The Hierarchical h-Adaptive 3-D Boundary Element Computation of VLSI

Interconnect Capacitance”
Jinsong Hou , Zeyi Wang and Xianlong Hong
(Dept. of computer science and technology , Tsinghua Univ., Beijing , 100084)

Abstract: In VLS circuits with deep sub-micron, the
parasitic capacitance from interconnect is a very important
factor determining circuit performances such as power and
time-delay. The Boundary Element Method(BEM) is an
effective tool for solving Laplacian’s equation applied in
the parasitic capacitance extraction. In this paper, a
hierarchical h-adaptive BEM is presented . It constructs a
3-D linear hierarchical shape function based on constant
boundary element and uses previous computations and
solutions. Hence, it reduces much computation in
adaptive procedure. Besides, a combination of residual-
type estimator and reduced Z-Z error estimator for more
reliable and efficient estimation of error is presented.
Some numerical results show that this method is effective.
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1 Introduction

In deep-submicron VLS circuits, with the feature
sizes scaled down and device density increased, the
parasitic capacitance of interconnecting conductors is
becoming dominant in governing circuit delay and power
consuming®. To compute the capacitance , the
Laplacian’s equation can be solved numerically over the
simulated region with the specified boundary conditions.

A variety of numerical methods known as the finite
difference method (FDM), finite element method (FEM)
and boundary element method (BEM) can be used for
solving the Laplacian's equation characterizing the
parasitic capacitance. Recently, the BEM[?%*1 s
commonly used as a competitive tool with the advantages
of high accuracy, less degree of freedom and strong ability
to handle complex boundary geometry. Both partitioning of
elements and degree of interpolation polynomials
approximating the variables in the boundary elements are
the key factors which affect computational accuracy of the
BEM. Now, a 3-D interconnecting parasitic capacitor from
the practical layout often is a very complicated structure
involving 5~6 layers of different dielectrics and many
pieces of conductors up to several hundreds. It is very
difficult to achieve a rational and scientific discretization
by a manual process. So, it is necessary to get help from
the mathematics like adaptive computation for higher
computational accuracy and efficiency. Several efficient
adaptive schemes classified as h-, p-, and hp-refinement
were proposed for improving the accuracy of boundary
element computation!®. The h-adaptive versionl”* means
that improvement of the global accuracy can be achieved
by locally refining mesh without change of the
interpolation degree. The p-adaptive version'™ means that
the global computation accuracy can be improved by
locally refining the degree of the interpolation polynomial
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without changing partitioning of the boundary elements.
The hp-adaptive version'® is a combination of the above
two adaptive schemes. In this paper, the h-adaptive
scheme is used because of its good stability from using
lower degree of interpolation polynomials.

As adaptive approaches are iterative procedures, in
which the global matrix must be formed at each refinement
step because of introducing additional refinements in
some elements, its computational cost becomes high. To
overcome this difficulty, it is natural that the higher
interpol ations are obtained under maintaining the previous
interpolation basis functions used. Thus a hierarchical
definition of the interpolation basis functions is crucial for
efficiency of the adaptive methods. The hierarchical
adaptive computations can be understood as those in a
Fourier series expansion new terms are introduced in the
manner of maintaining the previous terms unaltered®.
In the boundary element context, articles [9] and [14]
proposed some methods of constructing linear, quadratic
and quartic h-hierarchical shape functions in two-
dimensional (2-D) cases. Based on these works, we got
improvements in two aspects . First, h-hierarchical shape
functions in 3-D boundary element analysis , which are
the extension of those in 2-D case, are formed .
Second , the linear hierarchical shape functions are
based on constant element , not linear element , thus it
avoids much difficulty in dealing with discontinuity of the
normal electrical field at corner points.  Furthermore, we
proposed a reduced Zienkiewicz-Zhu(Z-Z) error
estimator™ | which makes the error estimation more
efficient.

2 The boundary element computation of

capacitance

Generally, the interconnecting capacitor from the
VLSI circuits can be treated as a 3-D structure, which is
characterized by the Laplacian’s equation with mixed
boundary conditions, including many conductors
embedded in an arbitrary piecewise constant dielectric
medium®* For simplicity, the Laplacian's equation
with mixed boundary condition in a medium is shown as
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where the electrical potential uisafunction of (x,y,2), nis
the outward unit normal. Using the Green formula and
property of the fundamental solution u* of the Laplacian’s
equation, the partial differential equation (1) can be
transformed to a set of the direct boundary integra



equations' >4
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where q*:$, G=G, +G, isboundary of the region
n

W, and c; is a constant dependent on geometry of the

boundary G in neighborhood at the source point i. Then
the boundary G needs to be discretized and equation (2) is
numerically solved by the BEM!*2,

Since discretization made by inexperienced users is
atedious work and often resultsin large computation error ,
we should devel op an adaptive mesh refinement scheme to
insure the accuracy of solution.

