
FSM Modeling of Synchronous VHDL Design
for Symbolic Model Checking*

Jinsong Bei, Hongxing Li, Jinian Bian, Hongxi Xue and Xianlong Hong

Department of Computer Science and Technology, Tsinghua University, Beijing 100084 P.R. China

* This work was supported by Chinese National Key Project funds under the grants 96-738-01-01-07.

Abstract: In this paper, we defined a new FSM model that
based on the synchronous behavior and symbolic
representation technique. The algorithm to elaborate the
model from the VHDL description of synchronous circuits
is presented. By eliminating the unnesessary transition
function, our model has much less states than Deharbe's
mixed model[1]. The exprimental results demonstrate the
model and modeling method can make symbolic model
checking more practical.

Keywords: Symbolic Model Checking, VHDL, Finite State
Machine

1 Introduction
Interest in formal verification techniques for hardware

designs has been growing recently years. The most effective
and successful formal techniques is model checking [2],
which converts the circuit to a FSM model, then explores
the state space of this model completely to check the circuit
if it meets some property. The approach is highly automatic:
the user can simply provide a description of the circuit
implementation and the property to be checked, while the
system does the rest.

Using binary decision diagrams (BDD)[3] and
partitioned transition relations [4] to represent the FSM
model’s transition graph and sets of states, Burch et al.
proposed a new model checking method called symbolic
model checking, which can speed up the exploration of state
space dramatically. It has been applied to check an example
design with approximately 5×10120 states [5].

In order to apply the algorithm to practical circuit design,
we need transform the circuit design to a FSM model.
Deharbe defined operational semantics of a verification-
oriented subset of VHDL, and developed a mixed FSM
model to treat synchronous and asynchronous circuits in
VHDL description. In this model, a state represents a point
in the simulation where the current statement of all
processes stops at a wait statement. In comparison with the
method of [6], in which a state represents a point where the
current statement of each process is any statement,
Deharbe’s model makes great improvement in memory
size.

However, Deharbe’s model is still too complex,
especially to represent synchronous circuits. For example,
though some wait statements have no relation to the 'global
clock' and some concurrent assignment statements are also
combinational, they are all denoted by state transitions in
that model. It will result an incredible verification of

synchronous circuits. Thus, a further improvement on the
FSM model and modeling algorithm is still imperative.

In this paper, we defined a new FSM model for
synchronous circuits, and proposed a new modeling
algorithm based on clock cycle. Our improvement can be
found in two aspects: First, we eliminated the transition
function of variables and signals that don't relate to clock
from the new model; Second, we removed the signal
previous value, because it is no use in our model. The
principle and process of our method is organized as follows.
Section 2 introduces some preliminaries, including the
definition of target model – FSM. After giving the problem
formulation in Section 3, we present the elaboration and
composition algorithm of the new model in Section 4.
Section 5 gives the complexity analysis for the two models,
and some experimental results. Finally we provide some
conclusion of our approach.

2 Preliminaries
2.1 Synchronous Sequential Circuits

In a synchronous sequential circuit, it must have a
system clock. The inputs are introduced into the circuit to
processe sequentially, and to generate outputs by the
controlling of the system clock. That is, the external events
are synchronized with the internal clock.

2.2 The Finite State Machine Model

Definition 1: The finite state machine is modeled by
means of atomic propositions, so that is possible to process
it with Boolean operations(B = {TRUE, FALSE} denotes
the usual Boolean domain). According to the synchronous
behavior, we can define a model M = (S, I, O, s0, TF, OF) of
a synchronized finite state machine, as follows:

S is a power of B, that represents the states of the
machine, S = Bns, and s1, s2, …, sns are the corresponding state
variables.

I is a power of B, that represents the inputs of the
machine, I = Bni, and i1, i2, …, ini are the corresponding input
variables.

O is a power of B, that represents the outputs of the
machine, O = Bno, and o1, o2, …, ono are the corresponding
output variables.

s0 ∈ S, represents the initial state of the machine.

TF: S × I → S: TF = {tf1, tf2, …, tfns}, TF represents the
next state function, and tfi: S × I → B is the transition
function of the state variable si.

OF: S × I → O: OF = {of1, of2, …, ofns}, OF represents
the output function, and ofi: S × I → B is the output function
associated to the variable oi.

