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Abstract 
In this paper, a new two-level bipartitioning algorithm TLP, 

combining a hybrid clustering technique with an iterative improvement 
based partitioning process, is proposed. The hybrid clustering algorithm 
consisting of a local bottom-up clustering technique to merge modules 
and a global topdown ratiocut technique for decomposition can be 
used to reduce the partitioning complexity and improve the 
performance. To generate a highquality partitioning solution, a module 
migrahon based partitioning algorithm MMP is also proposed as the 
base partitioner for the TLP algorithm. The MMP algorithm implicitly 
promotes the move of clusters during the module migration processes 
by paying more attention to the neighbors of moved modules, relaxing 
the size constraints temporarily during the migration process, and 
controlling the module migration direction. 

Experimental results obtained show that the TLP algorithm 
generates stable and highquality partitioning results. The TLP 
algorithm improves the unstable property of module migration based 
algorithms such as FM [6] and STABLE [3] in terms of the average net 
cut value. On the other hand, TLP outperforms MELO [2], GFM, [I I], 
and C D I P L A ~ [ ~ ]  by 23%, 7%, and IO%, respectively and is 
competitive with hMetis [8], MLc [I], and LSIUMFFS [4] which have 
generated better results than many recent state-of-the-art partitioning 
algorithms. 

1 Introduction 
In VLSI circuit design, circuits with millions of transistors are now 

common, conventional logic-level and physical-level design tools 
cannot deal with the increasing complexity of VLSI circuit design 
without the participation of partitioning. Currently, in submicron 
designs, interconnection delays tend to dominate gate delays; therefore, 
decomposing a circuit into subsets to minimize the number of 
interconnections between subsets is thus of great importance. For that 
purpose, a size-constrained min-cut bipartitioning problem is  addressed 
in this paper as follows. Given a hypergraph H( V, E )  with n vertices, a 
vertex weighting function s: V-+ R' , and a lower and an upper bounds 
on the partition size S, and SM, the bipartitioning problem is to divide 
V into two disjoint nonempty subsets L and R, where L U R = V, with 
the objective of minimizing cu@, R)  (which is the number of 
hyperedges connecting modules in L and R) and subject to the size 
constraints S, < S(L), S(R) I SW (where S(L) denotes the size of 
subset L). 

Since the size-constrained min-cut bipartitioning problem is 
NP-coniplete [7], an optimal solution is hard to obtain when the 
problem size is large and various heuristics have been developed. 
Kemighan and Lin [9] proposed a well-known iterative improvement 
based module interchange algorithm for graph parhtioning, which was 
later improved by Fiduccia-Mattheyses (FM) algorithm [6] by 
employing an efficient bucket list data structure to reduce time 
complexity to be in linear proportion to the pin number. Since the 
iterative improvement based FM algorithm is very efficient, much work 
has sought to improve upon the FM algorithm [IO] [I I] [5]. 

On the other hand, module clustering has been shown to reduce 
the complexity of the partitioning problem and enhance the 
performance of an iterative improvement algorithm [3] [ I ]  [8] [4]. The 
goal of clustering algorithms is to identify the natural clusters in a 

circuit, where a cluster is a group of highly connected modules in a 
circuit. One of the most important classes of clustering based 
partitioners is the two-level partitioners [3] [4]. At the fust level of these 
partitioners, clustering techniques are first applied on the original circuit 
H to derive a contracted circuit H c  and then partitioning techniques are 
applied on H c  to derive a partitioning solution P c .  At the second level, 
PC is used to obtain a new partitioning solution PI of H and then a 
final partitioning solution P is thus obtained by applying partitioning 
techniques on H using P I  as its initial solution. 

In this paper, we propose a novel clustering based partitioner 
Two-Level-Pariitioning (TLP) based on the two-level methodology. 
TLP integrates an efficient hybird clustering technique into a module 
migration based partitioning algorithm MMP. The proposed hybird 
clustering technique tries to combine the merits of the bottom-up and 
topdown clustering techniques by using a local bottom-up clustering 
technique to merge modules and a global topdown ratio-cut technique 
for decomposition. The proposed iterative improvement based MMP 
partitioning heuristic implicitly promotes the move of an entire cluster 
into one of the two subsets by paying more attention to the neighbors of 
moved modules, relaxing the size constraints temporarily during the 
partitioning process, and controlling the module migration direction. An 
overview of the TLP partitioner is shown in Section 2. 

2 Two-Level Partitioner 

The following shows the proposed partitioning heuristic TLP, 
which consists of two levels: (1) hybrid clustering and contracted 
hypergraph partitioning, and (2) unclustering and original hypergraph 
partitioning. . 

