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Abstract| This paper classi�es di�erent decision

diagrams (DDs) for discrete functions with respect to

the domain and range of represented functions. Rela-

tionships among di�erent DDs and their relations to

spectral transforms are also shown. That provides a

uni�ed interpretation of DDs, and their further clas-

si�cation with respect to the spectral transforms.

I. Introduction

Decision diagrams (DDs) are data structures to repre-
sent discrete functions. DDs are derived from decision
trees (DTs) by reduction of nodes and edges. This con-
cept originates in the representations of discrete sets [17].
Applications of DDs to switching functions [1] and to
multiple-valued (MV) functions [49] are well known. The
present interest in DDs sprang up after the publication
of [4]. A variety of DDs have been proposed to represent
di�erent classes of discrete functions by using compact
DDs.

We encountered 43 di�erent DDs in the last several
years. Their mathematical classi�cation is important and
useful for both theoretical and practical applications. We
attempt to show the �rst publication for each DD. When
the same or similar DDs were presented by di�erent au-
thors at about the same time, we refer to an easily ac-
cessible publication. Suggestions and corrections for this
welcomed. To classify di�erent DDs, we focus on the al-
gebraic structures where the represented functions are de-
�ned. We refer to the corresponding DTs, since they do
not depend on peculiar properties of represented func-
tions.

A. Domain

A discrete function is a mapping f : D ! R, where D
is the domain and R is the range. If we have to consider
the representation of the mapping only, we need not con-
sider the algebraic structures of D and R. However, since
we will consider spectral transformation of the functions,
the algebraic structures of D and R are important. The

group G has the weakest algebraic structure for D, but
still provide a tractable model for f , and is su�cient for
many applications. The number of variables, n, in f and
the cardinality of the domain, jDj, determine a represen-
tation of G as the direct product of some subgroups Gi,
i = 1; : : : ; n. This representation is mapped into the re-
cursive structure of the DTs for f . Structure of a DT is de-
�ned by the number of levels and the number of outgoing
edges of nodes in the DT. The number of outgoing edges
of nodes at the i-th level determine the number of nodes
at the (i+ 1)-th level in the DT. Thus, representation of
G determines the structure of DT. Therefore, as the �rst
parameter, we use the domain of the functions to classify
DDs. As for the domains, we consider the dyadic, p-adic,
arbitrary �nite Abelian, and non-Abelian groups. The set
of tuples (x

1
; : : : ; xn), xi 2 P = f0; : : : ; p � 1g with the

componentwise addition modulo p, expresses the struc-
ture of a group, which is called the p-adic group. When
p = 2, i.e., when P = B = f0; 1g, it is called a dyadic
group. If p > 2, and p is non-prime, the group opera-
tion in G can be de�ned in some other way that permits
extension of the group into a �eld. Both approaches are
used in MV functions.

B. Range

DTs for a given representation of G have the same
structure. They di�er in the values of constant nodes and
decomposition rules by which f is assigned to the DT.
Therefore, as the second parameter, we use the range of
functions to classify DDs. As for the range, we consider
a �eld F , that may be the �eld Q of rational numbers,
the complex �eld C, or a Galois �eld GF (p). The set
of integers Z is considered as a subset of Q. Bit-level
DDs have logic values, while word-level DDs have values
in GF (p), Z, or C. We also consider vector-valued and
matrix-valued DDs over GF (p), and over C.

C. Spectral Transforms

Spectral transform DDs (STDDs) [44] uniformly inter-
pret di�erent DDs. This interpretation establishes re-



lationships between decomposition rules applied at the
nodes of DTs and spectral transforms. It shows that for
each DT, a given f is assigned to the DT through decom-
position with respect to a spectral transform. Therefore,
DDs classi�ed with respect to the domain and range, are
further classi�ed with respect to the spectral transforms.
The transforms used in spectral interpretation of DDs

are derived or closely related to the Fourier transforms on
�nite groups. Recursive structure of DTs corresponds to
the recursive block structure of the related transform ma-
trices. Thus, they are de�ned as the Kronecker product
of some basic transform matrices. This Kronecker prod-
uct corresponds to the direct product of subgroups Gi in
representation for G, and in that way, to the structure
of the DT. To each constituent subgroup Gi of G a basic
transform matrix Qi is assigned. Written in the symbolic
notation, Qi determines the decomposition rule applied
at the nodes at the i-th level in the DT [44].
For Abelian groups, each transform matrix de�ned as

