces the total hardware

cost maximally while satisfying the performance constraint,
when it is moved to another point in the implementation
curve IHi.

3. Find a node n Ni HW∈ which reduces the total hardware

cost maximally while satisfying the performance constraint,
when it is mapped to software.

4. Among the candidates obtained from steps 1-3, adopt the
candidate whose cost reduction is maximum.

5. Repeat steps 1-4 until no more candidates are available.

Figure 4. Pseudo code of the partitioning algorithm.

/* Input: CDFG G(N, E), performance constraint D */
/* Output: partitioned CDFG G(N, E) */
Partition (G(N, E), D)
{
Gbest=G; NHW=φ; NSW=N;
/* first phase */
G=GreedyPartition(G); /* initial partition by greedy method */
Gbest = ReduceCost(G); /* Reduce hardware cost */
costbest = total_cost(Gbest); / * cost of initial partition */

/* second phase : iterative improvement */
do {

Nfixed=φ;

/* first inner loop: over allocate hardware node */
 for (i=0; i<Nmax; i++) {
 ncan=ni ∈ NSW, where {speedup/cost} is maximum in HW;
 NHW=NHW ∪ ncand; NSW=NSW - ncand;
 G’=ReduceCost(G);

 if (costbest > total_cost(G’))
 { Gbest = G’; costbest = total_cost(G’); }

}

/* second inner loop: deallocate hardware node */
 do {
 /* map a node with the maximum hardware cost to software */
 ncand =ni ∈ (NHW - Nfixed), where cost reduction is maximum in SW;
 NSW=NSW ∪ ncand; NHW =NHW - ncand; Nfixed=Nfixed ∪ ncand;

 /* map SW nodes to HW to meet performance constraint */
 while (total_ delay(G) > D) {
 ncand=ni∈(NSW - Nfixed), where {speedup/cost} is maximum in
HW;
 NHW = NHW ∪ ncand; NSW = NSW - ncand; Nfixed = Nfixed ∪ ncand;
 }
 G’=ReduceCost(G);

 if (costbest > total_cost(G’))
 { Gbest = G’; costbest = total_cost(G’); }
 } while (Nfixed ≠ N);
 G = Gbest;
} while (cost improvement is obtainable);
return G;
}

The partitioning algorithm consists of two phases. In the
first phase of the partitioning algorithm, starting from all
software solution, GreedyPartition() procedure makes an
initial partition that satisfies the performance constraint by
repeatedly mapping a node, which has the maximum speedup
per cost, to hardware. During the GreedyPartition(), the im-
plementation of a hardware candidate node ni is selected at
the fastest point of IHi.

In the second phase, the algorithm iteratively improves the
initial partition within in the two nested loops. In the first
inner loop, a software node is mapped to hardware while
reducing the cost by ReduceCost() procedure, until the num-
ber of moved nodes reaches Nmax which is proportional to the
number of nodes. The purpose of the first inner loop is to give
more chance of cost reduction during ReduceCost() proce-
dure by allocating more hardware nodes than are needed. In
the second inner loop, we select a node from the set of nodes
currently mapped to hardware and move it to software. We
select a node which will reduce the total hardware cost maxi-
mally after the move. Then nodes mapped to software are
repeatedly moved to hardware until the performance con-
straint is met. The implementation of the nodes moved to
hardware is selected at the fastest point of IHi. During this
procedure, once a node is moved to the other partition group
(hardware to software or software to hardware), it is fixed in
order to prevent from being re-selected as a candidate node.
After performance constraint is met through the above proce-
dure, ReduceCost() procedure is called in order to reduce the
total hardware cost. If total hardware cost reduced by Re-
duceCost() is less than the best hardware cost obtained so far,
current partition is saved as the best partition. Note that the
partitioning result by ReduceCost() is saved to G’ not G. One
reason for this is that ReduceCost() can change the mapping
of a fixed hardware node to reduce total hardware cost and
saving the result to G could cause problem to the iteration
process. Another reason is that accumulating the result by
ReduceCost() may prevent G from escaping from local opti-
mum in the iterative improvement process. The inner loop
repeats the above procedure until all the nodes are fixed,
while outer loop repeats the inner loop until no more im-
provement is available.

4. Experimental Results
The partitioning algorithm with loop pipelining is imple-

mented in C++ under UNIX environment. We use a JPEG
encoder which is described in 977 lines of C code as an ex-
ample. This example is a computation-intensive application
which consists of two main loops and 20 tasks. The granular-
ity of partitioning is task-level (i.e. the leaf task), where each
task has 4-5 hardware implementation alternatives. Software
profiling information is obtained on SPARC 1. We assume a
memory-mapped communication model with 2 clocks of
communication overhead for 32bit data transfer.

