Loop Pipelining in Hardware-Software Partitioning

Jinhwan Jeon and Kiyoung Choi
School of Electrical Engineering
Seoul National University
Seoul, Korea 151-742
Tel: +82-2-880-5457
Fax: +82-2-887-6575
e-mail: {jeonjinh,kchoi}@poppy.snhu.ac.kr

Abstract bin selection(MIBS) algorithm. The key feature of the algo-

This paper presents a hardware-software partitioning algo- rithm is the adaptive objective mechanism by global and local
rithm that exploits a loop pipelining technique. The partitioning measures. This algorithm applies two objectives according to
algorithm is based on iterative improvement. The algorithm tries global-time criticality. If the global time is critical, the objec-
to minimize hardware cost through hardware sharing and tjye function is to reduce the latency. Otherwise, the objective
hardware implementation selection without violating given per- fnetion is to minimize the hardware resources. Since GC
formance constraint. The proposed loop pipelining technique, 00 ot contain the information on each node, local-
which is an adaptation of a compiler optimization technique for .
instruction level parallelism, increases parallelism within a loop phase(LP) is used t_o represent the p.referen(.:e of each node.
by transforming the structure of an input system description. By M”—”S_ is the extension of G(_:LP. ThI'S algorlthm_not only
combining this technique with our partitioning algorithm, we Partitions the nodes but also finds the implementation method
can further reduce the hardware cost and/or improve the per- Of a hardware node to minimize hardware resource. Knudsen
formance of the partitioned system. Experiments show about et al. [9] proposed a dynamic programming algorithm. This
19% performance improvement and 44% reduced hardware for algorithm assumes an execution model in which software
a JPEG encoder design, compared to the results without loop cannot execute other jobs while hardware is running, and

pipelining. assumes a realistic communication model. Based on this
) model, the algorithm finds an optimal solution using dynamic
1. Introduction programming method. Adams et al. [1] proposed a multiple-

Mixed hardware and software implementation is commogrocess behavioral synthesis algorithm for heterogeneous
in the design of digital systems such as communication S¥§stems. They use an inter-process code motion to partition
tems, DSP applications, and embedded systems. In genegall allocate an input system description which is originally
software is easy to modify, maintain, and upgrade, though itdsmposed of one process. To schedule code segments within
slow compared to hardware. Hardware can be made fasieprocess, intra-process code motion is used. Such code mo-
than software but the cost for all hardware solution is usualiyns are made at random to increase concurrency between
too high. An issue raised in designing such systems is to figgbcesses and to improve performance and cost, while overall
an optimal point in between all hardware solution and aerformance and cost is optimized by simulated annealing.
software solution where we obtain maximum performance at The approaches in [3, 5, 9, 11] assume an execution model
a minimum hardware cost. This process is called hardwakfat does not allow parallel execution of hardware and soft-
software partitioning. ware, leading to limited performance improvement. Though

There are some heuristics proposed for hardware-softway®er approaches [1, 4, 6, 7] exploit the parallelism that
partitioning problem [1, 3, 4, 5, 6, 7, 9, 11]. Gupta et al.[4fesides in the system, they only utilize the explicit parallelism
proposed a hardware-oriented approach in which all the aflven by the input description. Therefore, codesign approach
erations except for the data dependent delay operations @ji€software acceleration seems to have little advantage over
initially mapped to hardware. Then the partitioner repeagfure software solution [12].
moving a node to software while performance constraints are|n this paper, we propose a loop pipelining technique whi-
met. Selection of the node to be moved to software is done ¢ increases parallelism for more effective hardware-software
a greedy method. Ernst, Henkel, and Benner [3, 5] proposegagtitioning. In addition, we propose yet another partitioning
software-oriented approach in which all the units of partgigorithm which maps nodes to hardware or software consid-
tioning(called BSB) are initially mapped to software. Thegring various hardware implementation alternatives and
used a simulated annealing algorithm for partitioning. Vahidardware resource sharing. Though theppsed loop pipe-
et al. [11] proposed a binary-constraint search algorithfiting technique is not a new idea, we show that a simple
which searches the design space while changing the hardw@sthbination of pipelining technique with partitioning algo-
constraint in a binary-search fashion. For each hardware cejthm gives more room for software acceleration with less
straint, they run a simulated annealing algorithm and checkf@rdware cost than existing algorithms, which is the contribu-
see if the performance constraint is met. Kalavade et al. [6,tidn of our work. Our partitioning algorithm with loop pipe-
proposed a global criticality/local phase(GCLP) driven algaining is suitable for computation-intensive applications
rithm and hardware-software mapping and implementatiGiainly composed of loops, as is common in most DSP appli-