Algorithm 1 Two-he/-Pariitioner 
begin 

call Hybrid-Clusteriiigt.H, cluster-size) to obtain a contracted 
hypergraph Hc(VC, Ec) ; 
/* apply MMP on H c  using Pm,l,/o,,, as its initial solution */ 
call MMP(Hc, Pra,rr/om ) to obtain a solution PC (L, R); 
call Unclustering(Pc, H) to obtain a solution P I  (L, R); 
/* apply MMP on H using PI as its initial solution */ 
call MMP(H, P I )  to obtain a solution P(L, R); 
retum the bipartition solution P(L, R); 

end 

At the first level of Algorithm I ,  the Hybrid-Clustering procedure 
accepts the original hypergraph H as input along with a parameter 
cZuster-size, which sets a threshold to bound the size of each cluster 
formed in H. Any time as long as the size of a cluster in His  larger than 
cluster-size, the hybrid clustering technique is continued until every 
cluster has its size threshold satisfied. The contracted hypergraph H c  
obtained is relatively smaller than the original hypergraph H. 
Empirically, the ratio of the number of vertices in the original 
hypergraph to the number of vertices in its corresponding contracted 
hypergraph is about 100. Therefore, H c  is relatively denser than H. The 
MMP partitioning procedure is subsequently applied on H c  using a 
random initial partitioning solution Pm,,,,o, to obtain a good 
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partitioning solution P c(L, R )  spending only short computational time. 
In fact, the first level tries to search a good initial partitioning solutim 
for the second level as efficiently as possible. Using the iterative 
improvement partitioning techniques, although a partitioner can be 
devised to be less dependent on the initial partitioning solution, the 
initial partitioning solution is indeed crucial for the generation of 
highquality solutions. Therefore, the obtained partitioning solution after 
the first level plays a very important role in promoting the performarce 
of the whole two-level partitioner. 

At the second level of Algorithm 1, the Unclustering procedure: is 
used to uncluster each cluster formed in the Hybrid-Clustering 
procedure. This is done by simply decomposing each vertex in L (or R )  
of P into original modules and putting these modules into L (or R )  of 
P I ,  where P 1 is used as the initial partitioning solution used in [:he 
subsequent MMP partitioning process. We describe the procedures 
Hybrid-Clustering and MMP in detail in the following sections 

3 Hybrid Clustering Algorithm 
In this section, we introduce the hybrid clustering technique used 

in TLP. The following is the Hybrid-Clustering procedure, when: a 
bottom-up merging process and a topdown ratio-cut decompositon 
process are altematively applied until a desired clustering is reached 

Algorithm 2 Hybrid-Clustering(H( V, E), cluster-size) 
begin 

/* the following Top-Down-Clustering procedure contains a bottcm- 
up clustering process described in Algorithm 3 */ 
call Top-Down-Clustering(H, cluster-size) to obtain a clustering I-; 
call Grouping(H, r ) to obtain a contracted hypergraph Hc ; 
retum the contracted hypergraph Hc ; 

end 

Algorithm 3 Top-Down-Clustering(H( V, E),  cluster-size) 
begin 

if ((S(V) 5 cluster-size) or (Ill = 1)) 
then retum a cluster containing all modules in V; 
else begin 

call Bottom-Up-Clustering(H, cluster-size) to obtain a set of 
clusters C= (CI ,  CZ, ..., Cj }; 
call Grouping(H, C) to obtain a contracted hypergraph H, ( V,, E ,  ); 
call Ratio-Cut(H, )to generate two sub-hypergraphs H I  and HZ ; 
call Top-Down-Clustering(H I , cluster-size) to obtain a set of 

call Top-Down-Clustering(H2, cluster-size) to obtain a set of 

concatenate CL and CR to form { CI , CZ, . . . , ck } ; 
retum the set of clusters { C I  , CZ, .. . , ck } ; 

Clusters CL= {CI ,  C2, ..., Ci }; 

Clusters CR = { Ci+l, Ci+2, .. ., ck } ; 

end; 
end 

The Bottom-Up-Clustering procedure begins with a random 
permutation of the module set and then visits each in tum. To solve the 
clustering problem efficiently, only modules contained by the same net 
are considered to merge. Therefore, for a given unmerged module v 
(i.e., a module that has not yet been assigned to a cluster), the procedure 
first identifies all neighbors of v and then finds an unmerged module U 
from them that maximizes connectivity(v, U) (defined below). If such a u  
exists and the merge of v and U does not violate the cluster size 
constraint, form a new cluster by merging v and U; otherwise, v is 
assigned to its own cluster. The connectivity between v and U car1 be 
evaluated by the following equation: 

connectivity(v, U) = connection-strength(v, U) * size(v, U) ( I )  

1 where connection_strength(v, U) = 2 and size(v, U) = -i;;i. 
connection_strength(v, U) is a measure of the connection strength 
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Fig. 1 :  Pass operation of the MMP algorithm. 

between v and U. Term A represents the total contributed weight of the 
nets connecting v and U, and term B the minimum of the total 
contributed weight of the nets connecting v and the total contributed 
weight of the nets connecting U. size(v, U) is devised to encourage 
merging modules with smaller sizes to form clusters of uniformly sizes. 