the Kronecker product of n basic submatrices, can be fac-
tored into the ordinary matrix product of n sparse matri-
ces Ci, i = 1; : : : ; n. Each of them performs the spectral
transform with respect to a variable in f . Thus, Ci de-
�nes the partial spectral transform for f with respect to
xi.
For example, several DDs are related to the arithmetic

transform, which can be de�ned as the Reed-Muller trans-
form with calculations in GF (2) replaced by that in Z. In
the symbolic notation, the basic arithmetic transform ma-
trix is de�ned by the A-expansion f = 1 �f0+xi(f1�f0),
where xi is a switching variable, f0 = f(xi = 0), and
f1 = f(xi = 1). This expansion de�nes the partial arith-
metic transform, which is used in analysis of edge-valued
versions of some arithmetic transform related DTs.

The same consideration or relationships between DTs
and spectral transforms extends to spectral transforms
on non-Abelian groups in terms of the generalized matrix
multiplications [48].

II. Classification of DDs by Domains

A. DDs on Dyadic Groups

A.1 Bit-level DDs

Binary DDs (BDDs)[4] represent switching functions f :
Bn ! B, where n is the number of input variables. A
BDD represent f graphically by recursive application of
the Shannon decompositions as a disjoint sum-of-products
expression [32], [33].
Functional DDs (FDDs) [15] represent f as the positive

polarity Reed-Muller expression (PPRM). Thus, FDDs are
also called positive polarity Reed-Muller DDs (PPrmDDs)
[33]. FDDs e�ciently represent functions for which BDD
have exponential size, and vice versa.
Several other DDs are de�ned by combining the Shan-

non, the positive Davio and the negative Davio de-

compositions. They include �xed polarity Reed-Muller

DDs (FPrmDDs) [33], Kronecker DDs (KDDs) [10], and
pseudo-Kronecker DDs (Pseudo-KDDs) [33]. These DDs
represent various AND-EXOR expressions [33], [28], so
they are denoted as AND-EXOR related DDs.
Uni�ed DDs (UDDs) [16] represent AND-OR/EXOR

expressions, where each node has an operation. Thus,
UDDs are DDs with operational nodes.
In Ternary DDs (TDDs), each node has three outgo-

ing edges. In TDD-U [14], outgoing edges correspond to
logical 0,1, and unspeci�ed value u (don't care). TDD-
Us represent incompletely speci�ed switching functions,
which formally, can be considered as functions in GF (3).
In other TDDs [31], the �rst two edges point to the

cofactors f0 = f(xi = 0) and f1 = f(xi = 1), and
the third edge points to f

0
�
f

1
. Di�erent choices for

the operation �
 produce di�erent TDDs. EXOR-TDDs
[31], AND-TDDs, and Prime-TDDs (PTDDs) are useful
for logic minimization [34], while Kleene-TDDs [13] are
useful to evaluate switching functions in the presence of
unknown inputs. For a given function f , a TDD repre-
sents the extended-truth vector Fe [47]. For a given f ,
Fe is determined by the extended Reed-Muller (ERM)
transform in terms of �
 as the addition and the logical
AND as the multiplication. The constant nodes in AND-
TDDs, EXOR-TDDs, and Prime-TDDs represent logical
0 and 1, while in Kleene-TDDs, they represent 0,1, and
u. Therefore, GF (2) is assumed for the range of AND-
TDDs, EXOR-TDDs, and Prime-TDDs, while the Kleene
algebra is assumed for the range of Kleene-TDDs. Note
that the Kleene algebra is not a �eld.
Shared BDDs (SBDDs) [22] represent multi-output

switching functions, while Zero-suppressed BDDs (ZB-
DDs) [23] represent sets of cubes.
The operational edge often reduces the number of nodes

in DDs. It assigns an operation to an edge in the DD. The
simplest example is the negative edge, that complements
the function value. This concept originates in an inverter
[1] and typed node [19].

A.2 Word-Level DDs

In many cases, representation of Boolean functions at the
integer level denoted in the computer representations as
the word level is useful. For example, n-variable multiple-
output switching functions (f

0
; f

1
; f

2
: : : ; fm�1) are rep-

resented by the integer-valued function f whose values at
x = (x1; : : : ; xn) are

f(x) =

m�1X

i=0

fi(x1; : : : ; xn)2
i:

Multi-terminal binary DDs (MTBDDs) [6] were intro-
duced �rst to represent Walsh transform coe�cients. The
constants 0 and 1 at the edges of MTBDDs represent in-
tegers 0 and 1, respectively, and the constant nodes rep-
resent integers. Therefore, MTBDDs are integer counter-



parts of BDDs. MTBDDs are also called arithmetic DDs

[2], and can also represent functions Bn ! C.