cations. Bakshi et al. recently proposed a method [13] whichinimizing high-level synthesis tool. We can obtain many
also deals with the same subject: partitioning and pipeliningnplementation alternatives by changing the performance
They perform hardware-software partitioning by simply mapzonstraint. The synthesis information from Hyper includes the
ping a node to hardware if it cannot meet throughput conumber of used execution units, the number of register files,
straint in software by itself. Then they repeat an optimizatidetal execution delay, and the cost for each execution unit.
process consisting of pipelining, scheduling and procesdeor the purpose of hardware synthesis, we must translate the
allocation until the throughput constraint is met. HoweveCDFG into Silage [2]. Since we have not implemented an
their simple partitioning scheme does not work - that is, alutomatic translator yet, the translation is done manually.
the nodes are mapped to software - when every node mdétsvever, we have implemented a tool for translation from
the throughput constraint, as is often the case when smalDFG to C code and we use it to obtain software profiling
granularity is used. In that case, they prefer all software solaformation including execution delay and invocation count
tion in multi-processor target architecture to mixed hardwaref each task.
software solution. However, multi-processor solution is not The final step is to partition the CDFG into hardware and
always cheaper than one-processor solution with small ASI§bftware part to satisfy the performance constraint given by
In our approach we perform pipelining before partitioninghe user. The hardware synthesis information and the software
Therefore, we can consider all the nodes as hardware cammfiling information obtained in the previous step are used
dates. Moreover, we can combine our loop pipelining tecFor estimating the execution time and the hardware cost. The
nique with any other existing partitioning algorithm. partitioning step is composed of loop pipelining stage and
Our paper is organized as follows. In section 2 we give aterative improvement stage. Loop pipelining is performed
overview of our partitioning algorithm. In section 3, we probefore the iterative improvement stage in order to increase
pose a loop pipelining technique for partitioning and an algparallelism within a loop. In the iterative improvement stage,
rithm for solving the extended hardware-software partitioninigardware-software partitioning is performed such that the cost
problem. Section 4 shows experimental results before g minimized while maintaining the performance above the

conclude in section 5. constraint. In this stage, we consider various hardware im-
plementation alternatives to select possibly the best one, share
2. Overview hardware modules, as well as perform hardware-software

Figure 1 illustrates the steps used to partition an input syBapping.
tem description. The first step is to transform an input be- Currently our target architecture consists of a single gener-
havioral description into a CDFG which is used as an inte?l purpose processor and multiple ASICs, althoughptioe
mediate format for hardware-software partitioning. Th@osed algorithm can be extended to the case of multiple proc-
CDFG is formally defined as a graph G=(N, E), where ea¢tssors by replacing the performance estimation method(in
node represents an operation or a set of operations (e.g., tagkfion 3.2) with a scheduling method proposed in [4]. We

process, and code grouping) and each edge represents @agadme a memory mapped communication model where no
and control dependency between nodes. hardware is dedicated for communication - that is, software is

blocked until communication completes.