The Ratio-Cut procedure, which is used to perform the topdown 
decomposition process by using the ratiocut [I21 as its objective, 
consists of three phases: initialization phase, neighbor migration phase, 
and local neighbor migrution phase. In the initialization phase, a 
module v is randomly selected as a seed. After the seed v has been 
determined, v forms the subset R and the other modilles form the subset 
L. Afterward, the procedure travels the circuit starting from v and each 
time moves one best candidate into R until b\ = 1. The decomposition 
giving the minimum ratio forms initial L and R for the hypergraph 
concemed. 

Once an initial decomposition is derived, an iterative improvement 
technique is utilized to achieve improvement in the subsequent neighbor 
migration phase. In this phase, module migration is performed first from 
R to L and then from L to R.  Considering module migration direction to 
be from R to L, any time the procedure selects a neighbor of L to be 
moved into L. We call a module in a certain subset X a neighbor of a 
subset Y if it is adjacent to at least one of the modules in Y. The best 
neighbor is one that can generate the best (i.e., smallest) ratio value after 
its movement. Each time the procedure moves one best neighbor into 
the destination subset L until /RI = 1.  The new best decomposition 
obtained is thus used as the initial decomposition for the other module 
migration process from L to R.  

To achieve further improvement, the result obtained from the 
second phase is used as a starting point for the local neighbor migration 
phase. The basic idea adopted in the third phase is the same as the 
second phase, that is, both phases repeatedly move one best neighbor 
into the destination subset. The difference is that in the second phase, 
neighbors of the destination subset are considered to be moved into the 
destination subset; in the third phase, however, only neighbors of the set 
of previously moved modules are considered for migrahon. In 
Algorithms 2 and 3, the Grouping procedure is simply used to construct 
a contracted hypergraph from an obtained clustering. 

4 Module Migration Partitioning Algorithm 
After clusters are formed, a partitioning algorithm must be applied 

to rearrange the clusters into two subsets with prespecified sizes. In this 
section, we develop a module migration partitioning algorithm MMP. 
In a circuit, some clusters exist such that the connections among 
modules in a cluster are denser than others, and dividing these clusters 
into different subsets will increase the number of nets cut. Therefore, if 
we can move some modules to make these straddled clusters not to be 
cut, the net cut number will be fewer. This concept is used as the main 
guideline in the MMP partitioning heuristic. An overview of the MMP 
algorithm is  shown as follows: 

Algorithm 4 Module Migration Partitioning(H( V, E),  P i,,ilil,i (L, R)) 
begin 

for counter = 1 to number-of-iterations do begin 
randomly select a seed v from L; 
while (L  is not empty) do begin 

if (the total accumulated size TAS of moved modules exceeds b* 
S(L) and the reversing point is found) then break; 
move the selected module v from L to R; 
update associated information; 
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select from L a next module v, having the strongest connection to 
previously moved modules and a maximal FM gain, to move; 

end; 
randomly select a seed v from R; 
while ((S(L)IS(R)) I (SMIS,) ) do begin 

if (current parhtioning result satisfies the size constraints and 
generates a minimal net cut) 
then record this partitioning result; 
move the selected module v from R to L; 
update associated information; 
select from R a next module v, having the strongest connection to 
previously moved modules and a maximal FM gain, to move; 

end; 
scale the value of p ; 
assign the current best result as a new initial partitioning Pini,ic,, ; 

end; I* end of for *I 
report the best partitioning result; 

end 

From the initial partitioning solution obtained in advance, MMP 
attempts to move the modules in a cluster from one subset to the other 
to improve the existing solution. This is achieved by futing the 
migration direction and choosing modules to be moved with great care. 
This "forward" migration process is continued until the assumed cluster 
is entirely moved into the other side. Next, the migration direction is 
reversed and the modules are moved to keep the size ratio of two 
subsets fall into an acceptable range. We call apass is done when this 
"backward" migration process is completed. The best feasible solution 
will be used to form a new starting point for the next pass. The above 
pass operation will be applied iteratively to improve the result. Note that 
we have relaxed the size constraints temporarily during apass process. 
The basic operation of a pass (i.e., two while loops in Algorithm 4) is 
shown in Fig. 1. 