Figure 5 shows design space curves for the example ob-
tained by our partitioning algorithm in the following two
different cases:

case 1: partitioning without loop pipelining.
case 2: partitioning with loop pipelining.

PNPeKPP

RNPeKPW

TNPeKPW

VNPeKPW

XNPeKPW

QNPeKPX

QNReKPX

QNTeKPX

QNVeKPX

QNXeKPX

RNPeKPX

PNX QNX RNX

�����

H���I

����
���� Q H�������

���� ����������I

���� R H����

���� ����������I

Figure 5. Hardware-software partitioning result for a JPEG
encoder.

In case 2, we set the number of pipeline block P as 3 for
each main loop. From the figure, we can see that the curve of
case 2 is always on the left side of that of the case 1. This
means that the partitioned system of case 2 is always faster
that that of case 1 when they have the same hardware cost.
The minimum delay of case 1 is 1.1 with hardware cost of
1.83E+8, whereas that of case 2 is 0.89 with hardware cost of
1.01E+8. The improvement of the minimum delay by loop
pipelining technique is about 19%. The improvement of the
cost with the delay kept constant is 7 to 70%. This fact ex-
plains that loop pipelining for hardware-software partitioning
is effective in improving both performance and cost.

To the best of our knowledge, there is no previous algo-
rithm that considers hardware sharing and implementation
selection at the same time. Therefore, we compare the result
of the proposed algorithm with that of our own simulated
annealing algorithm in order to show the effectiveness of our
iterative improvement partitioning algorithm. Simulated an-
nealing is an algorithm based on the concept of the prob-
abilistic selection of randomly generated states [8]. We gen-
erate a new state by three random moves; toggling hardware-
software mapping(M1), changing the state of hardware shar-
ing(M2), and changing the implementation of a hardware
node(M3). The generation probability of M1 is 0.5 while M2
and M3 is generate at the same probability of 0.25. The cost
function fA of the annealing is defined as

thardwarecdcf A cos_21 ⋅+∆⋅=
where c1 and c2 are weighting factors, and ∆d is 0 if the total
execution delay is smaller than D and is
|total_execution_delay-D| otherwise. To satisfy the perfor-
mance constraint, c1 is scheduled to increase as annealing
process proceeds with the cooling ratio of 0.9. Table 1 com-
pares the partitioning result of the proposed algorithm with
that of the simulated annealing. We exclude the information
on computation time, since our comparison intends to show
not the efficiency but the effectiveness of the proposed algo-
rithm. The proposed algorithm is of course much faster (about
order of magnitude) than simulated annealing. The results of
the simulated annealing are obtained by selecting the best cost

after running the program 5 times. From the table, we can see
that our algorithm find a solution comparable to that of
simulated annealing.

Table 1. Comparison of the proposed algorithm with simulated
annealing.

Our algorithm Simulated Annealing
w ithou t loop

p ipelin ing
with loop
pipelining

w ithou t loop
p ipelin ing

With loop
pipelining

D(sec)
HW cost HW cost HW cost HW cost

3.0 0 0 0 0
2.5 1349888 1118208 1349888 1096478
2.2 9493399 5404288 9493399 5404288
2.0 15751271 9458688 15751271 9842357
1.8 23116680 21457030 22836983 19753436
1.5 80949548 29907451 95992889 28140225
1.4 99761876 30139131 99761876 28218085
1.2 136188746 68323032 135950292 68468184
1.1 182659983 97306200 183178053 97428184
0.9 101499608 104438617

To see the effect of hardware sharing and implementation
selection, we test our algorithm without these features. Table
2 shows the results obtained by our algorithm with loop pipe-
lining but without hardware sharing or implementation selec-
tion. When we test our algorithm without the feature of im-
plementation selection, we fix the implementation of each
node ni at the median point in the implementation curve IHi.

We don’t fix the implementation at the slowest point in the
implementation curve because we cannot satisfy tight perfor-
mance constraint by using such an implementation. The re-
sults in Table 2 shows that sharing and implementation selec-
tion is effective for reducing the total hardware cost of the
partitioned system.

