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Abstract: Symbolic analsis of analog circuits is important in ana-
log design automation. However, it is limited to the analysis of small
analog circuits where exact symbolic expressions are required. In this
paper, we present an efficient algorithm for partitioning large general
analog circuits into smaller subcircuits so that symbolic analysis can
be performed hierarachically. Experimental results have demontrated
that our method ourperforms the best partitioning-based symbolic an-
alyzer SCAPP.

1. Introduction
Symbolic analysis calculates the behavior or the characteristics

of a circuit in terms of symbolic parameters. But symbolic analysis
generally suffers the circuit-size limitation problem due to the ex-
ponential growth of the symbolic terms with the increase of circuit
size. One way to cope with the size limitation problem in symbolic
analysis is by means of hierarchical decomposition.

Hierarchical decomposition generates symbolic expressions in a
nested form [4, 8]. However, the effectiveness of hierarchical de-
composition depends crucially on how a circuit is partitioned. So far
no effective partitioning algorithm for symbolic analysis has been re-
ported on such less regular-structured circuits as�A741 Opamp [3].

In this paper, we present a balanced multi-level multi-way par-
titioning heuristic for hierarchical symbolic analysis of large analog
circuits [8]. It takes advantage of both hierarchical decomposition
and a recently introduced graph-based representation, called Deter-
minant Decision Diagrams (DDDs), for symbolic determinants [6].

The rest of the paper is organized as follows: Section 2 provides
an overview of DDD-based hierarchical symbolic analysis. Section 3
formulates the partitioning problem for symbolic analysis. Section 4
presents our partitioning heuristic. Section 5 presents experimental
results. Section 6 concludes the paper.

2. DDD-based Hierarchical Symbolic Analysis
For a linear(ized) time-invariant analog circuit, it is well-known

that its system equation can be formulated by modified nodal analy-
sis in the general matrix form:Ax = b, wherex is a vector of the
node voltage variables and branch current variables,A is the modified
nodal admittance matrix andb represents the independent sources.

If we partition the circuit into two device-disjointed parts, the
variablesx will be divided into three disjoint groups:xI , xB , and
xR, where the sup-scriptsI, B, Rstand for, respectively, internal vari-
ables, boundary variables and therestof variables. Then the system-
equation set can be rewritten in the following form:"
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The basic idea that underlines all the hierarchical analysis meth-
ods is to eliminate some equations from the equation-set above until
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the remaining set of equations involves only the desired variables.
The resulting set of equations (1) by eliminatingxI can be written as
follows: �
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where
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and
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In our application,bI is a zero vector, we rewrite (3) in the following
expanded form:
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whereu; v = 1; :::; k, k is size of ABB�, l is the size ofAII ,
det(AII) is the determinant of matrixAII , aBB�u;v is the entry at row
u and columnv in ABB�, �II

k2;k1
is the first order cofactor ofAII

defined as(�1)(k2+k1)det(AII

k2;k1
) andAII

k2;k1
is obtained by elim-

inating rowk2 and columnk1 in AII .
Note that we need first-order cofactors�II

k2;k1
only whenau;k1

andak2;v are both non-zeros. In practiceau;k1 andak2;v are zero
for most time due to the sparsity ofABI andAIB, provided a good
partitioning is given. The determinantdet(AII) and a few of its re-
quired first-order cofactors can be efficiently represented by a newly
proposed special graph, Determinant Decision Diagrams, described
as follows.

A DDD example for a determinant is shown in Fig. 1. Its de-
terminant is shown in the left-hand side. Except for two special
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Figure 1:A matrix determinant and its DDD.
terminal vertices, namely the0-terminal vertex and the1-terminal
vertex, each non-terminal vertex is labeled by a symbol in the de-
terminant denoted byai, and a sign denoted bys(ai). It originates
two outgoing edges, called1-edgeand0-edge. Each vertexai rep-
resents a symbolic expressionD(ai) defined recursively as follows:
D(ai) = ai s(ai)Dai

+Dai
. whereDai

andDai
represent, respec-

tively, the vertices pointed by the 1-edge and 0-edge ofai. A 1-path
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in a DDD corresponds a product term in the original DDD, which is
defined as a path from the root vertex (A in our example) to the 1-
terminal including all symbolic symbols and signs of the vertices that
originate all the 1-edges along the 1-path. In our example, there exist
three 1-paths representing three product terms:ADG, �AFE and
�CBG. The root vertex represents the sum of these product terms.