Shared MTBDDs (SMTBDDs) [36] represent multi-
output switching functions. They combine merits of SB-
DDs and MTBDDs. In SMTBDDs, the constant nodes
are binary vectors [12].

In the spectral interpretation, BDDs and MTBDDs are
DDs derived from DTs de�ned with respect to the same
basis. This basis corresponds to the block pulse functions,
or �-functions in the classical mathematical analysis, de-
�ned by �y(x) = 1 for x = y, and �y(x) = 0, otherwise.
Since we are working on �nite discrete structures, we de-
note it as the trivial basis. In the matrix notation, the
columns of the identity matrices over GF (2) represent
the trivial basis for BDDs, and that over Z represent the
trivial basis for MTBDDs [44].

In the same interpretation, FDDs are de�ned through
decomposition of f with respect to the Reed-Muller basis
over GF (2), represented by columns of the Reed-Muller
matrix. Arithmetic Transform DDs (ACDDs) are de�ned
with respect to the same basis over the set of integers Z
[44]. We denote it as the integer Reed-Muller basis. DTs
for Binary moment diagrams (BMDs) [5] are de�ned with
respect to the same basis, but are derived by using di�er-
ent reduction rules. The BDD and zero-suppressed BDD
reduction rules [24] are applied to ACDDs and BMDs, re-
spectively. These rules are de�ned for the bit-level DDs.
However, their use in ACDDs and BMDs is possible, since
the labels at the edges in these DDs are 1 and xi. A dis-
tinction of both constant 1 and the variable xi 2 f0; 1g
over GF (2) and over Z is just formal in this case. ACDDs
and BMDs are integer counterparts of FDDs. ACDDs and
BMDs represent f in the form of the arithmetic expres-
sion, which is the integer counterpart of the PPRM. In
this setting, the Walsh transform DDs (WDDs) [44] are
DDs derived with respect to the integer Reed-Muller ba-
sis, but in (0; 1) ! (1;�1) coding of switching variables.
WDDs represent f in the form of the Walsh expression
for f , which is a particular example of the Fourier series
expansions on �nite groups. The integer counterparts of
KDDs are Kronecker BMDs (KBMDs) [8], [9]. They rep-
resent f in the form of integer counterparts of Kronecker
(KRO) expressions [30], [33].

Hybrid DDs (HDDs) [7] use the complex-valued ma-
trices of order 2 and 4 in the decompositions to derive
the DTs. Elements of these matrices are taken from
the set f0; 1;�1; i;�i; 1 + i; 1 � i; i � 1;�i � 1g. Com-

plex Hadamard DDs (CHDDs) and their edge-valued ver-
sions (EVCHDDs) are de�ned with respect to the complex
Hadamard transform (CHT) [11]. HDDs, CHDDs, and
EVCHTDDs represent f in the form of Fourier series-like
expressions in terms of the corresponding transforms over
C.

Spectral Transform DDs (STDDs) [44] are a generalized
concept of these DDs. STDDs permit spectral interpreta-
tion of DDs and, thus, involve various DDs as examples

de�ned with respect to various bases. From STDDs, dif-
ferent DDs are de�ned by specifying particular bases.

A.3 Edge-Valued DDs

Edge-Valued Binary DDs (EVBDDs) [18] represent
integer-valued functions Bn

! Z. Similar to MTBDDs,
EVBDDs are derived from DTs de�ned in terms of the
trivial basis. However, in EVBDDs the constant nodes
are set to zero, and instead of them additive weights at
the edges are introduced. Subtraction of the values of
constant nodes, and the recursive structure of DTs, de-
termine that weights at the edges must be equal to the
coe�cients of the corresponding partial arithmetic trans-
forms [39]. Therefore, EVBDDs relate to ACDDs, since
similar to ACDDs, EVBDDs represent f in the form of the
arithmetic expression. However, in ACDDs, decomposi-
tion of f is performed by using partial arithmetic trans-
forms recursively, level by level over the DT. In EVB-
DDs, to determine the weights at the edges for each level
the partial arithmetic transforms are applied each time to
f . EVBDDs reduce to particular pseudo-Kronecker DDs
over Z, and can be further generalized into a family of
DDs with attributed edges.
The demerit of EVBDDs is that they require integer

weights at the edges to represent single-output switching
functions. Spectral interpretation of EVBDDs introduced
Edge-Valued Functional DDs (EFDDs) de�ned in terms
of the partial Reed-Muller transforms [40]. EVFDDs for
switching functions have weights of logical values at the
edges.
Edge-valued version of BMDs were provided as �BMDs

