
Combining Speculative Execution and Conditional Resource Sharing to
Efficiently Schedule Conditional Behaviors

Apostolos A. Kountouris, Christophe Wolinski
IRISA

Campus Universitaire de Beaulieu
F-35042 Rennes CEDEX

FRANCE

Scheduling conditional behaviors necessitates the
use of a variety of scheduling optimization techniques
like conditional resource sharing and speculative exe-
cution. Previous research work has clearly shown their
effectiveness. The developed heuristics have several
drawbacks relating to the effects of syntactic variance
on the results. In this paper a list-based scheduling heu-
ristic that exploits conditional resource sharing and
speculative execution possibilities, is presented. Its
results are quite insensitive to syntactic variance and
conditional behavior is effectively accounted for by a
probabilistic priority function.

1. Introduction

Scheduling behaviors having a complex conditional
structure has been thoroughly investigated in previous
research work mainly due to the fact that traditional
DFG based heuristics are not adequate to efficiently
handle this kind of descriptions [1]. Several better
adapted heuristics were proposed [1], [2], [3], [4], [5],
[6]. The quality of their results, depends heavily on the
ability to exploit conditional resource sharing [2], [4],
[6], [7] speculative execution possibilities [3], [5], [16],
[17], and shorten path lengths using node duplication
techniques [3]. In resource constrained scheduling these
techniques permit to better utilize the hardware
resources in the datapath and obtain better schedules
which result in shorter execution paths and less control
logic. An important issue, underlined in previous work
[9], [10] relates to the effects of the syntactic variance
of the input descriptions, on the synthesis results. These
negative effects intervene in two distinct but interre-
lated levels as far as scheduling conditional behaviors is
concerned; mutual exclusiveness detection and schedul-
ing. CDFG based mutual exclusiveness detection tech-
niques (i.e. [3], [11]) using the structure of the input
description, produce different schedules for semanti-
cally equivalent but syntactically different descriptions

due to the variability on the amount of the detected
mutual exclusiveness [9]. Furthermore, CFG-based
scheduling (i.e. PBS in [6]) is very sensitive to the state-
ment order in the input description. From the above dis-
cussion it is clear that in order to efficiently schedule
conditional behaviors and possibly optimize the result-
ing controllers, we have to exploit conditional resource
sharing [2], [4], [6], [7] and speculative execution [3],
[5], [16], [17], shorten path lengths using node duplica-
tion techniques [3] and last but not least cope with syn-
tactic variance [9]. This is the objective of the heuristic
described in the following sections.

2. The HCDG representation

The HCDG [20] is a special kind ofdirected graph
that represents data and control dependencies from a
data-flow perspective. It consists of theConditional
Dependency Graph (CDG) and theGuard Condition
Hierarchy (GCH).

The CDG consists of a set of nodes and set of edges
both labeled byguard conditions (calledguards in the
sequel). Guards are a special type of nodes and repre-
sent boolean conditions thatguard the execution of
operations and the assignment of values to variables.
They have also been used as a formal control model in
[4], [5] where a CDFG design representation is used.
The rest of nodes correspond to operations (i/o, compu-
tation, data merging and storage with either register or
transparent latch semantics) that compute/assign values
to variables. Edges representdata and control depen-
dencies of the nodes.

Guards are equivalence classes of the HCDG ele-
ments. For instance, nodes labeled by the same guard
are active (carry a value) at the same logical instants.
The Guard Condition Hierarchy (GCH) represents the
inclusion relations between guards. In [21], it is imple-
mented as a hierarchy of BDD’s. Using BDD’s two
things are achieved; first, redundancy is avoided since
equivalence between guard formulas can be easily

established, and second, using a factorization process
[21] it is easy to find themaximum depth in the tree that
a guard can be inserted. Control representations based
on BDD’s have already been used in previous work
([15], [4], [5]). The originality of the GCH lies on the
hierarchy construction and not at the use of BDD’s
which are simply used for their efficiency. Guard inclu-
sion is important in efficiently detecting mutual exclu-
siveness, independently of syntactic variances. As it
was shown in [18], [19] it permits to minimize the num-
ber of mutual exclusion tests significantly.

