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Abstract

This paper introduces a new numerical approximation tech-
nique, called the Differential Quadrature Method (DQM), in
order to derive the rational ABCD matrix representing the
high-speed interconnect. DQM is an efficient differential
equation solver that can quickly compute the derivative of
a smooth function by estimating a weighted linear sum of
the function values at few mesh points in the domain of the
function. Using DQM, the s-domain Telegrapher’s equations
of interconnect are discretized as a set of easily solvable al-
gebraic equations, which lead to the rational ABCD matrix.
The entries of ABCD matrix take the form of rational ap-
proximations with respect to s, rather than the conventional
ABCD matrix whose entries are complex transcendental func-
tions in s. Although the rationalization result is compara-
ble with Padé approximation of AWE, DQM does not require
moment-generating or moment-matching. For both uniform
and nonuniform interconnects, DQM-based rational ABCD
matrices lead to high accuracy as well as high efficiency for
transient analysis of high-speed interconnects.

1 Introduction

As the integrated circuits and systems are becoming larger in
chip size and faster in operation, interconnect has become a
dominating factor in determining circuit performance. If the
interconnects are sufficiently long or the signal rise/fall times
are comparable to the time of flight across the line, the inter-
connect delay will dominate gate delay, and the transmission
line effects will make severe impact on circuit performance.
The high-speed interconnects have been modeled as transmis-
sion lines with distributed parameters [1, 2]. As interconnects
are generally terminated with nonlinear loads, the time domain
models of interconnects are needed so that the transient re-
sponse can be calculated and the signal integrity can be stud-
ied.

Asymptotic Waveform Evaluation (AWE) has been pop-
ularly used to approximate general linear networks [3, 4].
It generates moments by employing series expansion and
matches the moments by employing Padé approximation. On
one hand, AWE can generate reduced-order macromodels
from linear network containing transmission lines, and on the
other hand, this method has been used to model an individual
transmission line as a device [5]. However, higher order mo-
ments lead to ill-condition so that increasing their number does

not guarantee a better approximation. Furthermore, AWE may
give a reduced macromodel which includes unstable poles al-
though the original network was stable. In order to overcome
these problems, the multipoint AWE techniques such as Com-
plex Frequency Hopping (CFH) are developed as an extension
to conventional AWE [6, 7, 8, 9].

An ABCD matrix can concisely describe transmission lines
in the frequency domain. However, it is not easy to analytically
obtain the time domain model from a conventional ABCD
matrix, which consists of complex transcendental functions.
AWE techniques and ABCD matrices have been used to build
the macromodel of linear subnetwork containing interconnects
[10]. In [11], AWE technique is applied to ABCD matrix for
transient analysis of interconnects. The entries of an ABCD
matrix are expanded as series to generate moments, then Padé
approximations are obtained by moment-matching. By such a
process, the entries that take form of transcendental functions
are approximated by rational formulas, and then the time do-
main model can be analytically obtained by inverse Laplace
transform.

All the methods mentioned above focus on uniform trans-
mission lines. In order to analyze the time response of nonuni-
form transmission lines, a method of equivalent cascaded net-
work chain is developed in [12]. The nonuniform transmis-
sion lines are segmented into a cascaded chain of subnetworks,
each of which is approximated to be made of uniform lines.
After the ABCD matrices of all subnetworks are evaluated,
the overall ABCD matrix of the cascaded network chain can
be obtained by multiplying all the ABCD matrices of sub-
networks. However, the time domain response is finally cal-
culated by fast Fourier transform and numerical convolution,
which are very time-consuming and suffer from accuracy loss
of aliasing.

In this paper, we develop the rational ABCDmatrix of trans-
mission line by using an efficient differential equation solver,
called the Differential Quadrature method (DQM) [13]. The
idea of DQM is to represent the derivative of a function with
respect to a coordinate direction by a weighted linear sum
of all the function values at all mesh points along that di-
rection. Starting from the s-domain Telegrapher’s equations,
DQM discretizes the differential equations as a set of alge-
braic equations, which are then reduced to ABCD formation
featuring rational approximations. Based on this process, a
transmission line is described by ABCD matrix whose entries
are rational formulas, and its time domain model is obtained
by inverse Laplace transform. By means of recursive convo-
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lution, the model takes the form of companion model, whose
computation complexity is linear with respect to the simula-
tion time. This method can deal with uniform and nonuniform
interconnects, and can accurately compute interconnect delays
as well as voltage waveforms. Although the rational approx-
imations in this method appear like the Padé approximations
of AWE, it completely avoids the moment-matching process
of AWE and does not generate the reduced order model. The
rational matrix approach by DQM is naturally stable, and it
guarantees passivity of interconnects.