[5]. The arithmetic transform coe�cients in constant
nodes of BMDs are factored, and common factors are used
as multiplicative weights at the edges in �BMDs.
Factored Edge-Valued Binary DDs (FEVBDDs) are a

generalization of EVBDDs by permitting additive and
multiplicative weights at the edges [50]. Both additive
and multiplicative weights at the edges connecting non-
terminal nodes are determined as combinations of partial
arithmetic transform coe�cients. At the edges connect-
ing non-terminal nodes with constant nodes, the addi-
tive weights are taken as 1 and the multiplicative weights
as 0. Thus, FEVBDDs are EVBDDs with normalized
weights at the edges towards the constant nodes. Similar
to ACDDs and BMDs, EVBDDs, FEVBDDs and �BMDs
represent f in the form of the arithmetic expression.
Similar to FEVBDDs, K�BMDs have both additive and

multiplicative factors derived from �BMDs [8]. However,
they combine properties of KBMDs and �BMDs, since the
basic DT of K�BMDs is the Kronecker tree.

B. DDs on p-adic Groups

Multiple-place DDs (MDDs) [49] represent multiple-
valued (MV) functions f : Pn ! P . An MDD for a
function f has nodes with p outgoing edges, and MDD



is de�ned on the p-adic groups. Similar to BDDs, MDDs
are de�ned in terms of the trivial basis on p-adic groups.
Thus, MDDs represent f in the form of sum-of-product
expressions for MV functions [29].

Multi-Terminal Multiple-Valued DDs (MTMDDs) and
Shared Multi-Terminal Multiple-Valued DDs (SMT-
MDDs) are extensions of MTBDDs and SMTBDDs per-
mitting binary vectors as constant nodes. These vec-
tors are binary representations of integers in the constant
nodes in MTBDDs and SMTBDDs [36].

If the elements of GF (p) are interpreted as the �rst
p non-negative integers of C, then MDDs can represent
functions Pn ! C [20], [43]. In this case, MDDs are gen-
eralized by allowing complex-numbers for the constant
nodes. They are denoted as Multi-terminal DDs (MT-
DDs). To point out the resemblance with FFT, the MDDs
with operational edges are suggested in calculation of
Vilenkin-Chrestenson transforms [43]. To represent spec-
tral coe�cients of MV functions, the complex Moraga's
coding [25] for MV functions is suggested [20]. Thanks
to this coding, constant nodes in MDDs for Vilenkin-
Chrestenson spectrum of MV functions represent �rst p
non-negative integers [20].

BDDs are often optimized when the symmetric vari-
ables are kept adjacent [26]. Multiple-Valued DDs with
Symmetric Variables (MDD-SV) [21] are a generalization
of MDDs that exploit this property for MV functions. Un-
like other DDs on Abelian groups, MDD-SVs reduce the
number of levels in MDDs, in addition to the number of
nodes.

The depth in DDs for switching functions is also re-
duced by the Quaternary DDs (QDDs) [35] that are in-
troduced by pairing binary-valued variables to make four-
valued variables. In the word of group theory, dyadic
groups Cn

2
consisting of products of n cyclic groups of

order 2, are replaced by the groups Cn

4
consisting of

n=2 cyclic groups of order 4. In the spectral interpre-
tation, QDDs are extensions of AND-EXOR related DDs
to groups of order 4. Design of QDDs and Pseudo-QDDs
[35] uses the linearly independent bases for switching func-
tions over GF (2) [27]. Similar as MDDs, under an appro-
priate interpretation of labels at the edges, these DDs can
represent functions f : Cn

4
! C.

Extensions of FDDs to MV functions are the Galois �eld
DDs (GFDDs) and Reed-Muller-Fourier DDs (rmFDDs)
[38]. MDDs, QDDs, and Pseudo-QDDs are DDs on p-
adic groups, where the decomposition rules are described
by matrices with binary elements. On the other hand,
in GFDDs and rmFDDs, the decomposition rules are de-
scribed by matrices with p-valued elements. Edge val-
ued versions of these DDs, Edge-Valued Galois �eld DDs

(EVGFDDs) [41] and Edge-Valued Reed-Muller-Fourier

DDs (EVrmFDDs) [45] are DDs derived from the corre-
sponding partial transforms for MV functions. Kronecker
Galois �eld DDs (KGFDDs) [42] are de�ned through a
generalization of KDDs to MV functions in Galois �elds.

