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Abstract: Symbolic analsis of analog circuits is important in anathe remaining set of equations involves only the desired variables.
log design automation. However, it is limited to the analysis of smafihe resulting set of equations (1) by eliminatikigcan be written as
analog circuits where exact symbolic expressions are required. In tifows:

paper, we present an efficient algorithm for partitioning large general

analog circuits into smaller subcircuits so that symbolic analysis can ABBx pABR xB BB*
be performed hierarachically. Experimental results have demontrated ARB  ARR B | = | gr | 2
that our method ourperforms the best partitioning-based symbolic an-
alyzer SCAPP. Where ABB* _ ABB _ ABI (AII)—IAIB (3)
1. Introduction g ’

Symbolic analysis calculates the behavior or the characteristiés BE* — BB _ ABI (AT B!
of a circuit in terms of symbolic parameters. But symbolic analysis - - (A7) : (4)

generally suffers the circuit-size limitation problem due to the exn our applicationb’ is a zero vector, we rewrite (3) in the followin
ponential growth of the symbolic terms with the increase of circu?fgxpandgg form: b ' & g
¢

size. One way to cope with the size limitation problem in symboli
analysis is by means of hierarchical decomposition. l

Hierarchical decomposition generates symbolic expressions in a BBx _ BB _ 1 BI AII IB
nested form [4, 8]. However, the effectiveness of hierarchical de- ~ “»v = %wv det(ATT) Z @y Bk by Ghzoe ()
composition depends crucially on how a circuit is partitioned. So far k1,ka=1

no effective partitioning algorithm for symbolic analysis has been re- . BB o - ) 1
ported on such less regular-structured circuita 4§41 Opamp [3]. Whereu,v = 1,....k, k is size of A”7, [ is the size ofA™",
In this paper, we present a balanced multi-level multi-way padet(A’7) is the determinant of matrid’’, aZ5* is the entry at row
titioning heuristic for hierarchical symbolic analysis of large analog gnd columnw in ABB*. A . s the first order cofactor oft’’
circuits [8]. It takes advantage of both hierarchical decomposit%, (kath1) ., k2 k1 T . .
and a recently introduced graph-based representation, called De@ifined ag—1)"">""*/det (A}, ;, ) and Ay, ,, is obtained by elim-
minar?t Decisior;] Diagrams (DDDs), Bor symlFoIic determinants [6]dinating rowk- and columnk; in A’Z.
The rest of the paper is organized as follows: Section 2 provides ot I
an overview of DDD-based hierarchical symbolic analysis. Sectio dNote ﬂ;?tevl\;itﬂeﬁgngsetrg;del:wCor:c:((::ttiakiz’kf'zlrsg y thrrlg uz,éio
formulates the partitioning problem for symbolic analysis. Sectiond "~ “kz2:v - I praclies, x, andax,,v
presents our partitioning heuristic. Section 5 presents experimerigl most time due to the sparsity ¢f”* and A*~, provided a good

results. Section 6 concludes the paper. partitioning is given. The determinadet(A’7) and a few of its re-
. . . ) quired first-order cofactors can be efficiently represented by a newly
2. DDD-based Hierarchical Symbolic Analysis proposed special graph, Determinant Decision Diagrams, described

For a linear(ized) time-invariant analog circuit, it'is well-knownas follows. ) _ o
that its system equation can be formulated by modified nodal analy- A DDD example for a determinant is shown in Fig. 1. lIts de-
sis in the general matrix formAx = b, wherex is a vector of the terminant is shown in the left-hand side. Except for two special
node voltage variables and branch current variatiés the modified
nodal admittance matrix artalrepresents the independent sources.

