Formal Design Verification for Correctness of Pipelined Microprocessors with
Out-of-order Instruction Execution

Takashi Takenaka, Junji Kitamichi,

Teruo Higashino and Kenichi Taniguchi
Department of Informatics and Mathematical Science,
Graduate School of Engineering Science, Osaka University
Toyonaka, Osaka 560—8531, Japan

e-mail{t-takena,kitamiti,higashino,tanigugt@ics.es.osaka-u.ac.jp

Abstract— In this paper, we propose a verification method for The sufficient condition” claims that (a) each instruc-
pipelined microprocessors with out-of-order execution. We define tion must not enter the pipeline consisting of the stages
a class of pipelined microprocessors with out-of-order execution stg., ..., Stg, without guaranteeing that it would not cause any
and give a sufficient condition that guarantees the correctness of of RAW, WAR, WAW hazards, and that (b) each instruction
implementation. Each microprocessor in this class has a pipeline must perform specified operations correctly, and so on. We
stg,, . .., stg, such that the stages stg . . ., stg,, are so-called in- can check whether a given implementation satisfies condition
order pipeline” and changes the execution order of instructions (a) by showing directly that the control of the implementation
within the stages of stg, . ..,stg,_,. Using our method, we car- guarantees this condition without considering the values calcu-
ried out the correctness proof of a practical 6-stage pipelined mi- lated by each instruction.
croprocessor that has a so-called scoreboard[1]. We used a ver- We can check condition (b) under the assumption that each
ifier having a decision procedure for Presburger sentences. The instruction can read correct values without hazards. Moreover,
total CPU time spent in the proof was about 8 hours. since we assume that the stages, stg,stg, are ‘in-order

pipeline” by C, we can use the method similar to ones pro-
posed for in-order architecture[5].
|. INTRODUCTION Moreover, we designed a practical pipelined microprocessor
with out-of-order instruction execution under the design con-

Out-of-order instruction executighf is one of the tech- straintC'. This microprocessor has 6-stage pipeline and some

hiques to overcome data hazards with dynamic SChedu“ntguﬁers to record the program order of instructions and so on.

Therefore almost all modern pipelined microprocessor arcr\lN I g -
e proved that this microprocessor satisfies the sufficient con-
tectures, such as the PowerPC and the DEC Alpha, employ i b P

. g dition V' as follows. First, we introduced lemmas concerned
Rece_:ntly, some efforts have gone into verifyiogt-of-order properties of the buffers and so on, and proved them.
arch|tectures[2, 3 4] In those methods, howeverz the clgss condly, we proved that the implementation satisfies the suffi-
the implementations that the method can be applied for is N@fent conditionl” under the lemmas. To prove those, we used a
defined clearly. It is exceedingly important to define a suitablg cision procedure for the prenex normal form Preéburger sen-
class of the implementations that the method can be appli

f d1o qi ficient dition t tee that a ai ces bounded by only universal quantifiers[6]. Although it
for and to give a sutlicient condition to guarantee that a givef, necessary to decide the truth of the sentence whoselength
implementation in this class satisfies its specification.

. . ! was over 8,000, the total CPU time spent in the proof was the
In this paper, we give a design constraihin order to spec- P P

ify a class of the pipelined microprocessors with out-of-orde‘?raCtlcal time of 8 hours.

instruction execution. Moreover we propose a sufficient con-

dition V' to guarantee that a given implementation designed Il. SPECIFICATION
under the design constrai@itsatisfies its specification.

The design constrainC' claims as follows. First, each in- We assume that a pipelined microprocessor has a program
struction must execute the stages stig,, - . -, stg, in this or- ~ counter(PC) and some registers and memories as visible reg-
der, provided that it is possible for each instruction to abort itsters. All instructions, which the microprocessor fetches and
execution before executing a certain stage,sBgcondly, the executes, are stored in an instruction memory(IMEM). We as-
stages stg ..., stg, are so-calledih-order pipeline”. There- Sume that IMEM keeps its contents unchanged in execution.
fore, the implementation changes the execution order of ifhe instruction set is supposed to be so-called RISC-type ISA.
structions within the stages of stg..,stg. ,. Moreover, Each instruction consists of an op-code and some operands. It
w.r.t each visible register (except for program counter), the ols supposed that the registers that an instruction reads values
der of instructions that read values from/write values into thiom/writes values into are specified by its operands. In the
register is the same as the order of instructions which executer .