We hope only modules in one cluster are moved during forward 
or backward migration. Thus it is undesirable to choose a module which 
has no connection to the previously moved modules as the next target to 
move. Therefore, a module v chosen for migration must have the 
strongest connection to previously moved modules and have a maximal 
FM gain (here gain means the decrement of the net cut number if v is 
moved into the opposite subset). An important parameter p (0 [3 <I),  
which controls size relaxation, is devised to determine the size of 
module set to be moved in the forward migration process. Empirically, 
to obtain good solutions, the value of p is set to be high at the 
beginning to allow larger clusters to be pulled first, and is gradually 
decreased in the followingpasses to keep smaller clusters moving. 

Backward migration is essential to search acceptable size ratio 
results and to find better solution for each pass. Naturally, the change of 
migration direction occurs when modules in a cluster have just been 
moved into one side. By direct observation, when such a cluster is 
moved into the opposite side, the net cut number will fall into a minimal 
point. If we still continue the moving operation unaware, the net cut 
number will certainly increase. Under this consideration, when the 
accumulated size of moved modules is greater than the given value, we 
begin to keep record of the decreasing net cut number and it is time to 
reverse the migration direction when this value begins to increase. 

In TLP, we apply the MMP algorithm five times to obtain a good 
result on the contracted hypergraph and once to the original hypergraph 
to fine tune the partitioning result. In next section, experiments on 
benchmarks are performed to verify the superiority of our two-level 
partitioning algorithm TLP. 

5 Experimental Results 
Our two-level algorithm TLP was coded in C language and 

implemented on a Sun SPARC I O  workstation. We evaluate the TLP 
algorithm with other algorithms by finding solutions with different 
devjutions, where deviation from the exactly balanced bipartition is 
defined as 6 = (SM - S,)  I (SM + S,) . 

5.1 Partitioning Circuits with Actual Module Size 
In this experiment, each module was given the actual area size. In 

Table I ,  we compare the results of the TLP algorithm to those of the 
FM and STABLE algorithms with the size of each subset being allowed 
to have 1% deviation. We implemented the FM algorithm [6] and the 
STABLE algorithm [3]. The runs of STABLE and TLP are set to be 20. 
The g value of STABLE is set to be 50 based on [3]. We set the run of 
FM to be 500 for meaningful comparison. 

In Table 1, we demonstrate that TLP performs much better than 
FM and STABLE in terms of both the minimal net cut number and the 
average net cut value when a strictly balanced bipartition is required. On 
average, TLP shows a 19% and 26% improvements over the best 
results and a 50% and 45% improvements over the average results 
achieved by FM and STABLE, respectively, for all the 18 test circuits. 
In Table I ,  we also find that TLP and STABLE have the same time 
magnitude, and the average time used in FM is much less than others. 
Although FM works very fast for each run, more than 500 runs are 
required to derive the same solution quality as TLP. Therefore, TLP is 
superior to FM with the whole performance consideration. 

Additionally, the stability of FM and STABLE is much worse 
than TLP when comparing the difference between the average net cut 
value and the minimal net cut value of each circuit. Therefore, TLP 
provides a more predictable behavior in net cut number than FM and 
STABLE when a Strictly balanced bipartition is considered. 

5.2 Partitioning Circuits with Unit Module Size 
In this experiment, each module was given a unit area size. In 

Table 2, we compare the minimal net cut results of the TLP algorithm to 
those of some state-of-the-art partitioning algorithms with the size of 
each subset being allowed to have a up to 10% deviation. The 
parhtioning results of MELO, GFM,, CDIPu3, hMetis, MLc ,  and 
L S W F F S  were from [2], [ 1 I], [5], [8], [I], and [4], respectively. 

In Table 2, on average, TLP outperforms MELO, GFM,, and 
CDIPLA~ by 23%, 7%, and IO%, respectively and is competitive with 
hMetis, MLc , and LSWMFFS which have generated better results than 
many recent state-of-the-art partitioning algorithms. Since a large 
tolerance (10% deviation) on each subset size has been allowed, all of 
the partitioning algorithms have more chances to search for better 
partitioning solutions. Consequently, different algorithms generate 
similar solutions for some circuits for this case with loosely balanced 
subset sizes. 

6 Conclusion 
A new two-level partitioner TLP has been developed. The hybrid 

clustering strategy adopted in TLP, which is the combination of a local 
bottom-up clustering approach and a global top-down recursive 
clustering approach, was shown very efficient. Also, to generate a stable 
and high-quality partitioning solution, a module migration based 
partitioner was proposed as the base partitioner for TLP. Experimental 
results obtained indicate that the TLP partitioner generates promising 
results in either the minimal net cut or the average net cut. On the other 
hand, the TLP partitioner also improves the unstable property of 
module migration based partitioners such as FM and STABLE in terms 
of the average net cut value. 
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