2 Rational ABCD matrix of high-speed
interconnect

Classical numerical techniques such as finite difference (FD)
and finite element (FE) method have been fully developed to
numerically solve differential equations. Despite their wide
uses, they require computationally prohibitive time to solve
large problems. Although the Differential Quadrature Method
(DQM) is a numerical approximation, it can quickly calculate
the derivative of a function by sampling a small set of grid
points while keeping computational accuracy [13]. Therefore,
it involves far fewer computing quantities than the FD and FE
methods, nevertheless retaining the simple features of the di-
rect numerical techniques.

2.1 Differential quadrature method

Assume a function u in a first order differential equation,

ux = f(s; x; u) x 2 [0; 1] (1)

with any given boundary conditions at x = 0 and x = 1, is
sufficiently smooth, one can write the differential quadrature
approximate relation [13],

ux(xj) =

NX
i=1

aiju(xi); j = 1; 2; : : : ; N: (2)

where aijs are DQ coefficients. Substitution of the above DQ
approximation Eqn. 2 into the original Eqn. 1 yields a set of
algebraic equations. The matrix of the weighting coefficients
aij depends on the number of grid points, N , and the spacing
between the grid points, xjs.

Bellman has employed the shifted Legendre polynomials
and power functions to determine the DQ coefficients [13].
Other approaches, using Chebyshev polynomials and har-
monic functions, have also been developed to determine DQ
coefficients [14]. For example, the approach using harmonic
functions requires that Eqn. 2 be exact when u(x) take the fol-
lowing set of test functions:

f1; sin�x; cos�x; : : : ; sin
N � 1

2
�x; cos

N � 1

2
�xg (3)

where N is the number of grid points that is normally an odd
number. Substituting this set of test functions into the differen-
tial quadrature approximation Eqn. 2, a set of linear equations

are obtained. The weighting coefficients are then determined
by solving these equations.

Once the positions of selected points are fixed, each of the
above mentioned approaches gives constant DQ coefficients,
no matter in what applications the differential equations ap-
pear. In general, the grid points are selected to be symmetric
with respect to the center of domain, or be equally spacing. All
the N th order DQ coefficients constitute a matrixA, which is
called the N th order DQ coefficient matrix or the N th order
DQ operator. In the Appendix some DQ coefficient matrices
are listed. Eqn. 2 represents a discretizing operator,

du

dx
=) Au (4)

where u = [u(x1); u(x2); : : : ; u(xN )]T . Eqn. 4 indicates that
a derivative is transformed into a vector.

2.2 Application to interconnect

In order to concisely express some manipulations of a matrix,
we introduce the following definitions in advance. Let X be
anm� n matrix.

Definition 1: A Minus notation applied as a suffix to a ma-
trix denotes that a row/column of the matrix is eliminated
from the matrix as in the following three cases: (a) X�i
the (m� 1)� n submatrix ofX whose ith row is elimi-
nated, (b)X�j them�(n�1) submatrix ofX whose jth
column is eliminated, and (c)X�j

�i the (m� 1)� (n� 1)
submatrix of X whose ith row and jth column are both
removed fromX.

Definition 2: A Plus notation applied as a suffix to a matrix
denotes a specific column of the matrix: X+j is the jth
column of matrixX.