3. HCDG List Scheduling Heuristic

One of the important advantages oflist scheduling is
that its quality depends on the quality of the priority
function [1]. The contribution of this work lies in the
choice of the priority function and on the policy of
scheduling nodes on the available resources at each iter-
ation of the algorithm.
Scheduling policy outline: At each scheduling step
nodes that can be scheduled on the available resources
are partitioned into theRDY and SPC, groups corre-
sponding to nodes that can be scheduledwithout and
with speculative execution. Nodes inRDY observe both
their data and control dependencies while nodes inSPC
fully observe only their data and partially their control
dependencies (weak dependencies in [17] is a similar
concept). For brevity, the former will be calledready
and the latterspec nodes. At each step,ready nodes are
scheduled first ([17] has a similar view), exploiting con-
ditional resource sharing possibilities. Once no more
ready nodes can be scheduled, resource utilization is
increased by further conditionally sharing used
resources withspec nodes. Finally, if unused resources
still remain we try to utilize them by conditionally shar-
ing spec nodes. Each schedulable node is associated to
a schedule guard (sguard) indicating the condition
under which the node will execute if it is scheduled in
the current control step. Forready nodes thesguard is
the guard labeling the node in the HCDG; hence it is
statically available. Forspec nodes thesguard has to be
dynamically computed at each step (similarly to guard
smoothing [16], dynamic guards [5], dynamic CV’s [3])
and corresponds to the most profound already sched-
uled guard ancestor of thespec node’s guard in the
guard hierarchy. Using this technique we maximally
exploit conditional resource sharing possibilities also
for nodes that are speculatively executed.
An adaptive probabilistic priority function: A spe-
cial priority function was elaborated. For each guard its

probabilityp is computed from their boolean definition
formulas. Using asum-of-products definition the proba-
bility is given as the sum of products of the correspond-
ing boolean variable probabilities. For comparison
operations and input booleans a probability of 0.5 is
given to bothtrue andfalse outcomes. A similar tech-
nique to obtain predicate probabilities was used in [7].
Next, ASAP and ALAP schedules are used to obtain
node mobilities when both control, data dependencies
are observed (mobc/d) and when only data dependencies
are observed (mobd). Node initial weighted urgencies
are given by: . Depending
on the case (ready or spec node), eithermobc/d or mobd
is used;ps corresponds to the probability of the node
scheduling guards (sguards). At the beginning of each
scheduling step initial weighted urgencies ofready and
spec nodes are adjusted. Adjustment becomes effective
once a node has remained unscheduled for a number of
iterations higher than its mobility since it became
schedulable for the first time. This is achieved by:

 where a(n) is
the adjustment coefficient for noden:

A weighted-projected-resource-demand (wprd) mea-
sure was also defined as:

whereR the set of all available resources with cardinal-
ity |R|, Rt the set of available resources of typet with
cardinality |Rt|; succ(n, t) are the successors of noden
that will become schedulable for the next control step
and can be mapped on a resource of typet; h(n, s) the
guard of the dependency from noden to nodes and
p(h(n, s)) its probability. The multi-level priority func-
tion for a noden (pr(n)) is based on the following sort-
ing keys: , , .
The first key (pr1) accounts for the node mobilities in a
conditional execution context. The second key (pr2)
further takes into account the conditional nature of the
scheduled behaviors giving higher priority to more fre-
quently executing nodes among nodes of equal urgen-
cies. Finally, the third key (pr3) provides a local
measure of how the available resources will be able to
accommodate the resource demands provoked by
scheduling a node in the current control step.
Conditional Resource Sharing: For each resource
type a guard compatibility graph is constructed called

wurg ps 1 1 mob+()⁄⋅=

awurg n() wurg n() a n() ps n()⋅+=

a n()
0 if currcstep ALAP n()–() 0<()