. . . e length of a sentence is the total number of occurrences of the
the stage stg The microprocessors in this class can have dat@yiaples, constants, operations(—), predicatest, =), and logical
forwarding, speculative instruction fetch, and so on. connectives(, \, —) in the sentence.

following discussion, letFs¢(7), F%¢t(T) denote the set of IMEM and the same initial value of each visible register.

the registers that instructicdhreads values from/writes values The implementatiof satisfies the specificatighif for each

into, respectively. visible registerF; and for each state of the specification from

The description(abstraction) level of specifications is sahe initial state, there exists a value of correspondence func-

called ISA level. We writecycleto denote the the transition tion concr; (t) such thatconcr, (t + 1) follows or equals to

function of the specificatios. The transition functioreycle concr, (t), and that equation

specifies the operations of the microprocessor executing each }

instruction independently. Let(¢*) denote the state after the FPPe(t) = F;m”’(conch (1))

transitioncycleis executed from the initial staté times. We

abbreviater (¢°) ast® and the state aftaycleis executed from holds, whereF;7°“(t) and F]?mpl (t) denote the contents &f

the state® ascyclet®), respectively. in the statet of the specificatior$ and the implementatioh,
respectively. m|

1I. I MPLEMENTATION In this paper, we define the correspondence functiory:,

We assume that an implementation has special registers dRgluctively in the following way. Suppose that the value of
controller to enable out-of-order execution, and pipeline regisoncr; (t) is determined for each visible regist€} and for
ters in addition to the visible registers. The datapath is dividegCh state from the initial time to the stat¢’. LetZ, denote
into a fixed number of pipelined stages, for examplgtages, &N instruction that is first fetched aftesncpc (t°). If Fj €
stg, ..., stg,. F1H(Z;) , the value ofconc, (t* + 1) is the state in which

The description(abstraction) level of implementations is sck: completes to execute the stage; stgOtherwise, the value
called RT level. We writelk to denote the transition function Of concr; (£ + 1) is the same as the value @fncpo (1 + 1).
of the implementatiod. The transition functiorclk specifies However ifconcp, (¢°) follows concpe (87 + 1), the value of
the operations that are executed in each stage during a clg@cr; (t* + 1) is the same as the value afncy, () .
cycle. Leto(t) denote the state after the transitiolk is ex-
ecuted from the initial statetimes. We abbreviate(¢) ast

and the state afterlk is executed from the stateas clk(z), V. SUFFICIENT CONDITION FOR CORRECTNESS

respectively. . , A. Sufficient condition
We give a design constraidt in order to specify a class of
the pipelined microprocessors as follows. In this section, we give a sufficient conditidnfor the cor-
(C1) Each instruction must execute the stages,sitg,, ..., rectness of microprocessor. We have only to check whether a