Input Description
(C,VHDL)

3. Partitioning Approach

3.1. Notation

Our partitioning algorithm focuses on performance-
constrained hardware cost minimization. The performance
constraint given by the user is denotedDasWe denote a
node in a CDFG ag; and an edge from; to n; asg;. Each

Hardware Synthesis Software Profiling
Information Information

""""""""" _LoopPlpeIlnlng noden; has information including the execution detiyénd
— ‘ hardware-software mapping. Each nagldas hardware im-
. — Performance plementation alternatives which can be represented by an
Estimator |<—>| Partitioner | Constraint . . € 7
implementation curvéH;. Such curves can be obtained using
Hyper [2].

We denote the set of all the predecessors(successars) of
aspred(n)(succ(). If a noden; is chosen to be implemented
in hardware and the predecessors(successors) are imple-

The second step is to obtain hardware synthesis and sBented in software we insert a communication nodes between
ware profiling information for partitioning. Task(leaf proce- S Predecessors(successors) andVe denote the commu-
dure or function) level granularity is used to obtain such ijucation node betweem andni(n; andny) asng,(nG) , and
formation from the CDFG. Hardware synthesis is done B¢ ~ communication delay as dg;(dGy), where
Hyper [2]. Hyper is a performance-constrained ared?; O pred(n)(n, Osucd n)).

Figure 1. Overview of hardware-software partitioning steps.

3.2. Estimation algorithms, which receive an input data stream and generates
The partitioner evaluates the quality of a partitioned sysn output data stream, have a structure suitable for this kind

tem based on two metrics; total execution delay and totafl optimization.

hardware cost. First, the total execution delay is estimated bylLoop pipelining technique for partitioning, which we pro-

a simple list scheduling algorithm, which is similar to the onpose in this paper, is an adaptation of software pipeline tech-

proposed in [10]. For the list scheduling of hardware nodesique to increase the parallelism within a loop. We can ex-

priority is given to a node with the largest sum of its owploit the parallelism through concurrent execution of hard-

delay and all successors’ delays, thereby allowing the magire and software as well as concurrent execution of hard-

critical hardware node to be scheduled first. For softwaweare modules. Our loop pipelining technique for partitioning

nodes, priority is given to a node which has a hardware swonsists of the following three steps. We assume that user

cessor with the highest priority, thereby allowing a softwargives the number of pipeline stagésf beforehand.

node that leads to the most critical hardware node to be

scheduled first. We prioritize software nodes only for a bettér Find feedback edges which represent data dependencies

scheduling of hardware nodes because ordering of softwareto the next iteration of the loop. Then, for each feedback

nodes does not affect the performance of the software wheredgee;, make a cluster node which consists of nodes that

we use a single processor. According to this scheme, priorityexist betweem; and n;. Finally, recursively merge cluster

valuep; of a noden; is defined as nodes that share a node into a cluster node such that there
O d, +d, it n; O Ny are no common nodes among cluster nodes.
Ch,oéieqn) 2. By grouping nodes and/or cluster nodes in topological
= max if (0 0 Neyy) O(sucdn) n Ny # 0) order, make initial pipeline blocks which can be over-
P @kDSUCf(ﬁ)”NHw(pk) ' sw ' HW lapped within the loop. Then by repeatedly moving a node
EO otherwise from one pipeline block to the neighboring pipeline block,

find an optimized set of pipeline blocks such that the
where N.w(Nsw) denotes the set of all hardware(software) .ommunication between pipeline blocks is minimized and

nodes. We consider hardware sharing effect during list SChEd'deIays of all the blocks are balanced. During this process,
uling by making the sharing nodes have the same resource idye make the number of pipeline blocks equaiitp

This list scheduling algorithm is applied to each basic block T ansform the loop such that all the pipeline blocks can
in the CDFG to obtain an estimation of the execution delay ,;, in parallel.

for each basic block. Then, by recursively summing up all the
values obtained by multiplyir)g invocation count of each basic ¢ purpose of the first step is to prevent a feedback edge
block to the block’s execution delay, we can calculate thg, being cut by pipeline block boundary. All the nodes

total execution delay. connected by a feedback edge are put into a cluster node.