These DDs represent f in the form of corresponding gen-
eralizations of AND-EXOR expressions of MV functions
[29].

C. DDs on Arbitrary Abelian Groups

Generalization of DDs for functions on arbitrary
Abelian groups into an arbitrary �eld assumes that the
domain group G of order jGj = g is represented as

G = �
n

i=1
Gi; g = g1 � � � gi � � � gn; (1)

where jGij = gi, i = 1; : : : ; n, is the order of Gi. In
such DDs, decomposition rules in nodes at the i-th level
can be chosen among all possible non-singular matrices of
orders gi. For example, if we use the identity matrices,
the MTDDs on arbitrary Abelian groups are de�ned.
Function Graphs (FGs) [3] represent multiple-output

MV functions with variables taking values in �nite sets of
arbitrary cardinalities. The nodes are particular general-
izations of Shannon and Davio nodes over GF (p). The
columns of the basic transform matrices used in FGs re-
late to the characteristic functions in GF (p).
For some functions, MTDDs for the Fourier spectrum

are smaller than the MTDDs for original functions [20].
Therefore, Fourier DDs on Abelian groups (FADDs) de-
�ned in terms of group characters [46] e�ciently repre-
sent such functions. Note that a function �w : G ! C is
the group character for G i� k�w(x)k = 1, 8x 2 G, and
�w(x � y) = �w(x)�w(y), 8x; y 2 G, where � denotes the

group operation in G, and kx + iyk =
p
x2 + y2. WDDs

are the example of FADDs on the dyadic groups, since
the discrete Walsh functions are group characters of these
groups. FADDs on p-adic groups are de�ned in terms of
the Vilenkin-Chrestenson functions, which are the group
characters of p-adic groups. FNADDs represent f in the
form of the Fourier series expansions for f .

D. DDs on non-Abelian Groups

If the domain group G is an Abelian group represented
as in (1), then the depth of the DT is equal n. The nodes
at the i-th level have gi outgoing edges, and gi determines
the number of non-terminal nodes at the (i + 1)-th level
in the DT. Therefore, the reduction of depth by using
Abelian subgroups of large orders gi tends to increases
the width of the DD.
Reduction of depth and width of DDs at the same

time is achieved in Fourier DDs with non-Abelian groups

(FNADDs) as the domain for f [46]. Decomposition rules
for these DDs are derived from the Fourier transform on
groups, and are de�ned in terms of the group charac-
ters for Abelian and unitary irreducible representations
for non-Abelian groups [46]. Therefore, Fourier spectrum
on non-Abelian groups is a matrix-valued function de-
�ned on a set whose cardinality is always smaller than
jGj. This permits reduction of the width of the DT com-
paring to the DTs on Abelian groups. Constant nodes



in FNADDs are Fourier coe�cients, and some of them
are matrices. Therefore, FNADDs are matrix-valued
DDs (mvFNADDs). If in FNADDs, the matrix-valued
nodes are represented by DDs, that may be again Fourier
DDs, or MTDDs, or any other DD, then the number-
valued FNADDs (nvFNADDs) are derived. As FADDs,
FNADDs represent f in the form of the Fourier series
expansion for f on the non-Abelian groups.

FNADDs reduce the number of non-terminal nodes at
the price of increased number of constant nodes and take
advantages in matrix representations in spectral domain.
Note that group representations can be de�ned over �nite
�elds GF (p) providing that some relationships between
G and GF (p) are satis�ed. In this case, the number of
di�erent constant nodes in FNADDs is at the most p.
Fourier DDs on �nite non-Abelian groups with Prepro-

cessing (FNAPDDs) [46] are an extension of FNADDs to
matrix-valued functions. Thus, FNADDs are the matrix-
valued DDs (mvFNAPDDs). Unlike mvFNADDs, in
mvFNAPDDs, all the constant nodes are matrices. In
application to number-valued functions, they take advan-
tages in the matrix notation in both original and spectral
domain. The number-valued versions of FNAPDDs (nvF-
NAPDDs) are de�ned by representation of matrix-valued
constant nodes by DDs of small sizes.