3. Problem Formulation
An analog circuit can be modeled as a hypergraphH(V;E) with

vertex setV = fv1; v2; :::; vmg and edge setE = fe1; e2; :::; eng.
Each vertex corresponds to a circuit device and each edge repre-
sents a node or net in the circuit. An edgeej also defines a subset
of V with the vertices incident on the net andjej j � 2. The k-
way partitioning problem is to assignvi; i = 1; :::; m into k disjoint
subsetsV1; V2; :::; Vk. If k > 2, it is a multi-waypartitioning. If
Vj ; j = 1; :::; k are further decomposed into smaller subcircuits, it is
calledmulti-levelor treepartitioning, otherwise it is calledtwo-level
partitioning. The subcircuit without further subcircuit definitions is a
leaf subcircuit, otherwise it is amiddlesubcircuit. We further define
thespanof a netej , denoted asspan(ej), as the number of the sub-
circuitsej connects. Ifspan(ej) > 1, ej is calledcut net, otherwise
it is an internal net.

The most important performance criterion in hierarchical sym-
bolic analysis is how compact the generated symbolic expressions
are. In our case, such requirement amounts to reducing DDD ver-
tices used. From equation (5), we observe that the problem of reduc-
ing the DDD vertices in partitioning actually centers around reducing
the number of the required first-order cofactors�II

k2;k1
and eventu-

ally the nonzero elements in the remaining circuit. This implies that
nonzero entriesaBIx;y andaIBx;y due toboundaryvariablesxB should
be as few as possible. Boundary variables essentially arecut netsin
nodal analysis formulation. So the total number of the cut nets in all
the subcircuits should to be minimized. The partitioning objective
can then can be expressed as:

min
X
ej2E

span(ej) (6)

To further reduce the DDD size, we also need to balance the numbers
of internal nets among different subcircuits. This is due to the fact
that min-cut type partitioning always gives rise to very dense inter-
connection within the leaf subcircuits and therefore dense circuit ma-
trices. For a dense or full matrix, DDD representation is exponential.
Suppose that the DDD size only depends on the size of determinant,
then the minimal DDD size is achieved if all the determinants of sub-
circuits have the same size. Therefore, it is desirable to balance the
number of the internal nets. For large analog circuits, each subcircuit
size should also be bounded to efficiently reduce the overall DDD
size. Therefore the multi-level partitioning becomes a must. LetS
denote the set of all cut netsej , i.e. span(ej) > 1. The balance
requirements can be expressed as following constraints:

both:
jEj � jSj

k
� � � I(Vi) �

jEj � jSj

k
+ � (7)

tree: I(Vi) � �jEj (8)

for i = 1; :::; k. I(Vi) is the set of internal nets inVi, i.e. I(Vi) =
fej jej � Vi andspan(ej) = 2g, � is the measure of the offset
from its balanced size (referred to asdeviationfactor), and� is a
positive constant and0 < � < 1.

4. Partitioning Algorithm

4.1. Multi-Way Balanced Partitioning
In this section, we describe an extention of the vertex moving

partitioning heuristic due to Fiducciai and Mattheyses(FM) [2] for
multi-way balanced partitioning.

The FM’s algorithm begins with two initial partitions and pro-
ceeds in a series ofpasses. In each pass, it keeps moving vertices be-
tween two partitions until each vertex has been moved exactly once.

After each pass, the best solution observed during the pass becomes
the initial solution for a new pass. During each pass, the moved ver-
tices arelockedfrom further exchanging. The unmoved vertices are
called free vertices. The pass terminates when a pass does not im-
prove upon the most recent solution.

