
Stairway Compaction using Corner Block List and Its Applications
with Rectilinear Blocks

Yuchun Ma1, Xianlong Hong1, Sheqin Dong1, Yici Cai1, Chung-Kuan Cheng2, Jun Gu3

1Department of Computer Science and Technology, Tsinghua University, Beijing, China
Email: {hxl-dcs}{dongsq}@tsinghua.edu.cn

2Department of Computer Science and Engineering, University of California,San Diego
La Jolla,CA 92093-0114,USA

3Department of Computer Science, Science & Technology University of HongKong

Abstract

Corner Block List(CBL) was recently proposed as an
efficient representation for MOSAIC packing of
rectangles. Although the original method is really
innovative, there still remains room of improvement for
our purpose. This paper proposes a compact algorithm
for placement based on corner block list. By introducing
the dummy blocks in CBL, our algorithm can intellective
employ dummy blocks in the packing to represent the
placement including empty rooms, which corner block list
cannot represent. Our algorithm can obtain the fast
convergence to an optimal solution. Based on the
compact approach, we propose a new way to handle
arbitrary shaped rectilinear modules. The experimental
results are demonstrated by some benchmark data and
the performance shows effectiveness of the proposed
method.

1. Introduction
Building block placement is becoming more and more

important for VLSI physical design, because circuit sizes
are growing rapidly and hierarchical design with IP blocks
is now widely used to reduce the design complexity. Two
categories of placement, slicing[6] and non-slicing, are
identified. For general placement including both slicing
and non-slicing, several encoding schemes were recently
proposed, namely, SP[1], BSG[2], O-tree[3], Corner
Block List(CBL)[5], B*-tree[4], and TCG[17]. All of
them except O-tree and B*-tree employ topological
representations of placement configurations, where cell
positions are specified based on encoded topological
relations.

Corner block list was recently presented as an efficient
topological representation. Compared with the previous
representations, CBL has a smaller upper bound on the
number of possible configurations, needs only linear
computation effort to generate a corresponding placement
and decreases the redundancies in the previous
representations. Although the original method is really

innovative, there still remains room of improvement for
our purpose. Given an n-block set, it divides the chip into
n rooms and assigns one and only one block to each room.
Therefore, there is a certain kind of packings which can
not be represented as shown in Fig.1.

Recently, Extended Corner Block List (ECBL)[8]
extends CBL representation by adding certain amount of
empty blocks. But the extending factor λ takes great effect
to the final result and the run-time. The run-time for
transforming ECBLλ to its corresponding placement is λ
times to the run-time for CBL. To represent general non-
slicing floorplans, n2-n empty rooms should be added and
the computation complexity increases to O(n2) since the
total number of the blocks is n2.

In this paper, we devise a compact algorithm based on
CBL to compact the placement as much as possible at the
same time of the packing process. The empty rooms are
added into the given CBL determinately to obtain a tight
packing and the number of the empty rooms is no more
than n-3. Unlike the algorithm of O-tree, whose compact
process is a post process which takes repeated
transformations until the convergence is achieved, our
algorithm of the compact process is embedded in the
process of packing and the computation complexity of the
translation from a given CBL to its corresponding
compact placement remains O(n).

With recent advent of deep submicron technology and
new packaging schemes, integrated circuit components are
not limited to rectangular blocks. Several methods using
slicing structure[16], and nonslicing structure such as
SP[13,14,15], BSG[12] and O-tree[11] have been
proposed. In this paper we extend the stairway compact
approach based on CBL representation to handle the
placement with arbitrary shaped rectilinear blocks.
Different with the previous methods, our algorithm has
several properties: 1) Directness, for each CBL there are

2

1

4

3

Figure 1. A packing with empty room

Empty
Room



a modified CBL corresponding to a feasible packing with
rectilinear blocks; 2) Efficiency: the transformation from
a modified CBL to its placement takes only linear time. It
is not necessary to do any operations to restore the shapes
of the rectilinear blocks since their shapes are maintained
while packing. The experimental examples prove the
effectiveness of our approach.