III. Classification of DDs by Ranges

Table 1 classi�es DDs with respect to the range of the
represented functions. These DDs have numbers, binary
vectors, and matrices in constant nodes. In TDD-Us, a
constant node may have value u, which represents don't
care in incompletely speci�ed switching functions. Fourier
DDs on Abelian or non-Abelian groups may be de�ned
over GF (p) or over C.

Fig. 1 is the DD that classi�es various DDs with respect
to both domain G and the range F of the represented
functions.

IV. Unified Interpretation of DDs

Previous discussion and analysis of DTs brie
y summa-
rizes spectral interpretation of DDs. It shows that each
DT is based on a spectral transform. That means, a given
f is assigned to a DT by the decomposition with respect
to a spectral transform. In a DT, the values of constant
nodes are the spectral transform coe�cients. Therefore,
DDs represent f in the form of spectral transform expres-
sions. In the case of WDDs, and Fourier DDs, these are
Fourier series expansions. In other cases, they are Fourier
series-like expansions for f . The identical mapping is in-
volved as a trivial example of spectral transforms.

The weights in edge-valued DDs are the partial spectral
transform coe�cients, or are determined by the factoriza-
tion of spectral transform coe�cients. However, in both

cases the edge-valued DDs represents f in the form of
spectral transform expressions for f .
Thanks to this uni�ed interpretation, DDs classi�ed

with respect to the domain and range are further clas-
si�ed with respect to the spectral transforms.

V. Classification of DDs by Spectral

Transforms

Table 2 shows spectral transforms used to de�ne various
DDs. The basic functions for DDs given in the parenthe-
sis are not directly equal to a particular transform, but
are derived from it or are closely related to it. The basic
functions for pseudo-QDDs are de�ned through (4 � 4)
non-singular binary-valued matrices. The basic functions
for FGs are derived through particular generalizations of
the Shannon and Davio nodes to MV functions. These
functions are expressed through the characteristic func-
tions in the set theory.

VI. Closing Remarks

In this paper, we classi�ed various DDs for discrete
functions, �rst with respect to the domain of the rep-
resented functions, and second with respect to the range
of the functions. DDs on the same domain are derived
from the DTs of the equal structures, but can be di�er-
ent with respect to the decomposition rules as well as the
range for the represented functions. We considered inte-
ger and complex-valued counterparts of DDs for switching
and MV functions, respectively. Furthermore, we classi-
�ed DDs with respect to spectral transforms used in def-
inition of the corresponding DTs.
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TABLE I

Classi�cation of DDs by range

Range Decision Diagram

f0; 1g BDD, FDD=PPrmDD, FPrmDD, Pseudo-rmDD, KDD,

Pseudo-KDD, UDD, EVFDD, EXOR-TDD, AND-TDD, Prime-TDD

f0; 1; ug TDD-U, Kleene-TDD

Binary vectors MTMDD, SMTMDD

f0; : : : ; p � 1g MDD, FG, QDD, GFDD, RMFDD, KGFDD

Rational numbers MTBDD, BMD, KBMDD, ACDD, WDD, EVBDD, FEVBDD, �BMD, K�BMD,

Complex numbers HDD, CHDD, FADD, nvFNADD, nvFNAPDD

Matrix over C or GF (p) FNADD, FNAPDD

TABLE II

Discrete transforms used in de�nition of DDs

Domain Range Transform Decision Diagram

Dyadic GF (2) Identical BDD,

group Reed-Muller FDD=PPrmDD, FPrmDD,

Pseudo-rmDD

Partial

Reed-Muller EVFDD

Identical and

Reed-Muller KDD, PKDD

ERM AND-TDD, EXOR-TDD,

Prime-TDD

GF (3) Identical TDD-U

Kleene algebra ERM Kleene-TDD

Rational Identical MTBDD

numbers Arithmetic BMD, ACDD, �BMD,

Partial

Arithmetic EVBDD, FEVBDD

Walsh WDD

Kronecker KBMDD K�BMD

C CHT CHDD, (HDD), EVCHDD

p-adic GF (p) Identical MDD, MDD-SV, MTMDD, QDD

GF-transform GFDD, (Pseudo-QDD)

RMF-transform rmFDD

Parial GF EVGFDD

Partial RMF EVRMFDD

Arbitrary C or GF (p) Identical MTDD, (FG)

Abelian group Fourier FADD

Arbitrary Matrices over Fourier for

Non-Abelian group C or GF (p) number-valued

functions FNADD

Fourier for

matrix-valued

functions FNAPDD
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