. We egtimate the total hardware cost baSE(_i on th? Synth‘%ﬂﬁerwise, the pipelining may cause data dependency viola-
information provided by Hyper. In Hyper, this cost is hardgq, Figure 2 (a) shows this step.

ware area. If there is no sharing among hardware nodesy, the second step, an initial set of pipeline block is built
hardware cost is estimated simply by summing up the haig; 5rouping nodes such that the number of pipeline blocks is
ware cost of each hardware node. If multiple hardware nod@@m toN,s In Figure 2 (b), two pipeline blockl; andb,,

share hardware resources, the total cost is reduced by i€ pyilt by the procedure listed in step 2. The criteria for
amount of shared resources. To consider resource sharing, ¥uping is the execution delay of each pipeline block and the

need to example the hardware architecture. The target ar@immunication between subsequent pipeline blocks. First, it
tecture of Hyper is composed of execution units, register fil§§, jesirable that the execution delay of each pipeline block be
a control unit, and multiplexers which are connected by &ual in order to reduce the critical path of the transformed
crossbar network. Currently, among these hardware fign, and increase parallelism among partitioned blocks. Sec-
sources, we consider only the execujuon units as hardw%rﬁmy, since variable copy instructions7(in Figure 2 (c))
resources that can be shared. We estimate the total hardwgyg,d pe inserted to compensate for the cut edges, it is desir-
cost by subtracting the cost of shared. resources from.the S¥fle that the communication between subsequent pipeline
of all the hardware nodes’ costs. We ignore the area incregggeks be minimized in order to reduce the overhead induced

due to the added multiplexers and wiring. by variable copy instructions and communication overhead
o from or to hardware nodes. For these optimizations, we use a
3.3. Loop Pipelining _ N ~greedy method which reduces cost funcfiodefined as
Since loop is generally the most time-critical part in the o d -
R i S |
computqno_n—lr_ltenswe _apphcatlons, there havg been many f, = Z dq _ o] L oy Dzncomm(b.)
loop optimization techniques for parallel computing. Software = P =

pipeline is one of those techniques, which overlaps the exhere P, d,, oop Neomn(B), @nd a are number of pipeline
ecution of code blocks in different iteration steps. To allowlocks, delay of a pipeline blodk, execution delay of the

such an execution overlap, there must be no data dependem@p, communication overhead fromto b;,;, and weighting
between subsequent loop iterations. Most data processfagtor, respectively.

In the final step, we transform the loop such that all thiermance constraint. Figure 4 shows a pseudo code of the
pipeline blocks can run in parallel, as shown in Figure 2 (@artitioning algorithm, where total_delay() procedure and

Note that variablg in s3in the loopis renamed ag2 so that

total_cost() procedures are total execution delay estimator

b, andb, can run in parallel, angl7 is added as an epilogueand total hardware cost estimator, respectively. The Reduce-
code of the loop so théb can use the updated value of vari-Cost() procedure used in the algorithm tries to incrementally
abley in the next iteration. Recall that in the second step oéduce and update total hardware cost according to the proce-
loop pipelining technique, we try to reduce the overhead dfiral steps listed below:

this epilogue code.

1. Find a pair of hardware modules which reduce total hard-

b
loop:i (0...N)

(&) merging nodes connected (b) making pipeline block (c) overlapping pipeling blocks

by a feedback edge

Py
X H bll 2
1
............... i ey
Vi b : E : ‘ s4:z:=f(a,y); ‘: 1 ‘ 52 x:=10(0); ‘I
i N " a‘ ss.i.igz) \I bl: ‘ sS'yZixfl(x)' \I
I 1\ I ==t 3
H g yZ H
a a ST.y=y2;
4
5.

ware cost maximally by sharing, while satisfying the per-
formance constraint.