3 Hierarchical shape functions in h-

adaptive refinement

As most of the interconnecting conductors are cuboid,
we use quadrilateral elements (rectangular elements as
many as possible, particularly) as the initial mesh in the
adaptive process for smaller discretization errort*” and its
easy implementation. It was supposed that theinitial mesh
needs to be locally refined and the h-hierarchical shape
functions need to be added on those subdivided elements.
The key point of constructing the h-hierarchical shape
functions is that the hierarchical functions only add new
terms on the new subdivided elements , maintaining the
old term on the initial mesh unchanged®® . Note that the
new added terms must be linear independent with the
existing terms. Next we will show how to build the
hierarchical functions on arectangle element .
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Fig. 1 (a) A rectangle element W, needs to be

subdivided into four sub-elements Wy, ~ W, ,
(b) the constant shape function j ;on W, .

In figure 1, W, is a rectangle element with its
constant shape function j ;=1 shown in (b). If W, is
subdivided into four sub-elements and on each sub-
element the shape function is aso constant, i.e,
foo=Ffpm=Fg =fg =1, immediately, it can be seen that
the new added functions f , ~j o, are linearly dependent
on the initial shape function f,. Obviously, it leads to

singularity of the linear equation system from discretizing
the integral equation (2). So this kind of constant shape
functionsis not valid in the hierarchical computations.

In this paper , we proposed a linear hierarchical
shape functions based on constant elements. The shape
function of the initial element is kept constant , but the
new added shape functions are the pyramid-like linear
functions defined on every sub-element. For example, in
region W, , the shape function j o, isset 1 at the center O

of W, and O on the four edges of the region. This is
shown in Fig. 2. Below, we show how to generate the
shape function | ; on Wy, .
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Fig. 2 Pyramid-like shape function j ,, onregion W, .

Denoting triangular area Wy, by j+ OAB, it can be

transformed into a regular isoparametric triangular
element by using the local area coordinate x,h , as shown

inFig. 3.
O]
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Fig. 3 Transformation of isoparametric triangular element.
In subregion Wy, of W, , using local area coordinate,

the hierarchical linear function f o011 Which is a part of

the shape function | o1 defined above, can bewritten  as
follows:

fou=1-x-h ©)
Also, the hierarchical functions f o, j¢f 3 and f, on
subregions W, j 0y, and Wy, aresimilarly got. Let us
call the constant shape function j , the 0" level shape

function of the h-hierarchical shape functions on the
element W, . The shape function f, constituted by
J o ~ T o defined on subregions Wy, ~Wy,, of Wy,
together with the shape functions f o, ~j o, on subregions
Wy, i¢ Wy and W, composes the 1% level shape
function on the element W, . Apparently, the 1% level
functions f o, ~j o are linearly independent on the 0"
shape function f,. Based on this kind of hierarchical
functions, if any sub-element of the element W, needs to

be further refined, the pyramid-like shape functions with
higher level can be formed, similarly.

In the h-adaptive BEM, the main advantage of using
hierarchical shape functions is utilizing previous
computation and part of solutions when locally refining the
mesh. This fact can be explained in detail. Suppose that
the coefficient matrix A, of the discrete linear system is

corresponding to a mesh M, with n d.of. (degree of
freedom) and it can be written as follows:

Ax® =b® (4
When the mesh M, is localy refined to a new mesh
M (n+my With m new d.o.f. introduced, the system of linear

equations formed by using the hierarchical shape functions
will have following form:
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e
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where A, intheequation (4) is presented as a part of the

coefficient matrix of the equation (5) because of preserving
all of the previous shape functions in forming the refined
equation (5).

In contrast, if using the shape functions without the
hierarchy, the refined linear system corresponding to the
new M .m with (n+m) d.o.f. should be formed asfollows:

Ay x "™ = ©®
where all items of the coefficient matrix A,., needtobe

calculated again®. So, using the hierarchical shape
functions can greatly save the computational consumption
in the h-adaptive boundary element analysis.

4 Error estimation and adaptive tactics

The adaptive procedure requires reliable and
efficient method to estimate the discretization errors .
Generdly, there are two different methods of posteriori
error estimation for boundary element methods : residual-
type estimator!?®**4 and non-residual -type estimator’*?. In
this paper, a combination of them is presented to give a
reliable and efficient error estimator.

After equation (2) is solved , both approximate
potential U and normal field @ on the boundary G are
got. With reference to the equation (2), residual is defined
as: r=Cu; +@Qq UdG- ¢u qdG
(7
where . istheresidual at pointi™. If T and q are exact
to u and g anywhere, r; will be zero at any pointi. So, we
can use r; to indicate the discretization error at point i .
Note that at every collocation point the residual r; is equal
to zero. For each boundary element G; the local error

estimator can be defined as:

— — N 2
hJ' _"r"Lz R redG ®)
to indicate whether the element G should be refined.