Table 2. Partitioning results without hardware sharing or im-
plementation selection

Without sharing Without implementation
selection (median point)

D (sec) HW cost % cost in crease HW cost % cost in crease
3.0 0 0 0 0
2.5 1380638 23.5 1710449 53.0
2.2 5783996 7.0 6297713 16.5
2.0 9838396 4.0 10352113 9.4
1.8 22230200 3.6 21457030 0
1.5 35561532 18.9 30773958 2.9
1.4 35910490 19.1 31306822 3.9
1.2 78562734 15.0 82082528 20.1
1.1 114549312 17.7 114170208 17.3
0.9 121214978 19.4 118409952 16.7

5. Conclusions
In this paper, we proposed a hardware-software partition-

ing algorithm with loop pipelining technique which is suitable
for computation-intensive applications composed of loops.

Loop pipelining technique is effective for partitioning be-
cause this technique increases parallelism within a loop
thereby allowing partitioning algorithm to find a better solu-
tion. Thanks to increased parallelism, we can find a lower
cost solution at given performance constraint and a better

performance solution at given hardware cost constraint. In
addition, our hardware-software partitioning algorithm, which
is based on an iterative improvement method, allows hard-
ware implementation selection and hardware sharing to
minimize hardware cost, subject to performance constraint.
Experimental results show that (i) loop pipelining technique
is effective in that it provides more chance of overlapping the
execution of hardware and software during partitioning proc-
ess and (ii) the proposed algorithm efficiently finds a solution
comparable to that of a simulated annealing algorithm.

Future work includes dynamically changing pipeline
blocks according to the current partition state, thereby in-
creasing the effect of loop pipelining further. Recall that in
the current implementation, we determine pipeline blocks
statically before the partitioning process. We are also working
on considering multiple processor target architecture for
software implementation.

References
[1] J. K. Adams and D. E. Thomas, “Multiple-Process Behavioral Synthesis

for Mixed hardware-Software Systems,” Proceedings of International
Symposium on System Synthesis, pp. 10-15, 1995.

[2] C. Chu, et al., “HYPER: An interactive synthesis environment for high
performance real time applications,” Proceedings of International
Conference on Computer Design, November 1989.

[3] R. Ernst and J. Henkel, “Hardware-Software Cosynthesis for Microcon-
trollers,” IEEE Design & Test of Computers, pp. 64-75, December
1993.

[4] R. K. Gupta and G. De Micheli, “System-level Synthesis using Re-
programmable Components,” Proceedings of EURO-DAC’92, pp. 2-7,
February 1992.

[5] J. Henkel, T. Benner, and R. Ernst, “Hardware generation and partition-
ing effects in the COSYMA system,” Proceedings of Int’l Workshop on
Hardware-Software Codesign, pp. 29-40, October 1993.

[6] A. Kalavade and E. A. Lee, “A Global Criticality/Local Phase Driven
Algorithm for the Constrained Hardware-software Partitioning Prob-
lem,”, Proceedings of Int’l Workshop on Hardware/Software Codesign,
pp.42-48, September 1994.

[7] A. Kalavade and E. A. Lee, “The Extended Partitioning Problem: Hard-
ware-software Mapping and Implementation-Bin Selection,” Proceed-
ings of Int’l Workshop on Rapid Systems Prototyping, June 1995.

[8] S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecchi, "Optimization by Simu-
lated Annealing," Science, vol. 220, pp. 671-680, May 1983.

[9] P. V. Knudsen and J. Madsen, “PACE: A Dynamic Programming Algo-
rithm for Hardware-software Partitioning,” Proceedings of Int’l Work-
shop on Hardware/Software Codesign, pp. 85-92, March 1996.

[10] K. Olukotun, R. Helaihel, J. Levitt and R. Ramirez, “A Software-
Hardware Cosynthesis Approach to Digital System Simulation,” IEEE
Micro, pp. 48-58, August 1994.

[11] F. Vahid, J. Gong, and D. D. Gajski, “A Binary-Constraint Search
Algorithm for Minimizing Hardware during Hardware-software Parti-
tioning,” Proceedings of EURO-DAC’94, pp. 214-219, 1994.

[12] M. Edwards, “Software Acceleration Using Coprocessors: Is it Worth
the Effort?,” Proceedings of Int’l Workshop on Hardware/Software
Codesign, pp. 135-139, March 1997.

[13] S. Bakshi and D. D. Gajski, “Hardware/Software Partitioning and
Pipelining,” Proceedings of Design Automation Conference, pp.713-
716, June 1997.

[14] P. Pjorn-Jorgensen and J. Madsen, “Critical Path Driven Cosynthesis
for Heterogeneous Target Architecture,” Proceedings of Int’l Workshop
on Hardware/Software Codesign, pp. 15-19, March 1997.

	CD-ROM Home Page
	ASP-DAC98
	Front Matter
	Table of Contents
	Session Index
	Author Index