. Find a noden, O N, which reduces the total hardware

cost maximally while satisfying the performance constraint,
when it is moved to another point in the implementation
curvelH;.

. Find a noden, O N,,, which reduces the total hardware

cost maximally while satisfying the performance constraint,
when it is mapped to software.

. Among the candidates obtained from steps 1-3, adopt the

candidate whose cost reduction is maximum.
Repeat steps 1-4 until no more candidates are available.

Figure 2. Loop transformation by loop pipelining.

This method can also be used as a post optimizer to i
prove the performance of a partitioned system. Figure 3 illu
trates the performance improvement by loop transformatio
Assume Figure 3 (@) is the partitioned system by hardwar
software partitioner, wher#4 ands5is mapped to hardware.
In the original structure, the processor should be idling whil
s4 ands5 are running because there are no jobs to execute
parallel. However, if we transform the structure of the loop a|
shown in Figure 3 (b), the processor can exes@tands3
while the hardware is runnirgft andss.

‘OOP vi,(.ov N) s2:x := f0(0);
x
X
)

loop:i(1...N)

s7:Send(y);

s4:z = f2(a, y);
Z b

s5:a := f3(z, b);

a
a

s7:Send(y);

s4:z = f2(a, y);
Z b
s5:a := f3(z, b);

s2:x := fo(i);

X

y2

.. SRR
s4:z :=f2(a, y);
Z b

s5:a := f3(z, b);

a
s8:a := Recv();
a

(a) partitioned system

Figure 3. Loop transformation as a post optimizer for a parti-
tioned system.

(b) transformed system

3.4. Partitioning Algorithm

-

S

}

Our partitioning algorithm makes decisions regarding th

implementation of a hardware node, sharing among hardware

3

/* Input: CDFGG(N, E),performance constraii */
/* Output: partitioned CDF&(N, E)
Partition (G(N, E), D
G
/* first phase */
lG=GreedyPartitiof{G);
HGPest= ReduceCog6);
cosP®s= total_cos{G"®s;

B* second phase : iterative improvement */
itP ¢

HW;

returnG;

*

LG, Nuw=@ NsweN;

/* initial partition by greedy method *
/* Reduce hardware cost */

/ * cost of initial partition */

Nfixed= @

[* first inner loop: over allocate hardware node */

for (i=0; i<Nmax i++)
Ncar=ni O Nsw Where {speedup/cost} is maximum in HW;
NHw=NHw O Ncand Nsw=Nsw - Ncand
G’'=ReduceCog6G);

if (cosP®'> total_costG"))
{ == cosP®s=total_cos(G");
}

/* second inner loop: deallocate hardware node */
do{
/* map a node with the maximum hardware cost to software */|
Neand=Ni 7 (Nhw - Nrixed), Where cost reduction is maximum in S
Nsw=Nsw O Ncand NHw=NHw - Ncand Nfixed=Nfixed J Ncand

}

/* map SW nodes to HW to meet performance constraint */
while (total_ delayG) > D) {

Ncand=Nil(Nsw - Niixed), Where {speedup/cost} is maximum [in
) Nhw = Nuw O Neand Nsw= Nsw- Neand Nfixed = Niixed 1 Ncand
G'=ReduceCog6G);

)

if (cosP®s'> total_cos(G
cest= G cost®'= total_cos{G’);

}

} while (NfixeaZ N);
G=0"
while (cost improvement is obtainable);

Figure 4. Pseudo code of the partitioning algorithm.

nodes, and hardware-software mapping, subject to given per-

The partitioning algorithm consists of two phases. In the case 1: partitioning without loop pipelining.
first phase of the partitioning algorithm, starting from all case 2: partitioning with loop pipelining.
software solution, GreedyPartition() procedure makes an

initial partition that satisfies the performance constraint by 20Es08 ! T e L tithout
repeatedly mapping a node, which has the maximum speedup 1.8E+08 r —8—case 2 (with
per cost, to hardware. During the GreedyPartition(), the im- 1.6E+08 - loop pipelining)
plementation of a hardware candidate nogdés selected at 1.4E408 |
the fastest point dH;. 1.2E408 |