1 currcstep ALAP n()–()+ otherwise



=

wprd n()

Rt p h n s,()()
s∀ succ n t,()∈
∑⋅

t∀
∑

R
--=

pr1 awurg= pr2 ps= pr3 wprd=

MEG for Mutual Exclusiveness Graph [19]. Each ver-
tex corresponds to a scheduling guard and has an asso-
ciated list of operation nodes being active under this
guard and can be assigned to the resource of that type.
Operations in the list are sorted according to their prior-
ities with ready nodes sorted beforespec nodes. MEG
edges indicate guard mutual exclusiveness and aclique
corresponds to a group of pair-wise mutually exclusive
guards. A list of nodes that can share a resource is con-
structed in three steps. First,ready nodes are consid-
ered; the guard clique containing the higher priority
node and a maximum number of other high priority
nodes is iteratively constructed. Next, the clique is
enlarged with guards of higher priority nodes that are
candidates for speculative execution. Finally, for each
guard in the clique the first node in it operation list is
returned. The best adapted algorithm to find such
cliques is based on theinitial-graph-partition algorithm
presented in [13]. Heuristics like [14] are not as well
adapted to satisfy our clique construction objectives
since clique maximality is not a good optimization
objective in our case.

This process has several advantages. The list-sched-
uling priority criterion is satisfied for the greatest num-
ber of distinct execution instances (paths),
simultaneously because the constructed clique contains
the highest priority node and the largest number of
other higher priority nodes that can share a resource
with it. In respect to [9] and [5], speculative execution
is considered only after normally executing nodes have
been scheduled. In this way the risk of lengthening exe-

cution paths by displacing normally executing opera-
tions in favor of speculatively executing ones, is
avoided. Conditional resource sharing is exploited dur-
ing scheduling and not before and so lengthening of
execution paths due to inappropriate conditional
resource sharing (i.e. [2], [11]), is also avoided.

4. Experimental results

The HCDG-based list scheduling heuristic exploit-
ing conditional resource sharing and speculative execu-
tion was tested on a set of benchmarks appearing in
previous related literature. These are:kim, waka, maha
and jian from [2], [7], [12], [8] respectively. For each
benchmark the HCDG was constructed, the guard hier-
archy was refined, and the HCDG was transformed so
that each node is activated only as often as its results are
used in succeeding operations. The guard mutual exclu-
siveness was established using the techniques described
in [18]. The HCDG based list scheduling heuristic is
compared to other similar heuristics. The obtained
results are given in figure 1 for various resource con-
straints (one cycle resources) in terms oftotal / longest
path /shortest path numbers of states. Published results
of other approaches (i.e.Kim [2], CVLS [7], [3], PBS
[6], Brewer [5], ADD-FDLS [9]), when available for the
particular resource constraints, are also given. Our
results are at least as good as the best previously pub-
lished results. Chaining is applied as a post-scheduling
optimization and it is worth noting that even without it
remarkably good results are obtained.

Figure 1. Benchmark comparative scheduling results

Resources
Schedule by approach

ours (cn=1) ours (cn=2)

