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abstract In this paper , we propose a formal 
verification method for combinatorial circuits at 
high level design. The specification is described 
by both integer and Boolean variables for input 
and output variables, and the implementation is 
described by only Boolean variables. Our 
verification method judges the equivalence 
between the specification and the implementation 
by deciding the truth of Presburger sentence. We 
show experimental results on some benchmarks, 
such as 4bit ALU, multiplier, by our method.

1. Introduction

With the rapid increase of size and complexity in VLSI 
systems, the formal verification method has become essential 
for their correct designs. For this goal, we have proposed a 
formal verification method for high level circuits design, and 
developed a verification support system to evaluate our 
method by experiments[8].

In this paper, we propose a verification method for 
combinatorial circuits at high level design. The specification 
is described by both integer and Boolean variables for input 
and output variables. The implementation is described by 
only Boolean variables for input and output variables. Our 
verification method judges the equivalence between the 
specification and the implementation by deciding the truth of 
Presburger sentence, which consists of integers, variables and 
the operators belonging to { ∧ , ∨ ,  ¬ , + , - , = , > , 

 ∀ , ∃ }. We describe the results of some verification 
experiments.

Our verification method may be similar to the method
[5, 6] with BMDs( Binary Moment Diagrams). However, an 

integer variable is treated as one variable without decomposed 
into a set of Boolean variables in [5, 6]. Our verification 
method is more suitable for high level formal verification.

2. Proposed Verification Method for 
Combinatorial Circuits

In this session, we first describe the style of 

specification and implementation of combinatorial circuits. 
Then we propose the method to decide the equivalence 
between specification and implementation. We explain them 
by using an example 74382, a 4bit ALU(standard TTL).

2.1 Specif ication

In specification, 74382 has six inputs, $A, $B,
$Cnspec, S0, S1, S2, and has three outputs, $Fspec,

$Cn4spec and OVR. $A and $B are integer inputs, $Cnspec 
is a carry-in, and S0, S1 and S2 are function selecting inputs. 
$Fspec , $Cn4spec and OVR are an integer data output , a 
carry-out and an over-flow flag, respectively. For 
convenience, we use the prefix "$" as the integer variable, and 
use the suffix "spec" or "imp" as the variable used in 
specification or implementation, respectively. We show the 
74382 specification in Figure 1.

:
∧

((  ¬ S2 ∧ S1 ∧  ¬ S0) imply (
if $Cnspec = 1 then (

if $A - $B >= 0 then (
( $Fspec = $A - $B) ∧
( $Cn4spec = 1) ∧
( not OVR ))

else (
( $Fspec = $A - $B + 16) ∧
( $Cn4spec = 0) ∧
( OVR )))

else 
:
))

Figure 1 Specification of 74382

Each function, such as and, or, addition, is selected by 
function selecting inputs [S0, S1, S2]. For example, if S0 = 
False, S1 = Truth and S2 = False, then the subtraction from
$A to $B is performed .

2.2 Implementation

In implementation, 74382 has 12 Boolean inputs A0, .., 
A3, B0, .., B3, Cnimp, S0, S1, S2, and has seven Boolean 



outputs F0, .., F4, Cn4imp and OVR. Inputs A0, .., A3 , 
B0, .., B3 and Cnimp correspond to $A , $B and $Cnspec, 
respectively. Outputs F0, .., F4 and Cn4imp correspond to

$Fspec and $Cn4spec respectively. We get the 
implementation by the synthesis tool with some 
modifications. We show the 74382 implementation in Figure 
2. For example, output F0 is specified by the logic function 
which consists of inputs [S0, S1, S2] and Boolean variables 
such as _TMP009. We use the prefix "_TMP" as an internal 
node. 

:
∧ (
F0 = CINimp ∧  ¬ _TMP009 ∧  ¬ _TMP011

∧ S0 ∧  ¬ S2
∨ CINimp ∧  ¬ _TMP009 ∧  ¬ _TMP011

∧ S1 ∧  ¬ S2
∨  ¬ _TMP038 ∧  ¬ S0 ∧  ¬ S1
∨  ¬ _TMP038 ∧ S2
∨  ¬ CINimp ∧  ¬ _TMP038 )

∧ (
:

Figure 2 Implementation of 74382

2.3 Definition of Equivalence between 
Specification and Implementation

We define the equivalence between the specification and 
the implementation. If the specification and the 
implementation have the same output value for any common 
input value, they become equivalent. But corresponding 
inputs or/and outputs may have different data types such as 
integer and Boolean. We introduce i-to-b and b-to-i functions
( or relations) , which translate integer data into Boolean data 

and Boolean into integer, respectively. We show these 
functions in Figure 3. 