The rest of the paper is composed as follows: Sect.2 is
a brief review of the CBL model. The compact algorithm
is presented in Sect.3. Sect.4 extends the compact
algorithm to handle the packing with rectilinear blocks.
The experimental results are shown in Sec.5. Finally, the
conclusion is given.

2. CBL Representation
CBL is derived from a simplified version of general

placement called mosaic structure, which have no empty
space and the block is represented by the room with only
topological relationship between each other. CBL
represents the topological relations in mosaic structure by
a triple list of (S, L, T). It divides the chip into rectangular
rooms and assigns one and only one block to each room
according to (S, L, T).

The Corner Block(CB) is the block packed at the upper
right corner of the placement. The joint of the left and
bottom segments of the CB is contained in a T-junction
named corner T-junction and the CB’s orientation is
defined by the orientation of the corner T-junction. The T-
junction has only two kinds of orientations: T rotated by
90°(Fig.2(a)) and by 180°(Fig.2(b)) counterclockwise
respectively. If T is rotated by 90° counterclockwise, we
define the CB to be vertical oriented, and denote it by a
“0”. Otherwise, the CB is horizontal oriented, and denote it
by a “1”. The CBL is constructed from the record of a
recursive CB deletion. In Fig.3, the CB d is deleted and the
attached T-junctions, whose crossing segments are the
non-crossing segment of corner T-junction, are pulled up
to the top boundary of the chip. The insertion of CB is the
inverse of the deletion. We use a binary list Ti to record the
number of the attached T-junctions of the deleted CB Mi.
The number of successive “1”s, which is ended by a “0”,
corresponds to the number of attached T-junctions.

For each block deletion, we keep a record of block name,
CB orientation, and the sequence of Ti. At the end of the
deletion iterations, we can obtain three lists: block name
list {Bn,Bn-1,…B1}, orientation list{Ln,Ln-1,…L2}, T-
junction list{Tn,Tn-1,…T2}. We reverse the data of these
three items respectively. Thus, we have a sequence S of

block names, a list L of orientations, and a list of
{T2,T3,…Tn} which is combined into a binary sequence T.
The three element triple (S,L,T) is a corner block list. The
insertion process of corner block based on given (S,L,T)
can construct the corresponding placement. Fig.4 is a non-
slicing placement and its corresponding CBL.

3. The Compact algorithm for CBL
Corner Block List can represent mosaic structure,

which includes n rooms with one and only one block in
each room, where n is the number of blocks. However, the
area usage and interconnect may be affected by this
stringent assumption. Given a CBL list, we expand the
packing from the lower left to upper right by inserting the
blocks in list S  in turn. Every insertion of the block may
generate some more dead space. In order to make things
clear, we restrict the objective to be the total area of the
placement. Our algorithm could be extended to minimize
a different objective, such as the wire length cost.

3.1 The stair outline of the packing
Given a CBL list, the packing is expanded from the

lower left to the upper right by inserting the blocks in list
S in turn. The blocks can not be packed at the empty area
at the right of or below the previous packed blocks. Thus
we define the stair outline of the packing to propose the
compaction process.

Definition 1: Stair Outline: Given a placement of a
subset of blocks, the stair outlines enclose the subset of
the blocks in the bottom left corner of the chip area. The
stair outlines form a rectilinear curve that goes
monotonically from up left toward down right.

The stair outline is the descensive stairs which are
composed of several steps{Step1, Step2...Stepk}.