If we partition the circuit into two device-disjointed parts, the @+
variablesx will be divided into three disjoint groupsx’, x?, and = e e
x®, where the sup-scriptsB, Rstand for, respectively, internal vari- @{ @ """" - ol
ables, boundary variables and tiestof variables. Then the system- | A B 0 m
equation set can be rewritten in the following form: c Db E . @ +
AT AIB I B! 0 F G .
[ ABT  ABB  pABR & | = | BE |. Q) s
ARB ARR XR BR ~@

The basic idea that underlines all the hierarchical analysis meth- . ) . .
ods is to eliminate some equations from the equation-set above until Figure 1:A matrix determinant and its DDD.
terminal vertices, namely th@-terminal vertex and thel-terminal

*This work was sponsored by U.S. Defense Advanced Reseai@itex, each non-terminal vertex is labeled by a symbol in the de-
Projects Agency (DARPA) under grant number F33615-96-1-56¢@'minant denoted by;, and a sign denoted bya;). It originates
from the United States Air Force, Wright Laboratory, ManufactufWo outgoing edges, callettedgeand0-edge Each vertexa; rep-
ing Technology Directorate, by Rockwell Semiconductor Systemi&sents a symbolic expressi@i(a;) defined recursively as follows:
and by NSF/Industry Center for Design of Analog-Digital Integrate®(a:) = a; s(ai) Da; +Dg,. whereD,, andDg, represent, respec-
Circuits (CDADIC). tively, the vertices pointed by the 1-edge and 0-edge; oA 1-path




in a DDD corresponds a product term in the original DDD, which ig&fter each pass, the best solution observed during the pass becomes

defined as a path from the root vertex {(nh our example) to the 1- the initial solution for a new pass. During each pass, the moved ver-

terminal including all symbolic symbols and signs of the vertices théites ardockedfrom further exchanging. The unmoved vertices are

originate all the 1-edges along the 1-path. In our example, there exialledfree vertices. The pass terminates when a pass does not im-

three 1-paths representing three product terdh®G, —AFE and prove upon the most recent solution.

—CBG. The root vertex represents the sum of these product terms. For the convenience, subcircuit, partition and subset are used in-
terchangeablely in the sequel. We first focus on the two-level, multi-

3. Problem Formulation way balanced partitioning. Then we extend it to tree partitioning.
An analog circuit can be modeled as a hypergraf(V, E) with 4.2, Computation of Gain and Potential Gain
vertex setl” = {v1,v2,..., v} and edge sek = {e1,e2,...,en}. Unless otherwise specified, we assume that a veriexmoved

Each vertex corresponds to a circuit device and each edge refgrem subsetd to subsetB, A and B are two subsets morigsubsets

sents a node or net in the circuit. An edgealso defines a subsetandc € A. We further definéncident numbebf a nete with respect

of V' with the vertices incident on the net afd| > 2. Thek- to a set of verticesl denoted by (e) as:

way partitioning problem is to assign, i = 1, ..., m into k disjoint

subsetsl, Vs, ..., Vi. If B > 2, it is a multi-way partitioning. If aale) =|{c|c € Aandc € e}| 9)

V;i,j =1,..., k are further decomposed into smaller subcircuits, it is

calledmulti-levelor tree partitioning, otherwise it is calletivo-level A binding forceof a net with respect to the set, denoted by3(e),

partitioning. The subcircuit without further subcircuit definitions is @s defined as:

leaf subcircuit, otherwise it is eniddlesubcircuit. We further define .

the spanof a nete;, denoted aspan(e;), as the number of the sub- Bale) = { aap(e) ifaa,(e)=0 (10)

circuitse; connects. lfspan(e;) > 1, e; is calledcutnet, otherwise 0o if oay(e) >0

itis aninternal net. . .
The most important performance criterion in hierarchical synwhereAr and A, denote the subsets that contain all the free vertices

bolic analysis is how compact the generated symbolic expressidig locked vertices ial, respectively. o

are. In our case, such requirement amounts to reducing DDD ver- In order to efficiently calculate theyan(e;) of a nete;, we divide

tices used. From equation (5), we observe that the problem of redtfte move operation afinto two steps:

ing the DDD vertices in partltlpnlng actually centers around reducing 1 Vertexc is selected fromd and put intoA (4 is complement

the number of the required flrst-order_cpfactgkg_,kl and eventu- of A, A = V — A). The corresponding net cut gain, denoted

ally the nonzero elements in the remaining circuit. This implies that

. ) by G..(c), can be written as:
nonzero entriea?! andal” due toboundaryvariablesx” should Y Goei©)

