
Formal Design Verification for Correctness of Pipelined Microprocessors with
Out-of-order Instruction Execution

Takashi Takenaka, Junji Kitamichi,
Teruo Higashino and Kenichi Taniguchi

Department of Informatics and Mathematical Science,
Graduate School of Engineering Science, Osaka University

Toyonaka, Osaka 560–8531, Japan
e-mail:ft-takena,kitamiti,higashino,taniguchig@ics.es.osaka-u.ac.jp

Abstract— In this paper, we propose a verification method for
pipelined microprocessors with out-of-order execution. We define
a class of pipelined microprocessors with out-of-order execution
and give a sufficient condition that guarantees the correctness of
implementation. Each microprocessor in this class has a pipeline
stg

1
; : : : ; stg

n
such that the stages stg

c
; : : : ; stg

n
are so-called “in-

order pipeline” and changes the execution order of instructions
within the stages of stg

1
; : : : ; stg

c�1
. Using our method, we car-

ried out the correctness proof of a practical 6-stage pipelined mi-
croprocessor that has a so-called scoreboard[1]. We used a ver-
ifier having a decision procedure for Presburger sentences. The
total CPU time spent in the proof was about 8 hours.

I. I NTRODUCTION

Out-of-order instruction execution[1] is one of the tech-
niques to overcome data hazards with dynamic scheduling.
Therefore almost all modern pipelined microprocessor archi-
tectures, such as the PowerPC and the DEC Alpha, employ it.
Recently, some efforts have gone into verifyingout-of-order
architectures[2, 3, 4]. In those methods, however, the class of
the implementations that the method can be applied for is not
defined clearly. It is exceedingly important to define a suitable
class of the implementations that the method can be applied
for and to give a sufficient condition to guarantee that a given
implementation in this class satisfies its specification.

In this paper, we give a design constraintC in order to spec-
ify a class of the pipelined microprocessors with out-of-order
instruction execution. Moreover we propose a sufficient con-
dition V to guarantee that a given implementation designed
under the design constraintC satisfies its specification.

The design constraintC claims as follows. First, each in-
struction must execute the stages stg1, stg2, : : :, stgn in this or-
der, provided that it is possible for each instruction to abort its
execution before executing a certain stage stgc, Secondly, the
stages stgc; : : : ; stgn are so-called “in-order pipeline”. There-
fore, the implementation changes the execution order of in-
structions within the stages of stg1; : : : ; stgc�1. Moreover,
w.r.t each visible register (except for program counter), the or-
der of instructions that read values from/write values into this
register is the same as the order of instructions which execute
the stage stgc. The microprocessors in this class can have data
forwarding, speculative instruction fetch, and so on.

The sufficient conditionV claims that (a) each instruc-
tion must not enter the pipeline consisting of the stages
stgc; : : : ; stgn without guaranteeing that it would not cause any
of RAW, WAR, WAW hazards, and that (b) each instruction
must perform specified operations correctly, and so on. We
can check whether a given implementation satisfies condition
(a) by showing directly that the control of the implementation
guarantees this condition without considering the values calcu-
lated by each instruction.

We can check condition (b) under the assumption that each
instruction can read correct values without hazards. Moreover,
since we assume that the stages stgc; : : : ; stgn are “in-order
pipeline” byC, we can use the method similar to ones pro-
posed for in-order architecture[5].

Moreover, we designed a practical pipelined microprocessor
with out-of-order instruction execution under the design con-
straintC. This microprocessor has 6-stage pipeline and some
buffers to record the program order of instructions and so on.
We proved that this microprocessor satisfies the sufficient con-
dition V as follows. First, we introduced lemmas concerned
with properties of the buffers and so on, and proved them.
Secondly, we proved that the implementation satisfies the suffi-
cient conditionV under the lemmas. To prove those, we used a
decision procedure for the prenex normal form Presburger sen-
tences bounded by only universal quantifiers[6]. Although it
was necessary to decide the truth of the sentence whose length1

was over 8,000, the total CPU time spent in the proof was the
practical time of 8 hours.