For the convenience, subcircuit, partition and subset are used in-
terchangeablely in the sequel. We first focus on the two-level, multi-
way balanced partitioning. Then we extend it to tree partitioning.

4.2. Computation of Gain and Potential Gain
Unless otherwise specified, we assume that a vertexc is moved

from subsetA to subsetB,A andB are two subsets mongk subsets
andc 2 A. We further defineincident numberof a nete with respect
to a set of verticesA denoted by�A(e) as:

�A(e) = jfcjc 2 A andc 2 egj (9)

A binding forceof a net with respect to the setA, denoted by�(e),
is defined as:

�A(e) =

n
�AF (e) if �AL(e) = 0
1 if �AL(e) > 0

(10)

whereAF andAL denote the subsets that contain all the free vertices
and locked vertices inA, respectively.

In order to efficiently calculate thespan(ej) of a netej , we divide
the move operation ofc into two steps:

1. Vertexc is selected fromA and put intoA (A is complement
of A, A = V � A). The corresponding net cut gain, denoted
byGA

get(c), can be written as:

GA

get
(c) = jfe 2 Ecj�A(e) = 1 and�

A
(e) > 0g

�fe 2 Ecj�A(e) > 0 and�
A
(e) = 0g (11)

whereEc denotes the set of nets incident on vertexc.
2. Vertex is moved fromB toB. LetGB

put(c) denote the gain of
this step. Then

GB

put
(c) = jfe 2 Ecj�

B
(e) = 1 and�B(e) > 0g

�fe 2 Ecj�
B
(e) > 0 and�B(e) = 0g (12)

The total gain of the move operation ofc fromA toB is given by

Gspan(c) = G
A

get(c) +G
B

put(c) (13)

Gspan(c) acutally is the total decrease in spans due to the move
operation of thec.

To ensure that constraint (7) is always satisfied after a moving
operation for both subsetA andB, we need to check the following
constraint at each moving step:

jEj � jSj �Gcut(c)

k

� � � jI(A)j � jIA(c)j

�
jEj � jSj �Gcut(c)

k

+ � for set A (14)

jEj � jSj �Gcut(c)

k

� � � jI(B)j+ jSB(c)j

�
jEj � jSj �Gcut(c)

k

+ � for set B (15)

whereIA(c) is the set of all the internal nets ofA in Ec,i.e.,

IA(c) = fe 2 Ecj�A(e) > 0 and�
A
= 0g (16)

andSB(c) is the set of all the cut nets inEc, and it becomes an
internal net ofB after the move,i.e,

SB(c) = fe 2 Ecj�
B
(e) = 1 and�B > 0g (17)
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One way to improve the partitioning quality is to break the tie situ-
ation where two vertices have same gain [5]. In our method, we in-
troduce a new penalty function, which is devised for multi-way parti-
tioning, into each vertex gain as the potential gain. LetGP (e) denote
the potential gain of nete imposed on its incident vertices. The po-
tential gain also consists of two parts corresponding to the two steps
in a move operation:

GP (e) = GA

Pget
(e) +GB

Pput
(e) (18)

where

GA

Pget
(e) =

(
0 if �A(e) = jej or �A(e) = 0
�P if �A(e) =1

�P W (e)
�A(e)

jej
if 0 < �A(e) < jej

(19)

GB

Pput
(e) =

(
0 if �B(e) = jej or �B(e) = 0
P if �B(e) =1

P W (e)
�B(e)

jej
if 0 < �B(e) < jej

(20)

whereW (e) =
jej

Dmax
if jej < Dmax andW (e) = 1 otherwise and

Dmax is the prespecified upper bound on the number of nets incident
on a vertex,P is a constant. BothGA

Pget(e) andGB

Pput(e) favor
vertices incident on the cut nets which likely become internal nets
of B after the vertex move operation. Then, the total gain for whole
move operation can be expressed as:

GAB(c) = Gspan(c) +
X
e2Ec

(G
A

Pget(e) +G
B

Pput(e)) (21)

4.3. Relaxation of Balance Constraints
One issue with FM-based algorithms is that moving a vertex is

only feasible if the move operation dose not violate the balance con-
straints involved. However this will confine the solution space es-
pecially when the constraint is strict [1]. This problem can be alle-
viated by temporally relaxing the balance constraints and allowing
a sequence of move operations of vertices, calledmacro-step, to be
carried out as long as the balance constraints are restored after the
macro-step.