be as few as possible. Boundary variables essentiallgutraetsin A _ B -1 .
nodal analysis formulation. So the total number of the cut nets in all Gger(©) I{e € EelBale) andfz(e) > 0}
the subcircuits should to be minimized. The partitioning objective —{e € Ec|Ba(e) > 0andf7(e) =0} (11)

can then can be expressed as: o
whereE, denotes the set of nets incident on vergex
min Z span(e;) (6) 2. Vertex is moved fronB to B. LetGJ,(c) denote the gain of
s this step. Then
J
To further reduce the DDD size, we also need to balance the numbers Gput(e) = {e € Ec|fg(e) = LandBp(e) > 0}
of internal nets among different subcircuits. This is due to the fact —{e € Ee|f=(e) > 0andBp(e) = 0} (12)
that min-cut type partitioning always gives rise to very dense inter- "B B\®) =
connection within the leaf subcircuits and therefore dense circuit ma-
trices. For a dense or full matrix, DDD representation is exponential, , . L
Suppose that the DDD size only depends on the size of determinarite total gain of the move operationefrom A to B is given by

then the minimal DDD size is achieved if all the determinants of sub- " B
circuits have the same size. Therefore, it is desirable to balance the Gspan(c) = Gger(c) + Gpui(c) (13)
number of the internal nets. For large analog circuits, each subcircuit

size should also be bounded to efficiently reduce the overall DDI@;Span(C) acutally is the total decrease in spans due to the move

size. Therefore the multi-level partitioning becomes a must. et operation of the:.

denote the set of all cut netg, i.e. span(e;) > 1. The balance To ensure that constraint (7) is always satisfied after a moving

requirements can be expressed as following constraints: operation for both subset and B, we need to check the following
constraint at each moving step:

1Bl 18] _ Do et I

both: T<IV) < @ Bl = 1] = Geurle) __
——————— =7 < |I(A)] = Ha(e)]
tree: (V;) < a|E| (8) k
) i . o CIBIZ1SI=Gene(e) | s
fori = 1,...,k. 1(V;) is the set of internal nets ilt;, i.e. I(V;) = S triose
{ejle; C Viandspan(e;) = 2}, 7 is the measure of the offset |E| = |S| = Geut (c)
from its balanced size (réferred to dsviationfactor), anda is a . TS HBIH+15B ()
positive constant andl < o < 1. |E| = |S| = Geut (c)
< f + 7 forsetB (15)
4. Partitioning Algorithm _ _ o
. . wherel4(c) is the set of all the internal nets df in E.,i.e.,
4.1. Multi-Way Balanced Partitioning
In this section, we describe an extention of the vertex moving Ia(c) = {e € E¢|fBa(e) > 0andf; =0} (16)
partitioning heuristic due to Fiducciai and Mattheyses(FM) [2] for
multi-way balanced partitioning. and Sg(c) is the set of all the cut nets if.;, and it becomes an

The FM's algorithm begins with two initial partitions and pro-internal net ofB after the move,i.e,
ceeds in a series glssesIn each pass, it keeps moving vertices be-
tween two partitions until each vertex has been moved exactly once. Se(c) = {e € E;|fz(e) =1andfBr > 0} a7



RMP ALGORITHM(F)

One way to improve the partitioning quality is to break the tie situl?’ while(|F| # 0) do /* macro-step */