Property 1: Suppose that the position of the upper
right corner for each Stepi is ( xS

i, yS
i ). For two steps

Stepm ( xS
m, yS

m ) and Stepn( xS
n, y

S
n ), if m>n then xS

m> xS
n

and yS
m < yS

n. The upper right corner of last step is (∞, 0 ).
The operations of stair outline can be operated as

following(Fig.5):
Suppose that {Step1, Step2, .. Stepk} is the stair outline

before Mi is packed and the upper right corner of block Mi

after packing is (xi, yi).

b

a

f

gc

e d g

b

a

f
c

e
d

Figure 2. The orientation of corner block(CB)
(a) the vertical CB                  (b) the horizontal CB

b

a

f

g

c

edelete d
Sd=d;
Ld=0;
Td={10}

insert d

b

a

f

gc

e d

Figure 3. Corner block d is deleted/inserted

e

c g

d

f

a
b

Corner Block List:
S=(fcegbad)
L=(001100)
T=(0 0 10 10 0 10)

Figure 4. A non-slicing placement and its CBL list



1. A new step Stepnew whose upper right corner is (xi, yi) is
added into the list of stair outline;

2. For each step Stepm ( whose upper right corner is at the
position of ( xS

m, yS
m ) ), if Stepm is lower and at the left

of the new step (xi > xS
m and yi > yS

m ), the Stepm should
be replaced by the new step Stepnew in the list of stair
outline.
Definition 2: Corner Step is the step whose upper

right corner is the upper right corner of the corner block.
Lemma 1: Suppose that Corner step is the kth step

Stepk. The next block Mnext is packed along the ith step
Stepi.

 if the next block Mnext is horizontal, Mnext should be
located along the ith step after the corner step ( i > k );
 if the next block Mnext is vertical, Mnext should be

located along the ith step which is the corner step or the
step before the corner step ( i ≤ k ).

As shown in Fig.6(a), before block e is packed, the
stair outline is {Step1, Step2, Step3}, the corner step is
Step2. The blocks along Step1 and Step2 should be vertical,
while the blocks along Step3 should be horizontal.

3.2 The compaction during the packing process
Since we do not want to loose the topological relations

in the given CBL list, we should maintain the packing
sequence in list S while doing the compaction. Thus the
area below the stair outline will be settled no matter how
the latter blocks will be packed. To compact the
placement, every block should be packed at a left-bottom
corner of the step. As in Fig. 6(b), according to the given
CBL, block ‘e’ is packed above block ‘d’ along Step2, the
shadowed area means the dead space which can not be

utilized by the latter blocks. No matter how the latter
blocks will be placed according to the given CBL, it is
inevitable that the shadowed space will become the dead
space in the final packing. But if block ‘e’ can be pushed
to the left-bottom corner of Step2, the shadowed area will
decrease a lot to obtain a tight packing( Fig. 6(c) ). Since
the compaction may generate some empty rooms which do
not contain any block in it, we modify the given CBL by
adding some dummy blocks.

Definition 3: Dummy Block is a false block with zero
area, whose function is to generate an empty room with no
block in it.

Since the dummy blocks are used to provide positions
to be covered by other blocks and the topological relations
between other blocks will not be affected by the inserted
dummy blocks, dummy blocks would not necessarily
appear in the CBL list. Therefore, when we count the T-
junctions covered by blocks, we omit the T-junctions
composed by dummy blocks.

Corresponding to the packing process of CB, each step
of the stairs is defined by (BS

i,W
S
i,H

S
i) where BS

i is the
block whose upper tight corner is the upper right corner of
Stepi; WS

i and HS
i are the width and height of the step

respectively indicating how many blocks are covered by
the step vertically and horizontally. If the step is along the
boundary, we use ‘X’ to indicate no block available to be
covered. If the step covers a block partially, we use ‘0.5’
to represent it(Fig.6(a)). The triple of (BS

i,W
S
i,H

S
i) can be

easily obtained while packing.
Using the stair outline while packing, the compact

process should follow lemma 2(Fig. 6(c)).
Lemma 2: Suppose that before Mi is packed, the stair

outline is {Step1, Step2,…Stepn} in sequence and the
corner step is the mth step Stepm, Mi should be packed
along the step Stepk according to the given CBL and TNi is
the number of T-junctions covered by Mi. For block Mi,
we use the position of its bottom left corner (xi,yi) to
define its placement. To compact the block Mi to a
feasible position, Mi should be moved to the left-bottom
corner of Stepk. Thus xi = xS

k-1 and yi = yS
k. And the CBL

list should be modified according to the following:

•  if Li=0, TNi =  ∑
=

m

ki

S
iW  - 1 and if WS

k is not an integer, a

dummy block(DB) should be added at the right of block
Bs

k-1 : the orientation of DB should be LDB=1; the T-
junctions covered by DB should be TNDB = HS

k - 1;

•  if Li=1, TNi =  ∑
+=

k

mi

S
iH

1
-1 and if HS

k is not an integer, a

dummy block(DB) should be added above block Bs
k: the

orientation of DB should be LDB=0; the T-junctions
covered by DB should be TNDB = WS

k -1;
( A is the largest integer which is not greater than A. A
is the smallest integer which is not smaller than A.)

(a)The stair outline
before block d is packed

(b)The stair outline
after block d is packed.

b

a c

 Step1

Step2

Step3

b

a c
d

 Step1

Stepnew

Step3

Step2

(xi,yi)

(xS
m,yS

m)

Figure 5. The operation of stair outline

Figure 6. The compaction method
（c）After compaction

(b) before compaction(a) before e is packed

b

a c d

 Step1

Step2

Step3

Step1 (b,1,X)
Step2(d,2.5,0.5)
Step3(X,X,1)

e
b

a
c d

S(a b c d e)
L(0 1 1 0)
T(0 10 0 0)

b

a c
d

eDB S( a b DB c d e)
L(0 1 1 0)
T(0, 10, 0, 10)



In Fig.6(c), we can see the block ‘e’ is packed at the
lower left corner of Step2 ( d, 2.5, 0.5 ) , corner step is
Step2 and TNe should be modified according to Lemma 2.
Since block ‘e’ is vertically inserted, BS

k-1 is block ‘b’ and
Step2 covers a block partially, a dummy block should be
added after block ‘b’:
 LDB=1;
 TNDB = HS

k -1=0;

 TNe =  ∑
=

m

ki

S
iW -1 = ∑

2

2=i
Wi

S -1 =1,

Lemma 3: The total number of the dummy blocks is
no more than n-3, where n is the number of the blocks.

Proof: Since the first three blocks need no dummy
blocks inserted in them and for the other blocks, there
should be no more than one dummy block inserted for
each block, the total number of the inserted dummy block
should be no more than n-3.
  Based on Lemma 1 and Lemma 2, we devise the compact
algorithm as following:

Algorithm Compact packing
Begin
Initialize the stair outline and the packing;
For i from 2 to n

Mi should be placed along the k th step Stepk in
the stair outline:
Compact Mi according to Lemma 2;
Reconstruct the stair outline.

EndFor
End
The compaction process modifies the given CBL into

a better solution within its neighbor solutions space. Since
our algorithm gives the corresponding CBL to the final
packing after the compaction process, the topological
relations are contained in the modified CBL. Therefore,
our algorithm can be extended to handle topological
constraint problem.

4. Compact packing with rectilinear blocks
Based on the compact process, we extend the CBL

representation to handle the packing problem with
arbitrary shaped rectilinear blocks.

4.1 The partition of rectilinear blocks
Each rectilinear blocks is partitioned into a serial

rectangular blocks by horizontal segments or vertical
segments. The lower left sub block is defined as the
master block and the other sub blocks are sequenced by a
feasible packing sequence from lower left to upper
right(Fig.7). The packing sequence of the sub blocks is

not unique and the relative positions for each sub block
are recorded by the difference between the coordinates of
the lower left corner of a sub block and its previous sub
block.

4.2 packing with no overlapping
Since the sequence of the sub blocks is the sequence of

packing, once the master block is packed, the packing
positions for other sub blocks can be settled iteratively by
the configuration of the stair outline and the relative
positions between sub blocks.

