
Formal Verification Method for Combinatorial Circuits at High Level Design

Junji Kitamichi, Hiroyuki Kageyama and Nobuo Funabiki

Division of Informatics and Mathematical Science
Graduate School of Engineering Science, Osaka University

Osaka, JAPAN

{ kitamiti, kageyama, funabiki }@ics.es.osaka-u.ac.jp

abstract In this paper , we propose a formal
verification method for combinatorial circuits at
high level design. The specification is described
by both integer and Boolean variables for input
and output variables, and the implementation is
described by only Boolean variables. Our
verification method judges the equivalence
between the specification and the implementation
by deciding the truth of Presburger sentence. We
show experimental results on some benchmarks,
such as 4bit ALU, multiplier, by our method.

1. Introduction

With the rapid increase of size and complexity in VLSI
systems, the formal verification method has become essential
for their correct designs. For this goal, we have proposed a
formal verification method for high level circuits design, and
developed a verification support system to evaluate our
method by experiments[8].

In this paper, we propose a verification method for
combinatorial circuits at high level design. The specification
is described by both integer and Boolean variables for input
and output variables. The implementation is described by
only Boolean variables for input and output variables. Our
verification method judges the equivalence between the
specification and the implementation by deciding the truth of
Presburger sentence, which consists of integers, variables and
the operators belonging to { ∧ , ∨ , ¬ , + , - , = , > ,

 ∀ , ∃ }. We describe the results of some verification
experiments.

Our verification method may be similar to the method
[5, 6] with BMDs(Binary Moment Diagrams). However, an

integer variable is treated as one variable without decomposed
into a set of Boolean variables in [5, 6]. Our verification
method is more suitable for high level formal verification.

2. Proposed Verification Method for
Combinatorial Circuits

In this session, we first describe the style of

specification and implementation of combinatorial circuits.
Then we propose the method to decide the equivalence
between specification and implementation. We explain them
by using an example 74382, a 4bit ALU(standard TTL).

2.1 Specif ication

In specification, 74382 has six inputs, $A, $B,
$Cnspec, S0, S1, S2, and has three outputs, $Fspec,

$Cn4spec and OVR. $A and $B are integer inputs, $Cnspec
is a carry-in, and S0, S1 and S2 are function selecting inputs.
$Fspec , $Cn4spec and OVR are an integer data output , a
carry-out and an over-flow flag, respectively. For
convenience, we use the prefix "$" as the integer variable, and
use the suffix "spec" or "imp" as the variable used in
specification or implementation, respectively. We show the
74382 specification in Figure 1.

:
∧

((¬ S2 ∧ S1 ∧ ¬ S0) imply (
if $Cnspec = 1 then (

if $A - $B >= 0 then (
($Fspec = $A - $B) ∧
($Cn4spec = 1) ∧
(not OVR))

else (
($Fspec = $A - $B + 16) ∧
($Cn4spec = 0) ∧
(OVR)))

else
:
))

Figure 1 Specification of 74382

Each function, such as and, or, addition, is selected by
function selecting inputs [S0, S1, S2]. For example, if S0 =
False, S1 = Truth and S2 = False, then the subtraction from
$A to $B is performed .

2.2 Implementation

In implementation, 74382 has 12 Boolean inputs A0, ..,
A3, B0, .., B3, Cnimp, S0, S1, S2, and has seven Boolean

outputs F0, .., F4, Cn4imp and OVR. Inputs A0, .., A3 ,
B0, .., B3 and Cnimp correspond to $A , $B and $Cnspec,
respectively. Outputs F0, .., F4 and Cn4imp correspond to

$Fspec and $Cn4spec respectively. We get the
implementation by the synthesis tool with some
modifications. We show the 74382 implementation in Figure
2. For example, output F0 is specified by the logic function
which consists of inputs [S0, S1, S2] and Boolean variables
such as _TMP009. We use the prefix "_TMP" as an internal
node.