stg, in this order. However, it is possible for each instructiorgiven implementation satisfies the sufficient conditioin or-
to abort its execution before executing a certain stage stg der to verify that this implementation satisfies its specification.
(C2) For each stage stguch thatc < i < n, the order of
instructions that execute this stage is the same as the ordei.émma 1 (Sufficient conditionV’) Suppose that an imple-
instructions that execute the stage.stg mentation/ designed under the design constra@itand its
(C3) For each registef', there exists only one stage stguch specificati_onS.are gi\{gn. If thg implementz_;\tioﬁ .sa_tisfies
that all instructions can write values info at executing the the following six conditions, the implementatibsatisfies the
stage stg, independently of the kind of instructions. ProvidedSPeCIflca“QnS- _ o o
that for each visible registet,< ir < n. For PC, there exist (V1) Each instruction must enter the pipeline consisting of the
two stages, stgand stg such that < p < n. stages stg ..., stg,, provided that every instruction fetched
(C4) W.r.t each registeF’, all instruction can read values from Speculatively must abort before executing the stage stg
F only during executing between stgnd stg, , ,. However (V2) There are no RAW hazaifd§. The instructionZ; must
w.r.t each visible register(except for PC), during executing bé&wot enter the pipeline consisting of the stages,stg, stg,,
tween stgand stg_, ;. if there exists the instructio; such thatZ; precedes;, Z;
The implementation designed under the design consifainthas not executed the stage stgnd there exists the registég
changes the execution order of instructions within the stagésch thatFy, € F%°**(Z;) andFy, € F*"*(Z;).
of stg,...,stg. ;. The stages sig...,stg, arein-order (V3) There are no WAR hazaifd3. The instructionZ; must
pipeline. Moreover, w.r.t each visible register (except for PC))ot enter the pipeline consisting of the stagesstg, stg,,
the order of instructions that read values from/write values intié there exists the instructiof; such thatZ; precedes;, Z;
this register is the same as the order of instructions that execims not executed the stage stand there exists the registeg
the stage stg such thatFy, € F*7¢(Z;) and Fj, € Fe4(Z;).
(V4) There are no WAW hazafd§. The instructionZ; must
not enter the pipeline consisting of the stages,stg, stg,,

IV. CORRECTNESS if there exists the instructioff; such thatZ; precede<;, Z;
jhas not executed the stage stand there exists the registef
such thatFy, € Ft(Z;) and F}, € F°1(Z;).

(V5) Every instruction must perform specified operations cor-
Definition 1 Suppose that a specificatichand an implemen- rectly. Let ¢, ¢ denote the state of the specificatiSrand the
tation I are given and each has the same instruction memomnplementation/, respectively. If there exists the instruction

In this section, we give a definition that implementation sa
isfies specification.

7, that begins its execution in the statehe following condi- From V1, 7, must execute the stage stg Let ¢’ de-
tion holds; note the state in whicli; executes stg Now, suppose that
the implementation’ would not execute any instruction fol-

pC(#) = PC(1) lowing Z;. In this case, Ieth(clkgsl)m(t’)) denote a con-

s (Fj
NN CFE) = Fi(ck7) () tent of F; in which all instructions executing the stages of
FieFy stg.,,,---,Stg, would complete their own execution. W.r.t
— /\ F;(cyclgt?)) = Fj(clkgg) (t") (1) thevalue ost(Clkgisl)zn(t’)), the following property holds un-
Fj€F, der the hypothesis, If the implementatidrsatisfiesv1, V2,
V3 andV4.

where F} (C|kgj{)(t')) denotes a content of the regist€y in . (F)
which all instructions executing the stages of stg.,stg, Property 1 An equationF (k) = Fi(clk.i5 ,(¢)) holds for
would complete their own executions, affd denotes a set €ach registet’ such thatt; € F*"“(Z;). o
of all visible registers except PC. . .

W.r.t PC, both of following two conditions (a) and (b) hoId.W :TZZCE rrzp?SrttgFl’Siiﬁﬂg%(Sé j‘;}ﬁ; &q)uatmn (6) holds
(a) If Z; is a branch that is taken, the following condition holds; " 9 d d ¢

[PO(E) = POt] Fa(k +1) = Fa(cl% (1) (6)
NN CEE) = Fi(ck) (1) Even if there exist instructions followiriy, equation (7) holds
[F;eF, J from the design constrail since any instruction can not read
— PC(cyclet®)) = PO(ckEA) (1)),) values written by the instructions that execute the stage stg
’ later than them.
(b) If Z; is not a branch or is a branch that is not taken, (b1) (Fa)
7, must not write a value into PC in the stage stwich that Fy(concp, (k+1)) = Fy(clk. (7, (1)) (7)
PC € Fig,, (b2) the following condition holds; Therefore equation (8) is yielded by equations (6) and (7).
PC(t*) = PC(t) Fy(k + 1) = Fy(concg, (k + 1)) (8)