ation where two vertices have same gain [5]. In our method, we ip- Move a free vertex, with the highest
troduce a new penalty function, which is devised for multi-way parti- gain fromV to Vg without considering
tioning, into each vertex gain as the potential gain.&ef(e) denote constraint (15) and (14), where MG[A] is
the potential gain of net imposed on its incident vertices. The po- the largest among all the subsets.
tential gain also consists of two parts corresponding to the two steps while (constraint (15) is violated) do
in a move operation: move a free vertex, with the highest gain
out of Vp subject to constraints (15) and (14).
Gp(e) = Gpger(e) + GByyule) 18 3 while (constraint (14) is violated) do
move a free vertex, with the hightest gain
where from V}, into V4 subject to constraints (15) and (14),
. _ _ whereI N [k] is the largest among all subsets excépt
. B 0 i :I gAEzg - (\;I orBa(e) =0 4 Recursively re[:p]eat steps (2) and (3) until there are
Gpger(e) = wale) no violations of balance constraints in all the subsets.
—PW(e)==  10<Bale) <le| 5 Lock all the moved vertices and add them into
(19) current macro-step; record the current span size.
0 if Bp(e) = |e|orBp(e) =0
GPpurl) =4 T @ Bsle)=c0 (20) ,
PW(e)* 2 if 0 < Bple) < Je| Figure 2:Balance-relaxed multi-way partitioning.
whereW (e) = % if le| < Dmaz andW (e) = 1 otherwise and

D,,.qz is the prespecified upper bound on the number of nets incident
on a vertex,P is a constant. Bothﬁget(e) and G3,,(e) favor

vertices incident on the cut nets which likely become internal nets
of B after the vertex move operation. Then, the total gain for whole
move operation can be expressed as:

Gan(c) = Gopan(0) + Y _ (Ghgerle) + GEpui(e))  (21)

ecE.
4.3. Relaxation of Balance Constraints (a) pA741 Opamp (b) Three-level, 2-
One issue with FM-based algorithms is that moving a vertex is way partitioning for
only feasible if the move operation dose not violate the balance con- nA741
straints involved. However this will confine the solution space es- .
pecially when the constraint is strict [1]. This problem can be alle- Figure 3:,A741 Opamp

viated by temporally relaxing the balance constraints and allowing

a sequence of move operations of vertices, cathedro-stepto be . . . .

carried out as long as the balance constraints are restored afterxfdCE small-signal models at their DC operating points computed

macro-step. by SPICE. The results from bipolar Opampi741, which has 26
More specifically, Let MG{] and IN[i] be the maximum gain of transistors and 11 resistors shown in Fig. 3(a) is presented here.

all vertices and number of internal nets in subse€onsider a vertex _,_We first perform a two-level multi-way partitioning gfA741.

¢, to be moved from subséf, to subset/s without considering the The total number of nets fquA741 is 23. For the small-signal AC

balance constraint. We observe that after the move operatiod]IN[@nalysis, the power and ground nets are the reference node in the

is always reduced, and W] is always increased. So in case théodal formulation method. They will not appear in the circuit matrix,

move operation causes the violations of balance constraints in eitA8f are ignored by partitioning. All the nets corresponding to the cir-

A or B, or both, the replacement strategy that involves a sequer&ét inputs and outputs are always cut nets. We seleotiéivéation

of vertex move operations can be used to restore the balance. 18&{oF— t0 be 2. Figures 4(a), 5(a) and 5(b) show, respectively, the

F be the set of free vertices. The new balance-relaxed multi-wgsults of 2-way, 3-way and 4-way balanced partitionings 441,

partitioning algorithm (BRMP) is described in Fig. 2. ere each partitioned subcircuit is marked by an index (I up to 1V).
} o Table 1 summarizes the statistics of these partitionings. Columns 1,
4.4. Multi-way Tree Partitioning 2 and 3 list, respectively, the number of subcircuits, the span/number

Two-level partitioning can be extended to tree partitioning by r&f cut nets, and the number of nets in a balanced subcircuit. Columns
cursively applying the algorithm to each subcircuit obtained from t0 7 list, respectively, the number of internal nets in each subcir-
previous partitioning and decomposing each subcircuit into smalfgiit and its corresponding DDD size. Column 8 gives the number of
parts until the constraint (8) on the number of the internal nets of sugPD Vertices in the top-level circuitfopD|, where the last column
circuits are satisfied. Such tree partitioning scheme can be view@g@scribes the total number of DDD verticggtal D|. We have the
as a special two-level, multi-way partitioning where each two-levépllowing observations:
mutlti-way partitioning is solved by only allowing vertics moved o The total number of DDD vertices used for representing all the
among some of subsets and all the vertices in the other subsets are g,circuits decreases from 837 in the balanced 2-way parti-
locked during the entire process of partitioning. So the gain calcula- tioning to 237 in the balanced 4-way partitioning. Meanwhile
tions (21) and internal-net constraints (19) and (20) still remain valid  {he number of DDD vertices used for the top-Ie{/eI circuit in-

for tree partitioning. creases from 20 to 114. The total number of DDD vertices
. decreases dsincreases from 2 to 4. However, if we further in-
5. Experimental Results creasek, more nets will be cut and the size of the DDD for the
top-level circuit will increase rapidly, and dominate the overall