In the second phase, the algorithm iteratively improves the 1.0E+08 |
initial partition within in the two nested loops. In the first 8.0E+07 -
inner loop, a software node is mapped to hardware while 6.08+07 |
reducing the cost by ReduceCost() procedure, until the num- 4.0B+07 F delay
ber of moved nodes reachidg,, which is proportional to the 2.08+07 r (sec)
number of nodes. The purpose of the first inner loop is to give O-OE*OOO . - ;3*

more chance of cost reduction during ReduceCost() proce- o

dure by allocating more hardware nodes than are needed. fi#gure . Hardware-softwaredpartltlonlng result for a JPEG
the second inner loop, we select a node from the set of nodes encoder.

currently mapped to hardware and move it to software. We -
select a node which will reduce the total hardware cost maxi- In case 2, we set the number of pipeline blBcks 3 for

mally after the move. Then nodes mapped to software aer@Ch main loop. From the figure, we can see that the curve of

repeatedly moved to hardware until the performance cofe>° 2 Is always on the left side of that of the case 1. This

straint is met. The implementation of the nodes moved [Eeans that the partitioned system of case 2 is always faster
hardware is selected at the fastest pointrhf During this that that of case 1 when they have the same hardware cost.

procedure, once a node is moved to the other partition gro esgllglmuhm delat);] otf cfase 1 2'5. 1618g|th_trr]1&;]rdv;are cost tOff
(hardware to software or software to hardware), it is fixed iy » whereas that of case 2 1S 0.69 with hardware cost o

order to prevent from being re-selected as a candidate nod 1E+8. The improvement of the minimum delay by loop

After performance constraint is met through the above proc%ip'elining technique is about 19%. The improvement of the

dure, ReduceCost() procedure is called in order to reduce ﬁfat with the delay kept constant is 7 to 70%. This fact ex-

total hardware cost. If total hardware cost reduced by R ins that loop pipelining for hardware-software partitioning

duceCost() is less than the best hardware cost obtained so'?aﬁ.ﬁecuve in improving both performancc_a and COSt'_
o the best of our knowledge, there is no previous algo-

current partition is saved as the best partition. Note that th X : .)
b b ﬁ1m that considers hardware sharing and implementation

partitioning result by ReduceCost() is savedtnotG. One r " tth i Theref h it
reason for this is that ReduceCost() can change the mapp? &[ec lon at the same time. Theretore, we compare the resu

of a fixed hardware node to reduce total hardware cost afl hel_prop;)se?halgorlth? V\t"th r:hat tﬁf 0‘# ot_/vn smula;ted
saving the result t& could cause problem to the iteratio annealing aigorithm in order o show the efleciveness ot our
ative improvement partitioning algorithm. Simulated an-

process. Another reason is that accumulating the result 'B? ling i lqorithm based th t of th b
ReduceCost() may preve@t from escaping from local opti- neaiing 1S an aigorithm based on thé concept ot the prob-

mum in the iterative improvement process. The inner |0§pilistic selection of randomly generaied stales _[8]' We gen-
repeats the above procedure until all the nodes are fix (ﬁate a new state by three random moves; toggling hardware-

while outer loop repeats the inner loop until no more ims_oftv'\\/llzre metjpplﬂg(ll)_, ch{ahngmg tlhe stattet_of hafrdwahre ;har—
provement is available. ing(M2), and changing the implementation of a hardware

nodgM3). The generation probability &fll is 0.5 whileM2
andM3 is generate at the same probability of 0.25. The cost