:
∧ (
F0 = CINimp ∧ ¬ _TMP009 ∧ ¬ _TMP011

∧ S0 ∧ ¬ S2
∨ CINimp ∧ ¬ _TMP009 ∧ ¬ _TMP011

∧ S1 ∧ ¬ S2
∨ ¬ _TMP038 ∧ ¬ S0 ∧ ¬ S1
∨ ¬ _TMP038 ∧ S2
∨ ¬ CINimp ∧ ¬ _TMP038)

∧ (
:

Figure 2 Implementation of 74382

2.3 Definition of Equivalence between
Specification and Implementation

We define the equivalence between the specification and
the implementation. If the specification and the
implementation have the same output value for any common
input value, they become equivalent. But corresponding
inputs or/and outputs may have different data types such as
integer and Boolean. We introduce i-to-b and b-to-i functions
(or relations) , which translate integer data into Boolean data

and Boolean into integer, respectively. We show these
functions in Figure 3.

We show the outline of verification used these functions
in Figure 4. For example, Figure 4 (a) verifies whether
Boolean outputs in specification and implementation are
equivalent, and that the results of i-to-b function for integer
variables in specification and Boolean outputs in
implementation are equivalent , for each common value of all
inputs.

There are four deferent combinations on the data type (
integer or Boolean) for inputs and outputs of specification and
implementation to be verified. If one of them is verified, the
implementation becomes equivalent to the specification.

(A0 = ($A = 1 ∨ $A = 3 ∨ ... ∨ $A = 15))
∧

(A1 = ($A = 2 ∨ $A = 3 ∨ ... ∨ $A = 15))
∧

(A2 = (4 <= $A ∧ $A <= 7
∨ 12 <= $A ∧ $A = 15))

∧
(A3 = (8 <= $A ∧ $A <= 15))

(a)Function i-to-b from $A to [A0..A3]

if ¬ A3 ∧ ¬ A2 ∧ ¬ A1 ∧ ¬ A0
then $A = 0

else if ¬ A3 ∧ ¬ A2 ∧ ¬ A1 ∧ A0
then $A = 1

:
else if A3 ∧ A2 ∧ A1 ∧ ¬ A0

then $A = 14
else if A3 ∧ A2 ∧ A1 ∧ A0

then $A = 15
(b)Function b-to-i from [A0..A3] to $A

Figure 3 i-to-b and b-to-i Functions

=

=
S0,..,S2

A0,..,A3

B0,..,B3

Ci n

Implementation F0,..,F3

A

B

Ci n

Specification
F

S0,..,S2

itob-

function

itob-
function

C4 = T?

T?

S0,..S2

A0,..,A3

B0,..,B3
Cin

Implementation
F0,..,F3

C4

btoi -
function

btoi

-function

F

Cin

Specification

S0,..,S2

T?

T?

 (a)Equivalence for all input S0,S1,S2, and integer A,B,Cin

 (b)Equivalence for all Boolean input S0,S1,S2,A0,..A3,B0,..B3,Cin

A

B C4

C4

=

=

=

OVR

OVR

OVR

OVR

Figure 4 Outline of Verification for 74382

The expression corresponding to each type of
verification to be proved is given in (1):

 ∀ All variable

((valid situations or not invalid situations)
∧ Specification
∧ Implementation
∧ {if needed}

b-to-i functions for

Boolean inputs or/and outputs
∧ {if needed}

i-to-b functions for

integer inputs or/and outputs)

imply

for each outputs
∧ if ¬ (don't care situations) then

output in Specification

= output of Implementation) (1)

For example, for input $A, (0 <= $A <= 15) is a valid
situation. We refer to "don't care situations" in 4.

3. Verifier

We describe our verifier of deciding the truth of the
sentences such as expression (1) in 2 .