More specifically, Let MG[i] and IN[i] be the maximum gain of
all vertices and number of internal nets in subseti. Consider a vertex
cv to be moved from subsetVA to subsetVB without considering the
balance constraint. We observe that after the move operation, IN[A]
is always reduced, and IN[B] is always increased. So in case the
move operation causes the violations of balance constraints in either
A or B, or both, the replacement strategy that involves a sequence
of vertex move operations can be used to restore the balance. Let
F be the set of free vertices. The new balance-relaxed multi-way
partitioning algorithm (BRMP) is described in Fig. 2.

4.4. Multi-way Tree Partitioning
Two-level partitioning can be extended to tree partitioning by re-

cursively applying the algorithm to each subcircuit obtained from
previous partitioning and decomposing each subcircuit into smaller
parts until the constraint (8) on the number of the internal nets of sub-
circuits are satisfied. Such tree partitioning scheme can be viewed
as a special two-level, multi-way partitioning where each two-level
mutlti-way partitioning is solved by only allowing vertics moved
among some of subsets and all the vertices in the other subsets are
locked during the entire process of partitioning. So the gain calcula-
tions (21) and internal-net constraints (19) and (20) still remain valid
for tree partitioning.

5. Experimental Results
The proposed balanced multi-level multi-way partitioning algo-

rithm has been implemented in C++ and integrated into our hierarchi-
cal symbolic analyzer [6, 8]. Before symbolic analysis, all the BJT
and MOS transistors in a circuit are replaced by their corresponding

BRMP ALGORITHM(F )
while(jF j 6= 0) do /* macro-step */

1 Move a free vertexcv with the highest
gain fromVA to VB without considering
constraint (15) and (14), where MG[A] is
the largest among all the subsets.

2 while (constraint (15) is violated) do
move a free vertexcx with the highest gain
out ofVB subject to constraints (15) and (14).

3 while (constraint (14) is violated) do
move a free vertexcx with the hightest gain
from Vk into VA subject to constraints (15) and (14),
whereIN [k] is the largest among all subsets exceptVA.

4 Recursively repeat steps (2) and (3) until there are
no violations of balance constraints in all the subsets.

5 Lock all the moved vertices and add them into
current macro-step; record the current span size.

Figure 2:Balance-relaxed multi-way partitioning.
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SPICE small-signal models at their DC operating points computed
by SPICE. The results from bipolar Opamp�A741, which has 26
transistors and 11 resistors shown in Fig. 3(a) is presented here.

We first perform a two-level multi-way partitioning of�A741.
The total number of nets for�A741 is 23. For the small-signal AC
analysis, the power and ground nets are the reference node in the
nodal formulation method. They will not appear in the circuit matrix,
and are ignored by partitioning. All the nets corresponding to the cir-
cuit inputs and outputs are always cut nets. We select thedeviation
factor—� to be 2. Figures 4(a), 5(a) and 5(b) show, respectively, the
results of 2-way, 3-way and 4-way balanced partitionings of�A741,
where each partitioned subcircuit is marked by an index (I up to IV).
Table 1 summarizes the statistics of these partitionings. Columns 1,
2 and 3 list, respectively, the number of subcircuits, the span/number
of cut nets, and the number of nets in a balanced subcircuit. Columns
4 to 7 list, respectively, the number of internal nets in each subcir-
cuit and its corresponding DDD size. Column 8 gives the number of
DDD vertices in the top-level circuit,jtopDj, where the last column
describes the total number of DDD vertices,jtotalDj. We have the
following observations:

� The total number of DDD vertices used for representing all the
subcircuits decreases from 837 in the balanced 2-way parti-
tioning to 237 in the balanced 4-way partitioning. Meanwhile,
the number of DDD vertices used for the top-level circuit in-
creases from 20 to 114. The total number of DDD vertices
decreases ask increases from 2 to 4. However, if we further in-
creasek, more nets will be cut and the size of the DDD for the
top-level circuit will increase rapidly, and dominate the overall
DDD size.