We show the outline of verification used these functions 
in Figure 4. For example, Figure 4 (a) verifies whether 
Boolean outputs in specification and implementation are 
equivalent, and that the results of i-to-b function for integer 
variables in specification and Boolean outputs in 
implementation are equivalent , for each common value of all 
inputs.

There are four deferent combinations on the data type ( 
integer or Boolean) for inputs and outputs of specification and 
implementation to be verified. If one of them is verified, the 
implementation becomes equivalent to the specification.

( A0 = ( $A = 1 ∨ $A = 3 ∨ ... ∨ $A = 15))
∧

( A1 = ( $A = 2 ∨ $A = 3 ∨ ... ∨ $A = 15))
∧

( A2 = ( 4 <= $A ∧ $A <= 7 
∨ 12 <= $A ∧ $A = 15))

∧
( A3 = ( 8 <= $A ∧ $A <= 15))

(a)Function i-to-b from $A to [A0..A3]

if  ¬ A3 ∧  ¬ A2 ∧  ¬ A1 ∧  ¬ A0
then $A = 0

else if  ¬ A3 ∧  ¬ A2 ∧  ¬ A1 ∧ A0 
then $A = 1

:
else if A3 ∧ A2 ∧ A1 ∧  ¬ A0 

then $A = 14
else if A3 ∧ A2 ∧ A1 ∧ A0

then $A = 15
(b)Function b-to-i from [A0..A3] to $A

Figure 3 i-to-b and b-to-i Functions
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Figure 4 Outline of Verification for 74382



The expression corresponding to each type of 
verification to be proved is given in (1):

 ∀ All variable

( (valid situations or not invalid situations)
∧ Specification
∧ Implementation
∧ {if needed}

b-to-i functions for 

Boolean inputs or/and outputs
∧ {if needed}

i-to-b functions for 

integer inputs or/and outputs)

imply

for each outputs
∧ if ¬ (don't care situations) then

output in Specification

= output of Implementation) (1)

For example, for input $A, ( 0 <= $A <= 15) is a valid 
situation. We refer to "don't care situations" in 4. 

3. Verifier

We describe our verifier of deciding the truth of the 
sentences such as expression (1) in 2 .

The Presburger sentence consists of integer variables, 
Boolean variables , operators " ∧ , ∨ , ¬ (not) , ( , ) , +, -, 

 ∀ , ∃ , = , <", and has no free variable. Cooper's 
algorithm[4] can decide the truth of Presburger sentences. The 
notations ,such as imply, if then, if then else, are defined as a 
sequence of primitive operators.

We have used two verifiers. One verifier has BDD-like 
data structure, by extended to hold the integer expressions[9]. 
We denote this verifier as Sys1. In the data structure in Sys1,
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Figure 5 An example of our proposed data structure 

terms (or numerical parts) are expressed in list and logical 
parts are expressed in BDDs[1]. The expression with integer 
variables is treated as one Boolean variable node. The value of 
this Boolean variable would be evaluated as truth or false 
when the numerical parts has no free integer variable (that is, 
the last integer variable is eliminated). We explain our 
proposed data structure with an example sentence and its 
corresponding data structure.

Figure 5 denotes a diagram which corresponds to a 
sentence (2 < x1 + x2) ∧ (2 x2 < 3) ∧ ( -1 < x1 - 2 x2 ). The 
meshed area expresses the sentence (or logical part) by BDD. 
The BDD in this area is the same as BDD corresponding to a1

∧ a2 ∧ a3, which is obtained such that each numerical part 
of the sentence is transformed into a1, a2 and a3. The internal 
nodes of this data structure have three pointers to then node, 
else node and numerical node which points the numerical 
part. The numerical part holds the constant integer on the left 
side and the list of integer variables and integer constants on 
the right side. The term ( -1 < x1 - 2 x2 ) is expressed as a 
node holding -1 on the left side and x1 - 2 x2 on the right 
side.