N . . . functionf, of the annealing is defined as

The partitioning algorithm with loop pipelining is imple- f —c A +c. Thardware cost
mented in C++ under UNIX environment. We use a JPEG '~ ™ 2 = S
encoder which is described in 977 lines of C code as an d¥1erec; andc, are weighting factors, andd is 0 if the total
ample. This example is a computation-intensive applicatiGecution — delay is smaller thanD and s
which consists of two main loops and 20 tasks. The granuldtal_execution_delalp{ otherwise. To satisfy the perfor-
ity of partitioning is task-level (i.e. the leaf task), where eadR@nce constrainte, is scheduled to increase as annealing
task has 4-5 hardware implementation alternatives. SoftwdH9C€ss proceeds with the cooling ratio of 0.9. Table 1 com-
profiling information is obtained on SPARC 1. We assume R@rés the partitioning result of the proposed algorithm with
memory-mapped communication model with 2 clocks dhat of the simulated annealing. We exclude the information
communication overhead for 32bit data transfer. on computation time, since our comparison intends to show

Figure 5 shows design space curves for the example &9t the efficiency but the effectiveness of the proposed algo-

tained by our partitioning algorithm in the following two fithm. The proposed algorithm is of course much faster (about
different cases: order of magnitude) than simulated annealing. The results of

the simulated annealing are obtained by selecting the best cost

4. Experimental Results

after running the program 5 times. From the table, we can geaformance solution at given hardware cost constraint. In
that our algorithm find a solution comparable to that odddition, our hardware-software partitioning algorithm, which
simulated annealing. is based on an iterative improvement method, allows hard-

ware implementation selection and hardware sharing to
Table 1. Comparison of the proposed algorithm with simulated ~ minimize hardware cost, subject to performance constraint.

f’mneaﬁn . _ _ Experimental results show that (i) loop pipelining technique
__Our algorithm _Simulated Annealing is effective in that it provides more chance of overlapping the
without joop |- with loop | without loop |- With loop execution of hardware and software during partitioning proc-
pipelining pipelining pipelining pipelining
AW cost HW cost HW cost AW cost ess and (i) the proposed_ algorithm efﬁmgntly fmd_s a solution
D(sec) comparable to that of a simulated annealing algorithm.
3.0 0 0 0 0 Future work includes dynamically changing pipeline
2.5 1340888 1118208 1349858 1096478 plocks according to the current partition state, thereby in-
2.2 9493399 540428 9493399 5404288 creasing the effect of loop pipelining further. Recall that in
2.0 15751271 9458688 1575121 984237 ¢ imol tati determi ieline block
18 23116680 2145703p 22836983 19753436 € current implementation, we determine pipeliné DIocks
15 80049548] 2000745] _ 950028%9 28140325 Statically before the partitioning process. We are also working
1.4 99761876] 3013913[99761876 28218085 On considering multiple processor target architecture for
1.2 136188746 68323032 1359502p2 68468184 software implementation.
1.1 182659983 9730620D 183178053 97428184
0.9 101499608 10443861J7 References

)] [1] J. K. Adams and D. E. Thomas, “Multiple-Process Behavioral Synthesis
To see the effect of hardware sharing and implementation for Mixed hardware-Software System&2toceedings of International
selection, we test our algorithm without these features. Table Symposium on System Synthesis 10-15, 1995. _ _
2 shows the results obtained by our algorithm with |00p pipgj C. Chu, et al., “HYPER: An interactive synthesis environment for high

.. performance real time applicationsProceedings of International
lining but without hardware sharing or implementation selec- cgnference on Computer Desjgsovember 1989.

tion. When we test our algorithm without the feature of ims] R. Emst and J. Henkel, “Hardware-Software Cosynthesis for Microcon-
plementation selection, we fix the implementation of each trollers,” IEEE Design & Test of Computerpp. 64-75, December
noden; at the median point in the implementation culidg 1993. o o

don't fix the implementation at the slowest point in thé4 I R. K. Gupta and G. De Micheli, "System-level Symheis's using Re-
We on) p ; p - programmable ComponentsProceedings of EURO-DAC'9p. 2-7,
implementation curve because we cannot satisfy tight perfor- repruary 1992.
mance constraint by using such an implementation. The {g}J. Henkel, T. Benner, and R. Ernst, “Hardware generation and partition-
sults in Table 2 shows that sharing and implementation selec- ing effects in the COSYMA systemProceedings of Intl Workshop on