� As we have reported in [6], without partitioning and hierar-
chical symbolic analysis, the total number of DDD vertices
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to represent the�A741 is 7431, where the number of product
terms in fully-expanded classical symbolic analysis is 374884.
Thus, hierarchical symbolic analysis with automatic balanced
partitioning leads to a very compact behavioral model (237 vs
7431)! Since the number of multiplications is linear in the
DDD size, hierarchical symbolic analysis with automated par-
titioning speeds up canonical symbolic analysis (without parti-
tioning) by a factor of 31, where canonical symbolic analysis
already speeds up fully-expanded symbolic analysis by several
orders of magnitude (7431 multiplications vs 374884 product
terms)

Table 1:Statistics of 2-level, multi-way partitionings of�A741.

k #sp/#cutjEj�jSj
k

#internal nets/jDDDjjtopDjjtotalDj
I II III IV

2 8/4 9 9/26010/557 - - 20 837
3 13/7 5 5/29 6/79 5/55 - 80 241
4 18/18 3 3/5 2/5 5/535/57 114 237

We further perform a 3-level 2-way partitioning of�A741 based
on the hierarchical tree shown in Fig. 3(b). The third-level partition-
ing is based on the two-level two-way partitioning shown in Fig. 4(a).
The resulting partitioning is shown in Fig. 4(b). Table 2 summarizes

Table 2:Statistics of 3-level,2-way partitioning of�A741.

leaf subcircuits I1 I2 II1 II2
jDDDj 10 36 23 6

#internal nets 3 4 4 3
middle subcircuits I II

jDDDj 4 18
#internal nets 2 3

span 8 10
#cut nets 5 6

top-level span 6
top-level #cut nets 4
top-leveljDDDj 20

total jDDDj 117
total jDDDj (w/o) 7431

SCAPP #mul:182, #add:357

the partitioning statistics. Rows 2 and 3 describe the DDD sizes and
the numbers of internal nets in the leaf subcircuitI1, I2, II1, II2.
Rows 4 to 7 list, respectively, the DDD size, the numbers of internal
nets, spans and the number of cut nets in the two middle circuitsI and
II. Note that internal nets in a middle circuit level are the cut nets
in the lower level and are invisible to the parent of the current subcir-
cuit. Rowstop-level spanandtop-level #cut netsare the number of
spans and the number of cut nets at the top-level circuit. Rows#top-
level jDDDj and total jDDDj show the corresponding DDD size
for the top-level circuit and the total DDD size. Rowtotal jDDDj
(w/o) is the DDD size without partitioning. We can see that hierar-
chical symbolic analysis with automated 3-level 2-way partitioning
reduces the number of DDD vertices from 7431 to 117! Since only
one multiplication is needed for one vertex, the total number of multi-
plications is 117. To compare with best-known hierarchical symbolic
analyzer—SCAPP [4], rowSCAPPlists the best result from SCAPP
with automated partitioning, where#mul and#add are numbers of
multiplications and additions, respectively.

6. Conclusions

An efficient algorithm for balanced multi-way multi-level parti-
tioning of very large analog circuits is presented for hierarchical sym-
bolic analysis. It is based on the iterative vertex moving heuristic due
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Figure 4:2-way partitioned�A741 Opamp
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Figure 5:Multi-way partitioned�A741 Opamp

to Fiduccia and Matheyses [2]. The novelties are the introduction
of a new formula for potential gain computation in multi-way par-
titioning and the relaxation of the balance constraints. These ideas
have been explored for digital circuit layout partitioning recently and
shown to be superior to other related methods [9]. In this paper, we
have described an application to analog circuit partitioning for sym-
bolic analysis and shown its advantage over the best analog symbolic
analysis program SCAPP.
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