There is an implicit synchronous clock for each tf and of,
that means state or output can only be changed when the
clock pulses occur.

Definition 2: A machine state is represented by a
unique valuation of the state variables of the model.

Any state of the machine is binary encoded into some
valuation of the state variables of the model. The encoding
from the set of machine states to the set of valuations is
injective: two states are equal if they are represented by the
same valuation.

Coudert et al. use a vector of ns + no functions of ns + ni
Boolean variables, one for each different internal variable
and output, this vector of functions represents both TF and
OF (one function per state variable of the model) [8]. In this
way, the state transition function and the output function of
the finite state machine M was converted to Boolean
function, thus we can present them with BDD.

Figure 1 shows a synchronous sequential circuit
example and its FSM representation.

3 Problem Formulation
VHDL [9] is a very complex language, the models that

capture all the features are almost inherently not applicable
to produce design automation tools. Considering our target
model, we restrict to subset of VHDL such that design
descriptions can be mapped to finite state representations.
That is, objects must be of a finite type (no access nor file
types, no unconstrained arrays, no generics) and
quantitative timing information is not accepted (no after
clauses in assignment statements, no for clauses in wait
statements).

In order to reduce the space size of the FSM model, we
furtherly restrict the circuit design type to synchronous
circuits. That is, the VHDL description must have a 'global
clock' and if a process or concurrent statement has no
relation to the 'global clock', it must be a combinational part.
In that case, we can only care the sequential parts of the

circiuts, and reduce the combinational parts in our process
of elaborating the FSM model.

The meaning of modeling in this paper is as follows:
Given a synchronous sequential VHDL design D, an FSM
model M can be elaborated. The requirement put on M is
that it has the same observable behavior as D. ′Observable
behavior′ means that the response of outputs of M to stimuli
on its inputs should be the same as the response of the
output ports of D to values of its input ports. The behavior
should be considered at the level of the clock cycle.

4 Modeling Algorithm
As we know, process statements are the atomic

components of a design entity, and any VHDL concurrent
statement that is not a block statement has a corresponding
equivalent process statement. So we can decompose the
transformation of any VHDL design unit to the FSM model
by two steps:

1. Sub-FSM elaboration, that associate an FSM model to
each VHDL process statement or equivalent concurrent
statement within some declaration environment;

2. Sub-FSM composition, that covers the parallel
composition of FSM, the declaration encapsulation on FSM,
and the reduction of the intermediate signals. In the final
model, one transition function presents a change of flip-
flops' values in a circuit, which meas that a clock cycle has
passed in the circuit. The function of all combinational parts
are abstracted to Boolean expressions and denoted by the
transition function, so it should be completed in the passed
clock cycle time.

Section 4.1 and 4.2 gives the details of the sub-FSM
elaboration and composition processes.

4.1 Sub-FSM elaboration

It is quite clear that the input, output, and state variables
of the Sub-FSM that corresponds to a process statement
should be elaborated from the signal read, the signals
assigned, and the variables declared in the process
statement. State transition and output functions should be
elaborated from the assignments to variables and signlas.
The initial state should correspond to the initial values of
the process variables.

However, assignment statements in process are
executed sequentially and thus are dependent of each other;
the source expression of an assignment, as well as the
condition of a conditional statement, depends on the
previous variable assignment. While state transition
functions and output functions occur simultaneously
(parallelly) and are indeppendent in the FSM model.

The following gives the outline procedure of the sub-
FSM elaboration.

1. Resolving Wait Statements.

If a wait statement doesn't contain 'global clock', it must
be combinational wait statement (not a strict sequential
wait statement), this wait statement has no contribution to
the behavior of synchronous circuits. Thus it can be
neglected when we only focus our attention on the behavior
of synchronous circuits.

n

x

a

b

clock

M = <I, O, S, s0, TF, OF>, where
I = {x} O = {n} S = {a, b}
s0 = not a and not b
a’ = not x or (a and b) ---- TF
b’ = a and b ---- TF
n = a and b ---- OF

Fig. 1. Synchronous circuit and its FSM representation

2. Merging Irreducible Wait Statements.

After deleting all the reducible wait statements, the
process will keep the wait statements that contains 'global
clock', or will have no wait statement.