At the same time, the global error estimator of k™

refinement can be defined as follows:
a0
h* =€8 h /N
i g ©

where N is number of al boundary elements. For a given
accuracy €, the global error estimator h*  may be used

to judge whether the adaptive computation should be
stopped.

Computation complexity of the above residual-type
estimator is O(N?). It requires much computation cost
when N is large. In our algorithm, the initial mesh is set
coarse enough that it can just describe the geometry of the
bodies and boundary condition. This makes the
computation cost of estimator not very large. After the
initial mesh is refined , N may become very large and the
residual type estimator is not used. Instead, we use a
reduced Z-Z1*2 error estimator.

The Z-Z error estimator™ is famous one, which was
indicated as most robust one by the article [18], in the
non-residual type error estimators. The key idea
constructing the Z-Z estimator is using information of an
element and its neighboring elements to generate the

polynomial with higher degree for estimating the
discretization error™@. Below, the reduced Z-Z error
estimator based on Z-Z'sidea s presented.
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Fig. 4. Variance of u on four adjacent elements.
In Fig. 4, the variable u on four adjacent boundary
elements is analyzed along the x axis. Along the x axis,
the difference of u between elements G and G, is

relatively large. This means that only two elements along
the x axis are not enough to describe the violent variance
of u,so G and G, need to be refined. But for elements

G, and G,, thereisonly little change of u along the x
axisand it meansthat G, and G, need not to be refined.
In the same way, this work is done along the y axis to find
which elementsamong G j¢ G, i¢ G, and G, should be
refined. Briefly, the refined criterion for boundary element
G; can be expressed as.

G| G
G| G

@j udG @Fud‘dG

Xj

>d (10)
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where, G;and Gfare the adjacent elements along the x or
y axis, SGJ_ and Sy, aretheir corresponding areas, d isa
]

given accuracy requirement. We call the estimator defined
in (10) the reduced Z-Z local error estimator. Similarly,
the global error estimator of k™ refinement can be defined
asfollows:

X =gax, YN (11)

It is not difficult to see that computation complexity
of the reduced Z-Z estimator is O(N), much faster than
residual-type estimator. At the same time, it further
reduces computation needed by the origind Z-Z
estimator™. But it should be noted that  the reduced Z-Z
estimator is not valid in the initial mesh because of too
coarse initial mesh to find any adjacent elements. In that
case, as we mentioned previously, the residual-type
estimator is used.

5 Numerical results

>




Fig. 5 A parasitic capacitor from practical VLSI layout.

In Fig. 5, the dark conductor is master piece on
which the voltage is set 1v and voltages on all the other
conductors are set Ov. The grey plane is substrate where its
voltage is Ov. The total capacitance to be computed is that
between master piece and all other conductors including
the substrate. During the adaptive computation, the initia
mesh and refined meshes on surface f1 are shown in Fig.6.

(@) Initid (b) First refined  (c) Second refined
Fig. 6 Initial mesh and two refined meshes on surface f1.

From Fig.6 , we can see that the error estimator and
adaptive tactics based on our algorithm are reasonable.
According to the knowledge of electrostatic field, the area
between the master piece(voltage=1v) and other
conductors(voltage=0v) has great voltage drop. Therefore,
the boundary elements near the master should berefined in
order to describe the relatively violent variance of
electrical potential more precisely. In (b) and (c) of
Fig.6, most of the refined elements are just located in
neighborhood of the master. The numerical results and
electrostatic property match well.

Next, results between the adaptive refinement and
uniform refinement are compared for this example. Table
1 shows the results. The capacitance value 674 in Table 1
can betreated as arelatively accurate value by using avery
fine mesh.

Table 1 Comparison between h-hierarchical refinement
and uniform refinement.

h-hierarchical

dof. | cap(ff) | dof. | cap(ff)
initial | 198 503 198 503

1% ref. 510 623 677 644

2"V ref. | 1190 674 2534 670

From above results, we see that in the hierarchical
h-adaptive computation using less d.o.f. can reach high
precision. But, for uniform refinement, reaching the same
precision as the adaptive analysis needs to take much more
d.o.f. and additional work, generally.

6 Conclusion

In this paper, the 3-D hierarchical h-adaptive
boundary element method is employed to calculate the
parasitic capacitance from interconnect in VLSI. The
hierarchical computation reduces much work since
previous matrix and datum can be reused in the adaptive
procedure. The combination of the residual-type estimator
and reduced Z-Z error estimator makes error estimation
more efficient. Compared with uniform refinement
strategy, the adaptive refinement can reach high precision
with less degree of freedom.
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