In the frequency domain, an interconnect can be described
by the Telegrapher’s equations:

d

dx
V (x; s) = �(sL(x) +R(x))I(x; s) (5)

d

dx
I(x; s) = �(sC(x) +G(x))V (x; s): (6)

Applying operator 4 to Eqns. 5 and 6, the above equations are
transformed into

AV = �(sL+R)I (7)

AI = �(sC+G)V (8)

where

A = [aij ] 2 RN�N

V = [V (x1; s); V (x2; s); : : : ; V (xN ; s)]
T

I = [I(x1; s); I(x2; s); : : : ; I(xN ; s)]
T

L = diagfL(x1); L(x2); : : : ; L(xN )g

R = diagfR(x1); R(x2); : : : ; R(xN )g

C = diagfC(x1); C(x2); : : : ; C(xN )g

G = diagfG(x1); G(x2); : : : ; G(xN )g
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and x1 = 0, xN = 1.
Therefore the Telegrapher’s equations 5 and 6 (differential

equations) are discretized to Eqns. 7 and 8 (algebraic equa-
tions). However, Eqns. 7 and 8 are themselves not independent
and have no nontrivial solutions. By analogy with the finite-
difference method, we can replace the equations at a proper
point of fx1; x2; : : : ; xNg with the boundary conditions. Nu-
merical experiments show that replacement of equations at the
mid-point xm (m = N=2 ifN is even;m = (N+1)=2 ifN is
odd) gives the most accurate results. By means of the notation
ofDefinition 1, the discretized Telegrapher’s equations follow:

A�mV + (sL�m +R�m)I = 0 (9)

A�mI+ (sC�m +G�m)V = 0 (10)

Rewrite Eqns. 9 and 10 as below,

�
A�m sL�m +R�m

sC�m +G�m A�m

�
2
6666664

V0
Vinn

V1
I0
Iinn

I1

3
7777775
= 0 (11)

where V0 = V (x1; s) = V (0; s), V1 = V (xN ; s) = V (1; s)
and I0 = I(x1; s) = I(0; s), I1 = I(xN ; s) = I(1; s) are
terminal voltages and currents, respectively, and

Vinn = [V (x2; s); : : : ; V (xN�1; s)]
T

Iinn = [I(x2; s); : : : ; I(xN�1; s)]
T

are the vectors of voltages and currents at the inner grid points.

2.3 Rational matrix of interconnect

An ABCD model of single transmission line is as follows:�
V0
I0

�
=

�
A(s) B(s)
C(s) D(s)

� �
V1
I1

�
(12)

As V0 = A(s)V1 +B(s)I1 and I0 = C(s)V1 +D(s)I1, we
can calculate A(s), B(s), C(s) andD(s) in this way:

A(s) = V0jV1=1;I1=0; B(s) = V0jV1=0;I1=1

C(s) = I0jV1=1;I1=0; D(s) = I0jV1=0;I1=1

In Eqn.11, let V1 = 1; I1 = 0, we obtain:

�
A
�N
�m sL�N

�m +R�N
�m

sC�N
�m +G�N

�m A
�N
�m

�2664
V0
Vinn

I0
Iinn

3
775 =

�

�
A
+N
�m

sC+N
�m +G+N

�m

�
: (13)

where A+N
�m and C+N

�m +G+N
�m are column vectors (see Defi-

nition 2). By Cramer’s rule, V0, i.e. A(s) in this case, can be
solved from above equation.

A(s) =
det�1

det�

where

� =

�
A
�N
�m sL�N

�m +R�N
�m

sC�N
�m +G�N

�m A
�N
�m

�
;

and�1 is the matrix � whose first column is replaced by the
rightside column of Eqn. 13. Obviously, det�1 and det� are
polynomials with respect to s, and further analysis shows that
both of the polynomials have the same (2N � 4)th order. As a
result, A(s) is approximated by a rational formula. By Heavi-
side theorem, it can be expressed as:

A(s) =

P2N�4

i=0 a1is
iP2N�4

i=1 b1isi
= c1 +

2N�4X
i=1

q1i
s� p1i

(14)

where c1 = a1;2N�4=b1;2N�4. In similar way, B(s), C(s)
and D(s) can be expressed by rational approximations with
respected to s, and all their numerators and denominators have
the same order (2N � 4), too. They also can be decomposed
as:

B(s) =

P2N�4

i=1 a2is
iP2N�4

i=1 b2isi
= c2 +

2N�4X
i=1

q2i
s� p2i

(15)

C(s) =

P2N�4

i=1 a3is
iP2N�4

i=1 b3isi
= c3 +

2N�4X
i=1

q3i
s� p3i

(16)

D(s) =

P2N�4

i=1 a4is
iP2N�4

i=1 b4isi
= c4 +

2N�4X
i=1

q4i
s� p4i

(17)

After the ABCD matrix is built by the above process, the
time domain model can be obtained by inverse Laplace trans-
form. Since the time domain counterparts ofA(s), B(s), C(s)
and D(s) are the sum of exponential functions, the convolu-
tion integrals of the time domain model can be represented by
recursive convolution [5], which keeps high computational ef-
ficiency.