P lgt%)) = P Ik . .
- C(eyclet?)) etk (®)) 3 W.r.t PC, the same discussion can be done. Moreover¥sm
whereclk, denotes the transition function that performs onlyZ: does not write any value intB; such thatF; ¢ F%*'(Z;).

operations of stg o Therefore equations (9) and (10) hold.
We are certain that for the class provided by the design con- 1 ¢ (k+1) = PClconcpc(k +1)) ©)
straintC it is difficult to relax the sufficient condition given Fi(k + 1) = Fy(coner, (k + 1)) (10)
above. g
Finally, from C2 anav4, concr, (k + 1) follows or equals to
B. Proof of sufficientness of conditidr concy; (k) for each register’;. m
[Proof of Property1]

In this section, we briefly prove that when a given imple- | et 7, denote a register such thB} € F*7¢(Z;). In order
mentation/ designed under the design constraihsatisfies 5 prove Property 1, we need to consider two cases w.r.t the
the sufficient conditiori’, the implementatio satisfies the jnstructions that preced® and are specified to write values
specificationS. We prove it by induction on the number ofintg £,: (a) when all of such instructions complete to write the
instructions executed by the specificati®nSince the specifi- yayes intoF, in the statet’, and (b) when some of such in-
cation and implementation have the same initial values of eaglyctions are executing the stages sig. . . , stg, in the state
visible register, we can prove the basis step obviously. n
(Hypothesis step) Let denote a state in which the specifica- For case (a)F,(t) = F,(concy, (k)) holds. Moreover
tion S completes the execution 6 — 1)-th instruction. Sup- there does not exist any instruction specified to write values

pose that for each visible registe} and for each statefrom jnto F, in the stages of sig,,. .., stg,. These are yielded by
the initial state through the state there exists the value of following three reasons. (al) All instructions that are specula-
concy; (i) and equation (4) holds. tively fetched and abandoned can not write values ify@rom
N . V1 and C4). (a2) All instructions precedifg can not write
F;(i) = Fj(concy; (i) (4) values intoF, afterconcy. (k)(from the hypothesis). (a3) Al

(Induction step) Le; denote the first instruction fetched afterinstructions that followZ; and are specified to write values into
concpe (k) in the implementatior, and lett denote the state £s Can Not execute the stage stipforeZ, executes the stage
in which Z, is fetched. W.r.t. PC, equation (5) holds since th&t@(from V3). Therefore Property (1) holds from CA4.
content of PC is kept unchanged utfiilcompletes to execute F0r case (b), from C2, C4V1, V3, V4, the value

the stage stgfrom C2 andv1. of Fs(clkgsl)m(t’)) equals to the value written intd’; by
the latest instruction of all instructions that are specified

PC(k) = PC(t) (5) to write values intoF; and that are executing the stages

TABLE |
CPUTIME USED FOR PROOF

TR [PPCI Conditions| CPU time(sec)
, Lemmas 18,339

,,,,,,,,,,,,,,,,,,,,,,,,,,,, o s Vi 4,031
I Scoreboard V2 7,383

V3 2,511

V4 33
- —F;lm op_E_pEST © V5 48

(Pentiumll 300MHz, 128MB Memory)

ox has not executed the stage, (3) the operation classDf is
“fLop mllor w pest]-= ALUs or Load, and (4) the destination register f agrees
with either of the source registers 5f’.