In the first case, as long as a variable or signal
assignment appeared in this process is related to the wait
statement, it will be related to the 'global clock' and
contribute to the state space, otherwise, the assignment is
combinational. If the number of the remnant wait
statements is more than one, we merge all the irreducible
wait statements to one called merged wait statement.

In the second case, all the variables or signals will be
reduced in the following section because they don't
contribute to the state space.

3. Resolving Dependencies.

Distinguishing the occurrences of variables in
expressions that depend on some previous assignment
executed in the same simulation cycle (called reducible
occurrences) from the occurrences of variables whose
current value has been assigned at a previous simulation
cycle (called irreducible occurrences).

4. Deriving the Execution Tree.

Transform the graph of the process transition statement
into an execution tree. The root of the execution tree is the
initial vertex. Each vertex on a path is either an assignment
or an if statement, and each path in this tree represents one
possible execution of the statements in one zone.

5. Getting Decision Diagrams for Each Assigned
Objects.

In the simplified execution tree, assignments to objects
(signals or variables) are independent of each other. Thus,
in order to determine their characteristic function, it is
sufficient to create, for each assigned object O, a copy of this
tree and to remove all vertices that contain assignments to
other objects to get a simple decision diagram that gives the
value assigned to O.

6. Generating FSM model.

• Every signal or variable of a process statement part,
that has not been eliminated, elaborates a implicit
BDD expression from its decision diagram.

• Initial values of the elaborated signals or variables
elaborate the initial state.

• Decision diagrams associated to the elaborated
variables elaborate the transition function.

• Decision diagrams associated to the elaborated outputs
elaborate the output function.

4.2 Sub-FSM Composition and Reduction

After elaborated FSM models from all process
statement or equivalent concurrent statement, the next work
is to compose all the sub-FSM to obtain the FSM model of
the VHDL design entity. The following gives the
composition mechanism:

1. Parallel composition of FSM models.

M1=<I1, S1, O1, s01, TF1, OF1> and M2=<I2, S2, O2, s02,

TF2, OF2> being two FSM machines, the parallel
compositional M1 and M2 is the FSM M = < I1∪I2, O1∪O2,
S1∪S2, s01°s02, TF1 ×TF2, OF1×OF2>, where ∪ is the union
operation, and ° is the concatenation, and × is the product
operator.

2. Declaration encapsulation.

For the FSM that elaborated from the statement part of
the architecture body, we should adjust the FSM model
according to the ports and signals of the corresponding
entity declaration. Let Me = < Ie, Se, Oe, s0e, TFe, OFe> be the
result FSM model corresponding to the entity. Then,

• Ie are the effective values and the events on the entity
ports of mode in and inout, which are read in the
architecture,

• Oe are variables that represent the current values of the
drivers of the entity ports of mode out and inout,

• Se are the state variables that represent the effective
values of all the signals declared locally,

• s0e, TFe and OFe are the result that augmented with the
Ie, Se, and Oe.

3. Intermediate signals reduction.

Now, not all the state variables in the macro-FSM
model are related to 'global clock'. We can divide all the
state variables into two classes. One are all the signals and
variables that relate to the 'global clock' and do have
contribution to the state space of FSM model belong to class
one; the other are the signals and variables that have no
relation with the 'global clock' belong to class two.

The signals or variables of class two are
combinational in synchronous circuits, so if they are not
output signals, we can delete them by substituting them
with their decision diagrams. Through this operation, we
eliminate the combinational part of synchronous circuits
and move them to the output functions and transition
functions.

5 Model Analysis and Experimental Results
5.1 Model Analysis

FSM model serves the basis of model checking and its
size determines whether or not the formal method can be
used in a wider field. Therefore, a good measure to evaluate
the complexity of the model is the Boolean variables needed
to encode the state variables and output variables of the
model.

A VHDL design unit with input ports i1, i2, ... , im;
output ports o1, o2, ... , on, in which output ports o'1, o'2, ... ,
o'l have relation with 'global clock'; internal signals or
variables s1, s2, ... , sp, in which signals or variables s'1,
s'2, ... , s'q have relation with 'global clock', elaborates a
binary encoded FSM model such that:

The number of input variables |I| = m-1,

The number of output variables |O| = n,

The number of state variables |S| = q.

| | presents the cardinality of the set.