For the multi-conductor transmission line, the frequency do-
main Telegrapher’s equations are still like Eqns. 5 and 6, but
the distributed voltage and current become vectors and PUL
parameters matrices. Apply the DQ operator Eqn. 4 to ev-
ery derivative, the ABCD matrix can be extracted by similar
means to single transmission line.

3 Numerical results

A good comparison to DQM is the Chebyshev pseudospectral
expansion [15]. According to [15], the maximum frequency of
interest can be evaluated by

fmax =
1

tr
; (18)

where tr is the rise time of the input waveform. The max-
imum frequency determines the minimum wavelength within
the spectral range of interest. A heuristic rule for satisfying the
resolution requirements of Chebyshev expansions is to use at
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Figure 1: Comparison of frequency response of ABCDmatrix.

least four collocation points per wavelength [15], and a resolu-
tion of two points per wavelength is sufficient for the modified
Chebyshev method [16].

It is significant that the Chebyshev expansion method in
[15] is in fact equivalent to the DQM in case of its coefficients
are determined by Chebyshev polynomials (called CDQ) [14].
However, as the order of Chebyshev expansion increases, the
collocation points (zeros of Chebyshev polynomials) tend to
concentrate at two ends of the line. It leads to an oversampling
of the voltages and currents at endpoints of the line, and an
undersampling at the center portions, which causes great loss
of accuracy.

On the other hand, DQM with coefficients determined by
harmonic functions (called HDQ), or by power functions
(called PDQ), overcomes this difficulty. The grid points of
HDQ can be equally spacing or not, or, can be freely chosen
by user. In general, we employ the equally spacing points to
determine the HDQ coefficients. In this way, the coefficients
can be completely determined as fixed constants which are ap-
plicable to any case.

In the first example, a single interconnect has PUL pa-
rameters as follows: l = 360 nH=m, c = 100 pF=m,
r = 100 
=m, and g = 0:01 S=m. The line length is 4 cm.
By employing the above-mentioned procedure, the high-speed
interconnect can be represented as an equivalent two-port net-
work, whose properties are described by the ABCD matrix.

We use 7th order PDQ, CDQ and HDQmethods to build dif-
ferent ABCD matrices of this interconnect, respectively. The
7th order DQ operators used in this example can be found in
Appendix. Fig. 1 shows the frequency domain responses of A
in the different ABCD matrices. It is noted that the HDQ gives
higher accuracy than any other DQ method does. A heuris-
tic rule for the resolution of HDQ is to collect two points per
minimum wavelength in the spectrum:

N = 2
d

�min

+ 2: (19)

+
-

A

B

1pF

50Ω

50Ω

50Ω

10nH

Figure 2: Circuit for coupled high-speed interconnects.
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Figure 3: Transient response of uniform interconnect at A.

where �min is the minimum wavelength determined by 18. In
order to ensure the basic discretization accuracy, we set 7 as
the minimum number of grid points. That means, there will be
at least 5 inner grid points along the interconnect. As a result,
the order of DQM is the bigger of 7 or N in Eqn. 19, and the
minimum order of any entry of ABCD matrix will be 10.

In the second example as shown in Fig. 2, the length of cou-
pled transmission line is 8 cm, and the PUL parameters are as
follows,

R =

�
50 0

0 50

�

=m;L =

�
494:6 63:3
63:3 494:6

�
nH=m;

C =

�
62:8 �4:9
�4:9 62:8

�
pF=m;G =

�
0:01 �0:001
�0:001 0:01

�
S=m

We build the ABCD matrix models using Harmonic Differ-
ential Quadrature (HDQ) method, whose coefficients are de-
termined by harmonic functions. In this example, 7th- and
9th-order HDQ operators are employed (see Appendix), re-
spectively. The time domain models are obtained by inverse
Laplace transform as well as recursive convolution [5]. The
transient responses are shown in Fig. 3 and Fig. 4, altogether
with the HSPICE results.