Lemma 4: Suppose that before master block is packed,
the stair outline is {Step1, Step2,…Stepm} in sequence.
Then the master block is packed and the feasible packing
positions for other sub blocks are settled. If there is no sub
block whose lower left is at (xk,yk) that {xk< xS

i and yk< yS
i |

(xS
i,y

S
i) is the coordinates for Stepi, i ≤ m}, the sub blocks

will not overlap with the stair outline.
To amend the overlapping, the master block should be

moved horizontally by max({xS
i-xk| xk<xS

i , xS
i is the x

coordinate of Stepi } ) or vertically by max({yS
i-yk| yk<yS

i,
yS

i is the y coordinate of Stepi } ). As shown in Fig.8(a), if
sub block Ra was settled in the lower left corner of the
step, it will generate overlapping between the steps and
the other sub blocks. The block Ra should be moved
upwards or to the right to avoid the overlapping.

To avoid the overlapping with the blocks packed after
the master block, we set the obstacle walls to protect the
feasible packing area of the next sub blocks.

Definition 4: Obstacle wall: the obstacle wall is the
virtual line which the steps of the stair outline should not
exceed unless the next sub block is packed.

When a sub block B1 is packed in its feasible position,
the next sub block B2 should be at the relative positions.
Correspondingly, there are two obstacle walls: one is
vertical(Y_wall), and the other is horizontal(X_wall)
which are the left outline and bottom outline of the rest
unpacked sub blocks. Then the blocks between B1 and B2

should not exceed these two obstacle walls. Once a block
Bm or a set of rectilinear sub blocks exceeds the walls, we
change the position of B2 in CBL list to the position
before the block Bm or the set of the sub blocks and pack
the block B2 at the desired position. The corresponding
CBL representation can be obtained by the configuration
of the stair outline. To pack the rectilinear block R_block,
we devise the procedure which can be called during the

Ra

Rb

Rc

Figure 7. The partition of rectilinear blocks:
the sequence of sub blocks : ( Ra,Rb,Rc )

1

2

3

Ra

overlap

1
2

3

Ra

Y_wall

X_wall

Rb

(a) avoid overlapping
with the stair outline

(b) the obstacle wall

Figure 8. The packing of sub blocks



packing process.

Procedure packing_ rectilinear:
Input: the stair outline before rectilinear block
     R_block is packed;
     the number of the sub block is sub_n;
Begin
Pack the master block following lemma 4;
For i  from 2 to sub_n:

Construct the obstacle walls;
While not ( the obstacle walls are exceeded or
the next block is a sub block of R_block ):

    Packing the blocks according to given CBL:
        If ( the next block is a sub block for the
        other rectilinear block R_block2 and
        R_block2 will not overlap with R_block)
            Merge R_block2 into R_block with
            their relative positions considered
            and change the number of sub_n;
       EndIf
 EndWhile;
 Pack the ith sub block to its feasible position and
 modify the CBL according Lemma 2;

EndFor;
End.

5. Experimental Results
We have implemented the placement algorithm in C

programming language, and all experiments are performed
on a SUN sparc20 workstation. Some MCNC benchmarks
are used in the experiments. Our experiments do not
include soft blocks. Using area as the objective function,
our algorithm can get better results in shorter time
compared with ECBL and CBL. The most particular
character is that the results of our algorithm is very stable
even the annealing schedule is devised to limit the running
time in a very small range. From the results, we can see
for the data ami33, the area usage can reach 90.0% in 2.22
seconds and reach 94.9% in 8.74 seconds. And for data
ami49, the area usage can reach 90.508% in 9.86 seconds
and reach 93.6% in 20.15 seconds. It is unreachable for
the other algorithms to obtain the fast convergence to an
optimal solution as our algorithm can do. Fig.9 is a result
packing of ami49. The area usage reaches 96.7%; the
running time is only 101.9 seconds. The comparison
between CBL, ECBL2(CBL is extended by adding 2*n
empty blocks) and our algorithm with the relationship
between the solution quality and running time of ami33 is
shown in Fig.11. Compared with CBL and ECBL, our
algorithm needs shorter running time to get comparable
good results. Table.1 is the block placement results and
Table 2 is the results compared with other published
algorithms[3,4,5,7,8,17].