cmp: 1, +: 1, cn: 1 4/4/3 4/4/3

cmp: 1, +: 2, cn: 1 4/4/2 3/3/2

(d) Results for the “jian” benchmark

Resources
Schedule by approach

CVLS Kim PBS Brewer ours

cmp: 1, +: 1, -: 1, cn: 1 7/7/5 7/7/4 - - 7/7/4

cmp: 1, +: 1, -: 1, cn: 2 - 7/7/3 8/7/3 -/7/- 6/6/3

cmp: 1, ALU: 2, cn: 1 - - - - 7/7/4

cmp: 1, ALU: 2, cn: 2 - 6/6/3 6/6/3 - 6/6/3

(b) Results for the “waka” benchmark

Resources
Schedule by approach

Kim Brewer ADD ours

cmp: 2, +: 2, -: 1, cn: 1 8/8/6 - 6/6/5 6/6/6

cmp: 1, +: 2, -: 1, cn: 1 - -/6/- 6/6/6

cmp: 2, ALU: 2, cn: 1 - - - 6/6/6

(c) Results for the “kim” benchmark

Resources

Schedule by approach

Kim PBS
crit.
path

Brewer ours

cmp: 0, +: 1, -: 1, cn: 1 8/8/3 - - -/5/- 5/5/4

cmp: 0, +: 1, -: 1, cn: 2 6/5/2 9/5/2 8/8/- - 5/5/4

cmp: 0, +: 2, -: 3, cn: 1 - - - -/4/- 4/4/2

cmp: 0, +: 2, -: 3, cn: 3 3/3/2 - 4/4/- - 3/3/2

cmp: 0, +: 2, -: 3, cn: 5 - 4/3/1 - - 3/3/2

(a) Results for the “maha” benchmark

The differences in terms of the higher number of
states in shortest paths is explained by the fact that usu-
ally the total number of states is lower than in other
approaches and so resources are better utilized at each
state. Finally, the insensitivity of the scheduling results
to the effects of syntactic variance was evaluated
(table 1). Our heuristic was applied on two semantically
equivalent but syntactically different descriptions
(descr.1, descr.2), for each benchmark. The first, has a
maximal conditional nesting as opposed to second one
where conditions are flattened and each assignment is
in its own conditional block. The achieved insensitivity
can be attributed first to the dataflow nature of the
HCDG (results independent of statement order) and
second to the guard hierarchy construction and the
mutual exclusiveness detection process that yields the
same amount of exclusiveness for both descriptions.

5. Conclusion

Our HCDG-based scheduling approach exploits
most of the existing scheduling optimization tech-
niques, enjoying their combined benefits. Both specula-
tive execution and conditional resource sharing are
combined in a uniform and consistent framework simi-
larly to dynamic CV’s of [3] and guards in [4], [5].
Even more, it does not suffer from effects of syntactic
variance at both the mutual exclusiveness detection and
scheduling levels, as CDFG, CFG based approaches.
Structural, behavioral anddata-flow exclusiveness (as
classified in [8]) can be extensively detected using
graph transformations and guard information. The hier-
archical control representation permits to minimize the
number of mutual exclusiveness tests and also develop
probabilistic priority functions that account for the con-
ditional nature of the design. Experimental results con-
firm the effectiveness of both the scheduling policy and
the proposed priority function.

References

[1] R. A. Bergamaschi, S. Raje, I. Nair, L. Trevillyan,
“Control-Flow versus Data-Flow-Based Scheduling:

Combining Both Approaches in an Adaptive Scheduling
System”, IEEE Trans. VLSI, v. 5, n. 1, p. 82-100, 1997

[2] T. Kim, J.W.S. Liu, C.L. Liu,“A Scheduling Algorithm
For Conditional Resource Sharing”, Proc. ICCAD 91,
pp. 84-87, 1991

[3] K. Wakabayashi, T. Yoshimura,“Global Scheduling
Independent of Control Dependencies Based on Condi-
tion Vectors”, Proc. 29th DAC, 1992

[4] I. Radivojevic, F. Brewer,“Analysis of Conditional
Resource Sharing Using a Guard-based Control Repre-
sentation”, Proc. of ICCD’95, pp. 434-439, Oct. 1995

[5] I. Radivojevic, F. Brewer,“Incorporating Speculative
Execution in Exact Control-Dependent Scheduling”,
Proc. 31st DAC, pp. 479-484, Jun. 1994

[6] R. Camposano,“Path-based Scheduling for Synthesis”,
IEEE Trans. on CAD, vol. 10, no. 1, pp. 85-93, 1991