To prove them, we used a decision procedure for the prenex

-{mpr]

Hﬂﬂ

omen | [wor - -~ {RstT -~~~ (o wlfor w oesq " normal form Presburger sentences bounded by only univer-
wh sal quantifiers. This procedure is based on the transformation
— """""" rule called “quantifier elimination” which is used in Cooper’s

algorithm. For speed-up, we added many devices to the
algorithm[6]. Although our decision procedure can decide the
elimination-order for deleting variables efficiently depending
on the form of a given expression, in a few cases we specified
of stg.,,,...,stg, in the statet’. Therefore the value of this ordering. Although there existed some sentences whose
length was over 8,000, the total CPU time spent in the proof
was the practical time of 8 hours(SeABLE).

Fig. 1. An overview of our example microprocessor.

F, (el (")) equals to the value oF(concy, (k)), since
all instructions followingZ’ can not affect the execution @f
from the design constrair®’. Therefore Property (1) holds

from the hypothesis. | VII. CONCLUSIONS

In this paper, we specified the class of the implementation by
VI. AN EXPERIMENTAL PROOF imposing a design constraiGton the implementation and pro-
. o) posed a sufficient conditiol” of the correctness of pipelined
We designed a out-of-order pipelined microprocessor undgiicroprocessors with out-of-order instruction execution. Ex-
the design constraint(See Fig. 1). Our implementation is perimental proof showed that each conditions in the sufficient
based on FDDP, which has been designed as an implemenigndition was able to be proved, although the correctness of
tion with in-order instruction execution by NTT and is similarthe whole microprocessor was difficult to be proved.
to DLX[1]. Our microprocessors has a program counter(PC),
a register file(RF), and a data memory(DMEM) as visible reg-
isters. Moreover it has 6-stage pipeline and a buffer, named REFERENCES
Scor.eboard_[l].. The S_COHEboard of our minOPrOCGSSQr has ‘]?J. L. Hennessy and D. A. Patterso@omputer Architecture:
entries of six instructions currently executed in the micropro-" A Quantitative Approach Morgan Kaufmann Publishers, Inc.,
cessor and records the program order and execution status of 1996.
these instructions, and so on. The instruction set of it is B] J. Sawada and W. A. Hunt, Jr., “Trace table based approach
RISC-style ISA with four operation class: 3-register ALUS, ~ for pipelined microprocessor verification,” iRroc. 9th CAV
Load, Store, and Branches. vol. 1254 ofLNCS pp. 364-375, Springer-Verlag, June 1997.
We proved that our microprocessor satisfies the sufficief] r. Hosabettu, M. Srivas and G. Gopalakrishnan, “Decomposing
condition V. This prOOf was carried out as follows. First, the proof of correctness of p|pe||ned microprocessorspﬂml
we introduced lemmas concerned with properties of the score- 10th CAV vol. 1427 of LNCS pp. 122—-134, Springer-Verlag,
board and so on, and proved them. For example, we introduced June 1998.
the lemmas describing that the scoreboard always records {hp J. U. Skakkebaek, R. B. Jones and D. L. Dill, “Formal verification
program order of instructions, and so on. Secondly, we proved of out-of-order execution using incremental flushing,”Rroc.
that the implementation satisfies the sufficient conditionn- 10th CAV vol. 1427 ofLNCS pp. 98-109, Springer-Verlag, June
der those lemmas. For example, to show that our micropro- 1998.
cessor satisfie¥3, we proved following condition under the [5] J. R. Burch, “Techniques for verifying superscalar microproces-
lemma describing that the scoreboard always records the pro- sors,” inProc. 33rd Design Automation Conferengeas Vegas),

gram order of instructions and so on :*w.r.t each QjrZ; of pp. 552-557, June 1996.

instructions such that the scoreboard has their entfiedpes [6] S. Morioka, N. Shibata, T. Higashino and K. Taniguchi, “Tech-
not execute theo? stage, if (1) the program order &f, which niques to reduce computation time in decision procedure for
is recorded by scoreboard, is less than the orddf; pf2) Z; prenex normal form Presburger sentences bounded only by exis-

tential quantifiers,” infrans. IPSJVol. 38, No. 12, Dec. 1997(in
2Thero stage of our microprocessor is correspond tQ stg Japanese).

	Main Page
	ASPDAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