The Presburger sentence consists of integer variables,
Boolean variables , operators " ∧ , ∨ , ¬ (not) , (,) , +, -,

 ∀ , ∃ , = , <", and has no free variable. Cooper's
algorithm[4] can decide the truth of Presburger sentences. The
notations ,such as imply, if then, if then else, are defined as a
sequence of primitive operators.

We have used two verifiers. One verifier has BDD-like
data structure, by extended to hold the integer expressions[9].
We denote this verifier as Sys1. In the data structure in Sys1,

truefalse

1

2

NULL

<

-3

<

-2

<

-1

1

1

10

1
0

10

x1

x1

x2

x 2

NUL L

Figure 5 An example of our proposed data structure

terms (or numerical parts) are expressed in list and logical
parts are expressed in BDDs[1]. The expression with integer
variables is treated as one Boolean variable node. The value of
this Boolean variable would be evaluated as truth or false
when the numerical parts has no free integer variable (that is,
the last integer variable is eliminated). We explain our
proposed data structure with an example sentence and its
corresponding data structure.

Figure 5 denotes a diagram which corresponds to a
sentence (2 < x1 + x2) ∧ (2 x2 < 3) ∧ (-1 < x1 - 2 x2). The
meshed area expresses the sentence (or logical part) by BDD.
The BDD in this area is the same as BDD corresponding to a1

∧ a2 ∧ a3, which is obtained such that each numerical part
of the sentence is transformed into a1, a2 and a3. The internal
nodes of this data structure have three pointers to then node,
else node and numerical node which points the numerical
part. The numerical part holds the constant integer on the left
side and the list of integer variables and integer constants on
the right side. The term (-1 < x1 - 2 x2) is expressed as a
node holding -1 on the left side and x1 - 2 x2 on the right
side.

The storage which should hold the constant value in
BMD[6] is replaced with NULL in this data structure. The
reason is that all lists of integer variables which are generated
in the operation ∀ or ∃ , (except for constant integers) are
shared.

We implemented the library of each operation for the
proposed data structure by existing the BXD library[7]. The
BXD library includes the basic operations for BMD and BDD ,
but does not include the operations ∀ and ∃ for integers.

We added the operations for ∀ , ∃ and the other operations
which aren't included in the BXD library.

The order of variables in the diagram decides the size of
generated data structure. In our library, the variables order is
fixed by the order in which the variables appear in the syntax
analysis of input sentence.

Another verifier is able to decide the truth of subclass
Presburger sentences given by the prenex normal form of
only ∀ , without ∃ . They may include the expression(1) in
2 . or a variety of sentences for circuit verifications[8][10].
We denote this verifier as Sys2. Sys2 decides the truth of the
sentence ∀ x1 ∀ x2... ∀ xn F(x1,x2,..,xn). It adapts some
techniques for fast operation and of memory saving, such as
determination the order of ∀ operations. But Sys2 does not
share the common internal data unlike Sys1 .

4. Experiments
4.1 Verification of 74382

We describe the verification result of 74382 in 2. We
show the result in Table 1.

Sys2 needs the same 0.3 seconds for four types of

verification. Sys1 takes longer time for the verification of
Boolean inputs and Boolean outputs. The reason is that the
verification by Sys1 requires three b-to-i functions which
result in three large complete binary sub-trees and that Sys1
takes much time and space to treat such data structure.

Then, we show the verification result of the equivalence
between two different implementations imp1 and imp2 of
74382. The BDD data structures corresponding to imp1 and
imp2 are constructed in Sys1, where only pointers to the
top node corresponding BDD data structure are compared.