II. SPECIFICATION

We assume that a pipelined microprocessor has a program
counter(PC) and some registers and memories as visible reg-
isters. All instructions, which the microprocessor fetches and
executes, are stored in an instruction memory(IMEM). We as-
sume that IMEM keeps its contents unchanged in execution.
The instruction set is supposed to be so-called RISC-type ISA.
Each instruction consists of an op-code and some operands. It
is supposed that the registers that an instruction reads values
from/writes values into are specified by its operands. In the

1The length of a sentence is the total number of occurrences of the
variables, constants, operations(+, �), predicates(>, =), and logical
connectives(̂ , _, :) in the sentence.



following discussion, letFsrc(I), Fdest(I) denote the set of
the registers that instructionI reads values from/writes values
into, respectively.

The description(abstraction) level of specifications is so-
called ISA level. We writecycle to denote the the transition
function of the specificationS. The transition functioncycle
specifies the operations of the microprocessor executing each
instruction independently. Let�(ts) denote the state after the
transitioncycleis executed from the initial statets times. We
abbreviate�(ts) asts and the state aftercycleis executed from
the statets ascycle(ts), respectively.

III. I MPLEMENTATION

We assume that an implementation has special registers and
controller to enable out-of-order execution, and pipeline regis-
ters in addition to the visible registers. The datapath is divided
into a fixed number of pipelined stages, for examplen stages,
stg1; : : : ; stgn.

The description(abstraction) level of implementations is so-
called RT level. We writeclk to denote the transition function
of the implementationI . The transition functionclk specifies
the operations that are executed in each stage during a clock
cycle. Let�(t) denote the state after the transitionclk is ex-
ecuted from the initial statet times. We abbreviate�(t) ast
and the state afterclk is executed from the statet as clk(t),
respectively.

We give a design constraintC in order to specify a class of
the pipelined microprocessors as follows.
(C1) Each instruction must execute the stages stg1, stg2, : : :,
stgn in this order. However, it is possible for each instruction
to abort its execution before executing a certain stage stgc.
(C2) For each stage stgi such thatc � i � n, the order of
instructions that execute this stage is the same as the order of
instructions that execute the stage stgc.
(C3) For each registerF , there exists only one stage stgiF

such
that all instructions can write values intoF at executing the
stage stgiF independently of the kind of instructions. Provided
that for each visible register,c � iF � n. For PC, there exist
two stages, stg1 and stgp such thatc � p � n.
(C4) W.r.t each registerF , all instruction can read values from
F only during executing between stg1 and stgiF+1. However
w.r.t each visible register(except for PC), during executing be-
tween stgc and stgiF+1.

The implementation designed under the design constraintC

changes the execution order of instructions within the stages
of stg1; : : : ; stgc�1. The stages stgc; : : : ; stgn are in-order
pipeline. Moreover, w.r.t each visible register (except for PC),
the order of instructions that read values from/write values into
this register is the same as the order of instructions that execute
the stage stgc.

IV. CORRECTNESS

In this section, we give a definition that implementation sat-
isfies specification.

Definition 1 Suppose that a specificationS and an implemen-
tation I are given and each has the same instruction memory

IMEM and the same initial value of each visible register.
The implementationI satisfies the specificationS if for each

visible registerFj and for each statet of the specification from
the initial state, there exists a value of correspondence func-
tion concFj (t) such thatconcFj (t + 1) follows or equals to
concFj (t), and that equation

F
spec
j (t) = F

impl
j (concFj (t))

holds, whereF spec
j (t) andF impl

j (t) denote the contents ofF
in the statet of the specificationS and the implementationI ,
respectively. 2

In this paper, we define the correspondence functionconcFj
inductively in the following way. Suppose that the value of
concFj (t) is determined for each visible registerFj and for
each statet from the initial time to the statets. Let It denote
an instruction that is first fetched afterconcPC(t

s). If Fj 2
Fdest(It) , the value ofconcFj (t

s + 1) is the state in which
It completes to execute the stage stgiF

. Otherwise, the value
of concFj (t

s + 1) is the same as the value ofconcPC(t
s + 1).