[7] K. Wakabayashi, T. Yoshimura,“A Resource Sharing
and Control Synthesis Method for Conditional
Branches”, Proc. of IEEE ICCAD-89, pp. 62-65, 1989

[8] J. Li, R. K. Gupta,“An Algorithm To Determine Mutu-
ally Exclusive Operations In Behavioral Descriptions”,
Euro-DAC’97

[9] V. Chaiyakul, D.D. Gajski, L. Ramachandran,“Mini-
mizing Syntactic Variance with Assignment Decision
Diagrams”, UCI, Tech. Rep., ICS-TR-92-34, Apr. 1992

[10] Y-L. Lin, “Recent Developments in High-Level Synthe-
sis”, ACM Trans. on Design Automation of Electronic
Systems (TODAES), v. 2, n. 1, Jan. 1997, pp. 2-21

[11] T. Kim, N. Yonezawa, J.W.S. Liu, C.L. Liu,“A Sched-
uling Algorithm For Conditional Resource Sharing - A
Hierarchical Reduction Approach”, IEEE Trans. on
CAD, vol. 13, no.4, pp. 425-438, Apr. 1994

[12] A.C. Parker, J.T. Pizarro, M. Mliner, “MAHA: A Pro-
gram for Data Path Synthesis”, Proc. 23rd DAC, pp.
252-258, 1986

[13] R. Puri, J. Gu,“An Efficient Algorithm for Microword
Length Minimization”, Proc. DAC’92, pp. 651-656

[14] C.J. Tseng, D.P. Siewiorek,“Automated Synthesis of
Data Paths on Digital Systems”, IEEE Trans. on CAD,
vol. 5, no.3, pp. 379-395, Jul. 1986

[15] R. A. Bergamaschi, R. Camposano, M. Payer,“Alloca-
tion Algorithms Based on Path Analysis”, Integration,
The VLSI Journal, vol.13, no.3, p. 283-99, Sept. 1992

[16] L.C.V. dos Santos, J.T.J van Eijndhoven, J.A.G. Jess,
“Combining Code Motion and Scheduling”, ProRISC
‘96, Mierlo, the Netherlands

[17] A. Kifli, G. Goossens, H. De Man,“A Unified Schedul-
ing Model for High-Level Synthesis and Code Genera-
tion” , Proc. EDTC’95, Mar. 1995, Paris, pp. 234-238

[18] A. Kountouris, C. Wolinski,“Hierarchical Conditional
Dependency Graphs for Conditional Resource Shar-
ing” , Proc. Euromicro98, Wasteras, Sweden

[19] A. Kountouris, C. Wolinski,“Extensive Conditional
Resource Sharing Based on Hierarchical Conditional
Dependency Graphs”, to appear in Proc. 12th Int’l
VLSI Conference, Goa, India, Jan. 1999

[20] L. Besnard, “Compilation de SIGNAL: Horloges,
Dependances, Environment”, Ph.D., Univ. of Rennes I

[21] T. P. Amagbegnon,“Forme Canonique Arborescente
des Horloges de SIGNAL”, Ph.D., Univ. of Rennes I,
Dec. 1995

Bench. waka maha kim jian

Resou
rces

cmp: 1
+: 1
-: 1

cmp: 1
ALU:
2

cmp: 0
+: 1
-: 1

cmp: 0
+: 2
-: 3

cmp: 2
+: 2
-: 1

cmp: 2
ALU:
2

cmp: 1
+: 1
-: 1

cmp: 1
+: 2
-: 1

descr. 1 7/7/4 7/7/4 5/5/4 4/4/2 6/6/6 6/6/6 4/4/4 4/4/2

descr. 2 7/7/4 7/7/4 5/5/4 4/4/2 6/6/6 6/6/6 4/4/4 4/4/2

Table 1. Insensitivity to syntactic variance

	Main Page
	ASPDAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