4.2 Verification of Multiplier

We describe the verification results of 4bit and 5bit
multipliers. These circuits use a sign-magnitude format as
input and output data. Integer "0" is expressed in two ways
such as "FFFF" or "TFFF" in the case of 4bit. Thus when
data output is "0", sign output does not need to be considered.
We use don't care situations expression (2):

:
if ¬ ($DataOutput in Specification = 0) then

/* or ¬ ($inputA = 0 or $inputB = 0) */
SignFlag in Specification

= SignFlag of Implementation)
:

(2)

4.3 Verification of Output nan-res in fp-add

We are challenging the verification of fp-add in
HLSynth95, floating point adder. We regard as specification
the relation from inputs to outputs, and as implementation
the relation among inputs, outputs, internal terminals from
VHDL description. All numerical terminals in specification
and implementation such as exponent and mantissa are treated
as integer.

Using our method in 2 ., the verification for only output
nan-res can be performed. Sys1 can verify more quickly
than Sys2.

 # of Bool # of Int Sys1 Sys2
 Input Output Variables Variables

74382
 Int Bool 56 4 1.6 0.3
 Bool Int 56 4 3.1 0.4
 Int Int 56 4 1.6 0.3
 Bool Bool 56 4 6.7 0.3
 (Imp1 = Imp2) 81 0 1.7 0.3

4mult Int Bool 40 4 N/A 181.3
 Int Int 40 4 N/A 724.5
 (Imp = Imp) 71 0 0.7 7.6

5mult Int Bool 60 4 N/A 5816.1
 (Imp = Imp) 109 0 12.8 6823.8

HLSynth95 FP_ADD
 Output nan-res 45 39 207.4 256.1
 (sec.) (sec.)
 PentiumII 300MHz 128MBmem

Table 1 Results of verifications

5. Conclusions

We propose the formal verification method for
high-level combinatorial circuits and show the result of
verification experiments using our verifier.

Sys1 is superior to Sys2 in the verification of nan-res,
and there is more prospect in Sys1 for the high-level
verification of combinatorial and sequential circuits. Now
we have been improving Sys1 and will apply it to more large
and high levels, including the sequential circuits verification.

References
[1] S. Minato: “Binary Decision Diagrams and Applications for

VLSI CAD”, Kluwer Academic Publishers, (1996).
[2] G.D.Hachtel and F.Somenzi:“Logic Synthesis and

Verification Algorithms”, KAP(1996).
[3] T. Higashino, J. Kitamichi, T. Kenichi, “Presburger

Arithmetic and its Application to Program Developments”,
Computer Software, Vol.9, No.6(1992) (In Japanese)

[4] D.C.Cooper: “Theorem Proving in Arithmetic without
Multiplication”, Machine Intelligence, No.7(1972).

[5] R.E. Bryant and Y.-A. Chen:“Verification of Arithmetic
Functions with Binary Moment Diagrams”, Technical Report
CMU-CS-94-160, School of Computer Science, Carnegie
Mellon University, (1994).

[6] R.E. Bryant and Y.-A Chen: “Verification of Arithmetic
Circuits with Binary Moment Diagrams”, 32nd DAC,
pp.535-541 (1995).

[7] BXD Package Home Page,
http://www.cs.cmu.edu/afs/cs.cmu.edu/usr/yachen/www/bxd.h
tml.

[8] J.Kitamichi, S.Morioka, T.Higasino and
K.Taniguchi:“Automatic Correctness Proof of Implementation
of Synchronous Sequential Circuits Using Algebraic
Approach”, Proc. of the 1994 Conference on Theorem Provers
in Circuit Design (TPCD94).Vol.901 of LNCS, pp.165-184,
Springer Verlag (1995).

[9] J. Kitamichi, N. Funabiki and S. Nishikawa, “Proposal of
Data Structure for Presburger Arithmetic and its Application to
Circuits Verification”, 1997 Int. Symp. on Nonlinear Theory
and its Applications, Vol.2, pp.1233-1236(1997).

[10] T.Amon, G.Borriello, T. Hu and J.Liu, “Symbolic Timing
Verification of Timing Diagrams using Presburger Formulas”,
Int. Conf. 34nd DAC(1997).

	Main Page
	ASPDAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