However if concFj (t
s) follows concPC(t

s + 1), the value of
concFj (t

s + 1) is the same as the value ofconcFj (t
s) .

V. SUFFICIENT CONDITION FOR CORRECTNESS

A. Sufficient condition

In this section, we give a sufficient conditionV for the cor-
rectness of microprocessor. We have only to check whether a
given implementation satisfies the sufficient conditionV in or-
der to verify that this implementation satisfies its specification.

Lemma 1 (Sufficient conditionV ) Suppose that an imple-
mentationI designed under the design constraintC and its
specificationS are given. If the implementationI satisfies
the following six conditions, the implementationI satisfies the
specificationS.
(V1) Each instruction must enter the pipeline consisting of the
stages stgc; : : : ; stgn, provided that every instruction fetched
speculatively must abort before executing the stage stgc.
(V2) There are no RAW hazards[1]. The instructionIj must
not enter the pipeline consisting of the stages stgc; : : : ; stgn,
if there exists the instructionIi such thatIi precedesIj , Ii
has not executed the stage stgc, and there exists the registerFk

such thatFk 2 F
dest(Ii) andFk 2 F

src(Ij).
(V3) There are no WAR hazards[1]. The instructionIj must
not enter the pipeline consisting of the stages stgc; : : : ; stgn,
if there exists the instructionIi such thatIi precedesIj , Ii
has not executed the stage stgc, and there exists the registerFk

such thatFk 2 F
src(Ii) andFk 2 F

dest(Ij).
(V4) There are no WAW hazards[1]. The instructionIj must
not enter the pipeline consisting of the stages stgc; : : : ; stgn,
if there exists the instructionIi such thatIi precedesIj , Ii
has not executed the stage stgc, and there exists the registerFk

such thatFk 2 F
dest(Ii) andFk 2 F

dest(Ij).
(V5) Every instruction must perform specified operations cor-
rectly. Let ts, t denote the state of the specificationS and the
implementationI , respectively. If there exists the instruction



It that begins its execution in the statet, the following condi-
tion holds;

2
4

PC(ts) = PC(t)

^
^

Fj2Fv

Fj(t
s) = Fj(clk(Fj)c+1;n(t

0))

3
5

!
^

Fj2Fv

Fj(cycle(ts)) = Fj(clk(Fj)c;n (t0)) (1)

whereFj(clk(Fj)c;n (t0)) denotes a content of the registerFj in
which all instructions executing the stages of stgc; : : : ; stgn
would complete their own executions, andFv denotes a set
of all visible registers except PC.

W.r.t PC, both of following two conditions (a) and (b) hold.
(a) If It is a branch that is taken, the following condition holds;

2
4

PC(ts) = PC(t)

^
^

Fj2Fv

Fj(t
s) = Fj(clk(Fj)c+1;n(t

0))

3
5

! PC(cycle(ts)) = PC(clk(PC)
c;n (t0)): (2)

(b) If It is not a branch or is a branch that is not taken, (b1)
It must not write a value into PC in the stage stgp such that
PC 2 Fstgp

, (b2) the following condition holds;

PC(ts) = PC(t)

! PC(cycle(ts)) = PC(clk1(t)) (3)

whereclk1 denotes the transition function that performs only
operations of stg1. 2

We are certain that for the class provided by the design con-
straintC it is difficult to relax the sufficient condition given
above.

B. Proof of sufficientness of conditionV

In this section, we briefly prove that when a given imple-
mentationI designed under the design constraintC satisfies
the sufficient conditionV , the implementationI satisfies the
specificationS. We prove it by induction on the number of
instructions executed by the specificationS. Since the specifi-
cation and implementation have the same initial values of each
visible register, we can prove the basis step obviously.
(Hypothesis step) Letk denote a state in which the specifica-
tion S completes the execution of(k � 1)-th instruction. Sup-
pose that for each visible registerFj and for each statei from
the initial state through the statek, there exists the value of
concFj (i) and equation (4) holds.

Fj(i) = Fj(concFj (i)) (4)

(Induction step) LetIt denote the first instruction fetched after
concPC(k) in the implementationI , and lett denote the state
in whichIt is fetched. W.r.t. PC, equation (5) holds since the
content of PC is kept unchanged untilIt completes to execute
the stage stg1 from C2 andV1.