The waveforms of DQ methods are agreeable with those of
HSPICE. Note that not only the delays are exactly modeled
by using DQ methods, but also the crosstalk at the coupled
line are well simulated. When applying AWE to interconnect
modeling, it is known that the interconnect delay can be well
simulated if the delay factor is separately extracted [5], other-
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Figure 4: Transient response of uniform interconnect at B.

wise it will suffer from ringing even if higher order models are
employed [4]. However, the interconnect delay can be accu-
rately modeled by using the differential quadrature method.

HSPICE models the lossy transmission line as multiple
lumped filter sections, and it computes the number of lumps
from the line delay and the signal risetime [17]. There should
be enough lumps in the high-speed interconnect model to en-
sure that each lump represents a length of line that is a small
fraction of a wavelength at the highest frequency used. For the
default number of lumps, HSPICE uses the smaller of 20 or
1+(20�Td=tr), where Td is the interconnect delay. In this ex-
ample, it takes more than 20 grid points for HSPICE to model
the interconnects, while only 7 or 9 grid points are needed for
DQ methods according to the criterion Eqn. 19, which give the
same accuracy.

The third example includes nonuniform interconnects. The
derivation process of rational ABCD matrix shows that this
method can deal with nonuniform interconnects in the same
way as it deals with uniform interconnects. The circuit is rep-
resented by Fig. 2, but the uniform interconnects are replaced
with nonuniform coupled interconnects whose PUL parame-
ters are as follows,

L =

�
L(x) Lm(x)
Lm(x) L(x)

�
;C =

�
C(x) Cm(x)
Cm(x) C(x)

�
;

R =

�
R(x) 0
0 R(x)

�
;G =

�
G(x) 0
0 G(x)

�

where

L(x) = 494:6=((1 + k(x)) nH=m;

Lm(x) = 63:3k(x) nH=m;

C(x) = 62:8=(1� k(x)) pF=m;

Cm(x) = �4:9k(x) pF=m;

R(x) = 50=(1 + k(x)) 
=m;

G(x) = 0:01=(1� k(x)) S=m;
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Figure 5: Transient response of nonuniform interconnect at A.
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Figure 6: Transient response of nonuniform interconnect at B.

k(x) = 0:25(1 + sin(6:25�x+ 0:25�)):

We respectively use HDQ with 7th and 9th-order coeffi-
cients (see Appendix) to compute the transient responses. Un-
like the method of cascaded chain of segmented short lines
[12], DQ method generates a rational ABCD matrix of the
whole nonuniform line. The transient results are shown in
Fig. 5 and 6. As comparison, the results of HSPICE are also
shown. Since nonuniform transmission line cannot be handled
by HSPICE directly, we segment the lines into 8 equal short
sections, each of which is regarded as uniform line. The re-
sults of DQM and HSPICE are very agreeable. The computa-
tions are performed on Sun Ultra-1 workstation. It takes 3:6 s
for HSPICE to obtain the indicated response using a time step
10 ps, while 9th-order DQM needs 1:2s and 7th-order DQM
needs only 0:95s to generate the responses as shown.
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4 Conclusions

A direct numerical technique, called the differential quadrature
method (DQM), is used to develop rational ABCD matrix of
high-speed interconnect. DQM discretize the interconnect into
few grid points across the entire length, leading to a set of alge-
braic equations by computing the electrical parameters at those
points. Based on the discretization, rational ABCD matrix can
be obtained with its entries represented by rational approxi-
mations in the frequency domain. The time domain counter-
part of rational ABCD matrix can be analytically obtained by
inverse Laplace transformation. By means of recursive con-
volution, the time domain model retains high efficiency and
accuracy. Although the rational approximations of ABCD ma-
trix by the differential quadrature method are comparable with
the results of Padé approximation of AWE, the DQM solution
process differs significantly from the AWE algorithm. One
notable feature of the differential quadrature method is that it
is more stable than AWE, since it avoids the process of mo-
ment generation and moment matching. Despite its numerical
operations, the differential quadrature method is an efficient
solver to model transmission lines, and the DQM-based ratio-
nal ABCDmatrix leads to high efficiency for transient analysis
of uniform and nonuniform interconnects.
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