The storage which should hold the constant value in 
BMD[6] is replaced with NULL in this data structure. The 
reason is that all lists of integer variables which are generated 
in the operation  ∀ or ∃ , ( except for constant integers) are 
shared.

We implemented the library of each operation for the 
proposed data structure by existing the BXD library[7]. The 
BXD library includes the basic operations for BMD and BDD ,
but does not include the operations  ∀ and ∃ for integers. 

We added the operations for  ∀ , ∃ and the other operations 
which aren't included in the BXD library.

The order of variables in the diagram decides the size of 
generated data structure. In our library, the variables order is 
fixed by the order in which the variables appear in the syntax 
analysis of input sentence.

Another verifier is able to decide the truth of subclass 
Presburger sentences given by the prenex normal form of 
only  ∀ , without ∃ . They may include the expression(1) in 
2 . or a variety of sentences for circuit verifications[8][10]. 
We denote this verifier as Sys2. Sys2 decides the truth of the 
sentence  ∀ x1  ∀ x2...  ∀ xn F(x1,x2,..,xn). It adapts some 
techniques for fast operation and of memory saving, such as 
determination the order of  ∀ operations. But Sys2 does not 
share the common internal data unlike Sys1 .

4. Experiments
4.1 Verification of 74382

We describe the verification result of 74382 in 2. We 
show the result in Table 1. 

Sys2 needs the same 0.3 seconds for four types of 



verification. Sys1 takes longer time for the verification of 
Boolean inputs and Boolean outputs. The reason is that the 
verification by Sys1 requires three b-to-i functions which 
result in three large complete binary sub-trees and that Sys1 
takes much time and space to treat such data structure. 

Then, we show the verification result of the equivalence 
between two different implementations imp1 and imp2 of 
74382. The BDD data structures corresponding to imp1 and 
imp2 are constructed in Sys1, where only pointers to the 
top node corresponding BDD data structure are compared. 

4.2 Verification of Multiplier

We describe the verification results of 4bit and 5bit 
multipliers. These circuits use a sign-magnitude format as 
input and output data. Integer "0" is expressed in two ways 
such as "FFFF" or "TFFF" in the case of 4bit. Thus when 
data output is "0", sign output does not need to be considered. 
We use don't care situations expression (2):

:
if ¬ ( $DataOutput in Specification = 0 ) then

/* or ¬ ( $inputA = 0 or $inputB = 0 ) */
SignFlag in Specification

= SignFlag of Implementation)
: 

(2)

4.3 Verification of Output nan-res in fp-add

We are challenging the verification of fp-add in 
HLSynth95, floating point adder. We regard as specification 
the relation from inputs to outputs, and as implementation 
the relation among inputs, outputs, internal terminals from 
VHDL description. All numerical terminals in specification 
and implementation such as exponent and mantissa are treated 
as integer.

Using our method in 2 ., the verification for only output 
nan-res can be performed. Sys1 can verify more quickly 
than Sys2.

                    # of Bool  # of Int   Sys1     Sys2
     Input Output   Variables  Variables 

74382  
     Int   Bool       56           4      1.6       0.3
     Bool  Int        56           4      3.1       0.4
     Int   Int        56           4      1.6       0.3
     Bool  Bool       56           4      6.7       0.3
   (Imp1 = Imp2)      81           0      1.7       0.3

4mult Int   Bool       40           4      N/A     181.3
     Int   Int        40           4      N/A     724.5
   (Imp = Imp)        71           0      0.7       7.6

5mult Int   Bool       60           4      N/A    5816.1
    (Imp = Imp)      109           0     12.8    6823.8

HLSynth95 FP_ADD    
     Output nan-res   45          39     207.4    256.1
                                        (sec.)    (sec.)
                                PentiumII 300MHz 128MBmem

Table 1 Results of verifications

5. Conclusions

We propose the formal verification method for 
high-level combinatorial circuits and show the result of 
verification experiments using our verifier.

Sys1 is superior to Sys2 in the verification of nan-res, 
and there is more prospect in Sys1 for the high-level 
verification of combinatorial and sequential circuits. Now 
we have been improving Sys1 and will apply it to more large 
and high levels, including the sequential circuits verification.
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