PC(k) = PC(t) (5)

From V1, It must execute the stage stgc. Let t0 de-
note the state in whichIt executes stgc. Now, suppose that
the implementationI would not execute any instruction fol-
lowing It. In this case, letFs(clk(Fs)c+1;n(t

0)) denote a con-
tent of Fj in which all instructions executing the stages of
stgc+1; : : : ; stgn would complete their own execution. W.r.t

the value ofFs(clk(Fs)c+1;n(t
0)), the following property holds un-

der the hypothesis, if the implementationI satisfiesV1, V2,
V3 andV4.

Property 1 An equationFs(k) = Fs(clk(Fs)c+1;n(t
0)) holds for

each registerFs such thatFs 2 F
src(It). 2

From Property 1, equation (5) andV5, equation (6) holds
w.r.t each registerFd such thatFd 2 F

dest(It).

Fd(k + 1) = Fd(clk(Fd)c+1;n(t
0)) (6)

Even if there exist instructions followingIt, equation (7) holds
from the design constraintC since any instruction can not read
values written by the instructions that execute the stage stgc

later than them.

Fd(concFd(k + 1)) = Fd(clk(Fd)c+1;n(t
0)) (7)

Therefore equation (8) is yielded by equations (6) and (7).

Fd(k + 1) = Fd(concFd(k + 1)) (8)

W.r.t PC, the same discussion can be done. Moreover fromV5,
It does not write any value intoFj such thatFj 62 F

dest(It).
Therefore equations (9) and (10) hold.

PC(k + 1) = PC(concPC(k + 1)) (9)

Fj(k + 1) = Fj(concFj (k + 1)) (10)

Finally, from C2 andV4, concFj (k + 1) follows or equals to
concFj (k) for each registerFj . 2

[Proof of Property1]
Let Fs denote a register such thatFs 2 F

src(It). In order
to prove Property 1, we need to consider two cases w.r.t the
instructions that precedeIt and are specified to write values
intoFs: (a) when all of such instructions complete to write the
values intoFs in the statet0, and (b) when some of such in-
structions are executing the stages stgc+1; : : : ; stgn in the state
t0.

For case (a),Fs(t
0) = Fs(concFs(k)) holds. Moreover

there does not exist any instruction specified to write values
into Fs in the stages of stgc+1; : : : ; stgn. These are yielded by
following three reasons. (a1) All instructions that are specula-
tively fetched and abandoned can not write values intoFs(from
V1 and C4). (a2) All instructions precedingIt can not write
values intoFs afterconcFs(k)(from the hypothesis). (a3) All
instructions that followIt and are specified to write values into
Fs can not execute the stage stgc beforeIt executes the stage
stgc(from V3). Therefore Property (1) holds from C4.

For case (b), from C2, C4,V1, V3, V4, the value
of Fs(clk(Fs)c+1;n(t

0)) equals to the value written intoFs by
the latest instruction of all instructions that are specified
to write values intoFs and that are executing the stages



is

ro

ex

mem

wb

AB

ALU

MDR_E

MDR_M

MDR_W

RF

OP_E

OP_M

OP_W

OP_E_DEST

OP_M_DEST

OP_W_DEST

RSLT_M

RSLT_W

ADDER

DMEM

MUXMUX
MUX

if
IR

IMEM
MUX

PPCro PC

Scoreboard

MUX

Fig. 1. An overview of our example microprocessor.

of stgc+1; : : : ; stgn in the statet0. Therefore the value of

Fs(clk(Fs)c+1;n(t
0)) equals to the value ofFs(concFs(k)), since

all instructions followingI 0 can not affect the execution ofI 0

from the design constraintC. Therefore Property (1) holds
from the hypothesis. 2

VI. A N EXPERIMENTAL PROOF

We designed a out-of-order pipelined microprocessor under
the design constraintC(See Fig. 1). Our implementation is
based on FDDP, which has been designed as an implementa-
tion with in-order instruction execution by NTT and is similar
to DLX[1]. Our microprocessors has a program counter(PC),
a register file(RF), and a data memory(DMEM) as visible reg-
isters. Moreover it has 6-stage pipeline and a buffer, named
scoreboard[1]. The scoreboard of our microprocessor has the
entries of six instructions currently executed in the micropro-
cessor and records the program order and execution status of
these instructions, and so on. The instruction set of it is a
RISC-style ISA with four operation class: 3-register ALUs,
Load, Store, and Branches.