The proposed balanced multi-level multi-way partitioning algo- DDD size
rithm has been implemented in C++ and integrated into our hierarchi- :
cal symbolic analyzer [6, 8]. Before symbolic analysis, all the BJT e As we have reported in [6], without partitioning and hierar-
and MOS transistors in a circuit are replaced by their corresponding  chical symbolic analysis, the total number of DDD vertices

3



to represent the A741 is 7431, where the number of product
terms in fully-expanded classical symbolic analysis is 374884.
Thus, hierarchical symbolic analysis with automatic balanced
partitioning leads to a very compact behavioral model (237 vs
7431)! Since the number of multiplications is linear in the
DDD size, hierarchical symbolic analysis with automated par-
titioning speeds up canonical symbolic analysis (without parti-
tioning) by a factor of 31, where canonical symbolic analysis
already speeds up fully-expanded symbolic analysis by several
orders of magnitude (7431 multiplications vs 374884 product

terms)

Table 1:Statistics of 2-level, multi-way partitionings pfA741.

k sphtcdt”=linternal net4iD DD |top D|[total D|
T T [V

2 8/4 9  [9726QLO/557 - | - 20 837

3| 13/7 5 5/29| 6/79 |5/5% - 80 241

4 | 18/18 3 3/5| 2/5 |5/535/57 114 237

We further perform a 3-level 2-way partitioning pfA741 based

on the hierarchical tree shown in Fig. 3(b). The third-level partition-
ing is based on the two-level two-way partitioning shown in Fig. 4(a).
The resulting partitioning is shown in Fig. 4(b). Table 2 summarizes

Table 2:statistics of 3-level,2-way partitioning efA741.

leaf subcircuits [T 71270172
|DDD] 10| 36| 23| 6
#internal nets 3 4 4 3
middle subcircuits I
|[DDD] 4 18
#internal nets 2 3
span 8 10
#cut nets 5 6
top-Tevel span 6
top-level #cut nets 4
top-level[ DD D] 20
total [DD D] 117
total [DD D] (w/0) 7431
SCAPP #mul:182, #add:357

(1]

the partitioning statistics. Rows 2 and 3 describe the DDD sizes arldl

the numbers of internal nets in the leaf subcirduit 12, 111, IT2.

Rows 4 to 7 list, respectively, the DDD size, the numbers of interna[IS]

nets, spans and the number of cut nets in the two middle cirEaitsl

II. Note that internal nets in a middle circuit level are the cut nets

in the lower level and are invisible to the parent of the current subci
cuit. Rowstop-level sparandtop-level #cut netare the number of
spans and the number of cut nets at the top-level circuit. Rvos
level [ DDD| andtotal |[DDD| show the corresponding DDD size
for the top-level circuit and the total DDD size. Rdatal |[DDD)|

r-

(4]

(a) 2-way partitioned (b) 3-level, 2-way
pA741 Opamp partitionedu A741.

Figure 4:2-way partitioneg. A741 Opamp

(a) 3-way partitioned
1A741 Opamp

Figure 5:Multi-way partitionedu A741 Opamp

(b) 4-way partitioned
1A741 Opamp

T to Fiduccia and Matheyses [2]. The novelties are the introduction
of a new formula for potential gain computation in multi-way par-

titioning and the relaxation of the balance constraints. These ideas
have been explored for digital circuit layout partitioning recently and
shown to be superior to other related methods [9]. In this paper, we
have described an application to analog circuit partitioning for sym-
bolic analysis and shown its advantage over the best analog symbolic
analysis program SCAPP.
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