 While in the mixed FSM model, these three complexity
are: |I| = m, |O | = n, |S| = p + prev(s), where the predicate
prev(s) presents the previous value of the signal (internal
signal or input signal) if it appears in a wait statement,
otherwise prev(s) is null.

From the model complexity analysis, we can see that q
is less p and l is less than n, and the miexed model has a
item prev(s), so the new model has great improvement in
the number of state variable.

5.2 Experimental Results

We have applied the improvement model and its
algorithm described above in our model checker for
synchronous sequential VHDL design. The following table
gives some experimental results, and compare with the
results of synchronous and asynchronous mixed FSM model.
S-Model is the FSM model of synchronous circuits, while
M-Model is the mixed FSM model of synchronous and
asynchronous circuits. The first column gives the circuit
name. Traffic Light Controller is obtained from [10], daisy
arbiter comes from [11], and priority arbiter is obtained by
removing the token ring in the daisy arbiter. The fourth
column shows the CPU time to compute the set of reachable
states (reachability analysis). The fifth and sixth columns
show the number of possible states and the number of
reachable states from the initial states.

6 Conclusions
In this paper, we restrict our FSM model to synchronous

circuits and utilize features of synchronous circuits to
reduce the state space and BDD node number of our model.
In many application examples, formal methods fail because
the size of state space of FSM model runs out of memory. So
although our model can only be used in the formal method
of strict synchronous circuits, it decreases greatly in state
space and can be used in more large-scale circuits.

Reference
[1] D. Deharbe and D. Borrione, "Semantics of

verification-oriented subset of VHDL," Technical
Report, School of Computer Science, CMU, 1996.

[2] R. P. Kurshan, “Formal Verification In a Commercial
Setting”, In Proc. 34th ACM/IEEE DAC, 1997.

[3] R. E. Bryant, "Graph-based algorithms for Boolean
function manipulation," IEEE Trans. On Computers
C-35, 8, pp.677-691, 1986.

[4] J. R. Burch, E. M. Clarke, and D. E. Long, "Symbolic
model checking with partitioned transition relations,"
In Proc. International Conference of VLSI, Aug. 1991.

[5] J. R. Burch, E. M. Clarke, D. E. Long, et al, "Symbolic
model checking for sequential circuit verification," in
IEEE Trans. On Computer-Aided Design of Integrated
Circuits and Systems, Vol. 13, NO. 4, pp. 401-424,
April 1994.

[6] W. Damm, B. Josko, and R. Schlor, "Specification and
Validation methods for Programming Languages and
Systems", chapter Specification and Verification of
VHDL-based System-Level Hardware Designs, pp.
331-410. Oxford University Press, 1995.

[7] S.Bose and A.L.Fisher, "Automatic verification of
synchronous circuits using symbolic logic simulation
and temporal logic," In International Workshop on
Applied Formal Methods for Correct VLSI Design,
volume VLSI Design Methods-II, pages 151--158,
1990.

[8] O. Caudate, C. Berthed, and J. C. Madder, "Verification
of sequential machines using functional vectors," In
International Workshop on Applied Formal Methods
for Correct VLSI Design, volume VLSI Design
Methods-II, pages 179--196, 1990.

[9] IEEE, "IEEE Standard VHDL Language Reference
Manual," Std 1076-1993, 1993.

[10] R. Lipsett, C. F. Schaefer, C. Ussery, "VHDL:
Hardware Description and Design", Kluwer Academic
Publishers, 1989.

[11] K. L. McMillan, "The SMV System," Technical Report,
School of Computer Science, CMU, 1992.

Table 1 Experimental Results

Circuit Example Model Type Time of
Modeling(s)

Time of Reachability
analysis(s)

State space Number of
Reachable states

S-Model 0.04 0,05 8,192 37Traffic Light
Controller M-Model 0.06 0.19 2.62E+05 241

S-Model 0.07 314.99 65536 65,53616-bit counter

M-Model 3.54 6,080.9 9.22E+18 5.90E+05

S-Model 0.07 0.31 65536 1,5364-cell daisy
arbiter M-Model 0.09 2,040.7 2.15E+09 4.18E+06

S-Model 1.62 17.510 3.40E+38 1.20E+2164-cell priority
arbiter M-Model 381.5 - - -

- means data not available

	Main Page
	ASPDAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