We proved that our microprocessor satisfies the sufficient
condition V . This proof was carried out as follows. First,
we introduced lemmas concerned with properties of the score-
board and so on, and proved them. For example, we introduced
the lemmas describing that the scoreboard always records the
program order of instructions, and so on. Secondly, we proved
that the implementation satisfies the sufficient conditionV un-
der those lemmas. For example, to show that our micropro-
cessor satisfiesV3, we proved following condition under the
lemma describing that the scoreboard always records the pro-
gram order of instructions and so on :“w.r.t each pairIi, Ij of
instructions such that the scoreboard has their entries,Ij does
not execute thero2 stage, if (1) the program order ofIi, which
is recorded by scoreboard, is less than the order ofIj , (2) Ii

2Thero stage of our microprocessor is correspond to stg
c
.

TABLE I
CPUTIME USED FOR PROOF.

Conditions CPU time(sec)
Lemmas 18,339

V1 4,031
V2 7,383
V3 2,511
V4 33
V5 48

(PentiumII 300MHz, 128MB Memory)

has not executed thero stage, (3) the operation class ofIj is
ALUs or Load, and (4) the destination register ofIj agrees
with either of the source registers ofIi”.

To prove them, we used a decision procedure for the prenex
normal form Presburger sentences bounded by only univer-
sal quantifiers. This procedure is based on the transformation
rule called “quantifier elimination” which is used in Cooper’s
algorithm. For speed-up, we added many devices to the
algorithm[6]. Although our decision procedure can decide the
elimination-order for deleting variables efficiently depending
on the form of a given expression, in a few cases we specified
this ordering. Although there existed some sentences whose
length was over 8,000, the total CPU time spent in the proof
was the practical time of 8 hours(See TABLE I).

VII. C ONCLUSIONS

In this paper, we specified the class of the implementation by
imposing a design constraintC on the implementation and pro-
posed a sufficient conditionV of the correctness of pipelined
microprocessors with out-of-order instruction execution. Ex-
perimental proof showed that each conditions in the sufficient
condition was able to be proved, although the correctness of
the whole microprocessor was difficult to be proved.

REFERENCES

[1] J. L. Hennessy and D. A. Patterson,Computer Architecture:
A Quantitative Approach. Morgan Kaufmann Publishers, Inc.,
1996.

[2] J. Sawada and W. A. Hunt, Jr., “Trace table based approach
for pipelined microprocessor verification,” inProc. 9th CAV,
vol. 1254 ofLNCS, pp. 364–375, Springer-Verlag, June 1997.

[3] R. Hosabettu, M. Srivas and G. Gopalakrishnan, “Decomposing
the proof of correctness of pipelined microprocessors,” inProc.
10th CAV, vol. 1427 of LNCS, pp. 122–134, Springer-Verlag,
June 1998.

[4] J. U. Skakkebæk, R. B. Jones and D. L. Dill, “Formal verification
of out-of-order execution using incremental flushing,” inProc.
10th CAV, vol. 1427 ofLNCS, pp. 98–109, Springer-Verlag, June
1998.

[5] J. R. Burch, “Techniques for verifying superscalar microproces-
sors,” inProc. 33rd Design Automation Conference, (Las Vegas),
pp. 552–557, June 1996.

[6] S. Morioka, N. Shibata, T. Higashino and K. Taniguchi, “Tech-
niques to reduce computation time in decision procedure for
prenex normal form Presburger sentences bounded only by exis-
tential quantifiers,” inTrans. IPSJ, Vol. 38, No. 12, Dec. 1997(in
Japanese).


	Main Page
	ASPDAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index