: : : ; Hardware-Software Codesigpp. 29-40, October 1993.
tlon_|§ effective for reducmg the total hardware cost of th[%] A. Kalavade and E. A. Lee, “A Global Criticality/Local Phase Driven
partitioned system.

Algorithm for the Constrained Hardware-software Partitioning Prob-
lem,”, Proceedings of Int'l Workshop on Hardware/Software Codesign,

Table 2. Partitioning results without hardware sharing or im- pp.42-48, September 1994.
plementation selection [7] A. Kalavade and E. A Lee, “The Extendeq Part_itioning Problem: Hard-
Without sharing Without implementatioh yvare—software Mapping and !mplementatlon—Bln Selectidtrdceed-
selection (median point) ings of Int'l Workshop on Rapid Systems Prototyphge 1995.
D (se HW cost % costincrease| HW cost % costincrease [8] S. Klrkpatrlck_, C. D: Gelatt, Jr., M. P. Vecchi, "Optimization by Simu-
30 0 0 0) lated Annealing,'Sciencevol. 229, pp. 671-680, M_ay 1983. _
55 1380638 538 1710445 =300 [9] P_. V. Knudsen and J. Madsen, P_A_CE_. A Dynam!c Progran?mlng Algo-
rithm for Hardware-software PartitioningProceedings of Int'l Work-
2.2 5783996 7.9 6297718 1645 shop on Hardware/Software Codesigp. 85-92, March 1996.
2.0 9838396 4.9 10352118 944 [10] K. Olukotun, R. Helaihel, J. Levitt and R. Ramirez, “A Software-
18 22230200 3.6 21457030 0 Hardware Cosynthesis Approach to Digital System SimulatititEE
15 35561532 18.4 30773958 2|9 Micro, pp. 48-58, August994.
1.4 35910490, 19.1 31306822 3|9 [11] F. Vahid, J. Gong, and D. D. Gajski, “A Binary-Constraint Search
1.2 78562734 15.(82082528 2011 Algorithm for Minimizing Hardware during Hardware-software Parti-
1.1 114549312 17.7 114170208 17.3 tioning,” Proceedings of EURO-DAC’94p. 214-219, 1994,
0.9 121214978 19.4 118409952 14.7 [12] M. Edwards, “Software Acceleration Using Coprocessors: Is it Worth

the Effort?,” Proceedings of Int'l Workshop on Hardware/Software

. Codesignpp. 135-139, March 1997.

5. Conclusions [13] S. Bakshi and D. D. Gajski, “Hardware/Software Partitioning and
In this paper, we proposed a hardware-software partition- Pipelining,” Proceedings of Design Automation Conferengg.713-

ing algorithm with loop pipelining technique which is suitable 716, June 1997. y _)
for computation—intensive applications Composed of |00pS. [14] P. Pjorn-Jorgensen and J. Madsen, “Critical Path Driven Cosynthesis
L inelini hni . ffecti f . b for Heterogeneous Target ArchitecturBfoceedings of Int'l Workshop
0oop p'pe 'nmg.tec n.'que Is efiective ‘?r partlltlo-nlng € on Hardware/Software Codesigpp. 15-19, March 1997.

cause this technique increases parallelism within a loop

thereby allowing partitioning algorithm to find a better solu-

tion. Thanks to increased parallelism, we can find a lower

cost solution at given performance constraint and a better

	CD-ROM Home Page
	ASP-DAC98
	Front Matter
	Table of Contents
	Session Index
	Author Index