To test the packing algorithm with the rectilinear
blocks, we expand several blocks to rectilinear shaped
block. Fig.10 is the packing results of modified ami49 and
the area usage are above 90% and the running time is less
than 200 seconds. We can see from the results of the

experiments that both concave and convex blocks can be
handled and the performance is quite good

6. Conclusion
In this paper, we have proposed a compact algorithm

for placement based on CBL. By introducing the dummy
blocks in CBL, our algorithm can represent the placement
including empty rooms, which CBL cannot represent. And
the dummy block is employed intellective only when the
solutions can be improved by adding the dummy blocks.
Our algorithm can compact the placement during the
packing process based on the outline shape of the packing
and the CBL list can be changed accordingly. Therefore,
our algorithm has the same complexity as the original
CBL algorithm. Since our algorithm can obtain the fast
convergence to an optimal solution, our algorithm
maintains the high quality of the original algorithm at a
fraction of the CPU time. Based on the configuration of
the stair outline, we can handle the problem with
rectilinear blocks, including both convex and concave
rectilinear blocks. For each CBL, there is a modified CBL
corresponding to a feasible packing with rectilinear blocks;
and the transformation from a modified CBL to its
placement takes only linear time. It is not necessary to do
any operations to restore the shapes of the rectilinear
blocks since their shapes are maintained while packing.

Figure 9. A packing result of ami49. The area
is 36.64 mm2 and the area usage is 96.7%; the

running time is only 101.9 seconds

Figure 10. The result packing of ami49 with
7 rectilinear blocks: the area usage is 91.4%

and the running time is 128 seconds.



The experimental results prove the effectiveness of our
approach. Since our algorithm gives the corresponding
CBL to the final packing, different developments of our
algorithm can be done to answer the problem arisen from
the requirement of wires, design rules and so on.

Reference
[1] Hiroshi Murata, Kunihiro Fujiyoshi, S.Nakatake and

Y.Kajitani, “VLSI Block Placement Based on Rectangle-
Packing by the Sequence Pair” in IEEE Trans. on
CAD,vol.15, NO. 15, pp 1518-1524,1996.

[2] S.Nakatake, H.Murata, K.Fujiyoshi and Y.Kajitani, “Block
Placement on BSG-structure and IC layout application” in
Proc. of International Conference on Computer Aided
Design, pp 484-490,1996.

[3] P.N.Guo,and C,K,Cheng, “An O-tree representation of non-
slicing floorplan and its applications”, in ACM/IEEE Design
Automation Conference,1999.

[4] Yun-Chih Chang, Yao-Wen Chang, Guang-Ming Wu, and
Shu-Wei Wu.“B*-Trees: A New Representation for Non-
Slicing Floorplans” in ACM/IEEE DAC,pp.458-464, 2000.

[5] Hong Xianlong, Huang Gang et al. “Corner Block List: An
Effective and Efficient Topological Representation of Non-
slicing Floorplan” ICCAD’2000.

[6] D.F.Wong, C.L.Liu, “A new algorithm for floorplan design”,
in Proc. of 23rd ACM/IEEE DAC, pp.101-107, 1986.

[7] Jin Xu, Pei-Ning Guo, Chung-Kuan Cheng, “Cluster
Refinement for Block Placement”, in DAC’97.

[8] Shuo Zhou, Sheqin Dong, Xianlong Hong, Yici Cai,Chung-
Kuan Cheng, Jun Gu “ECBL: An Extended Corner Block
List with O(n) complexity and solution space including
optimum placement”, ISPD’ 2001

[9] Yuchun Ma, Sheqin Dong, Xianlong Hong, Yici Cai,Chung-
Kuan Cheng, Jun Gu “ VLSI Floorplanning with Boundary
Constraints Based on Corner Block List” ASPDAC’2001.

[10] Yuchun Ma, Xianlong Hong, Sheqin Dong, Yici Cai,
Chung-Kuan Cheng, Jun Gu “Floorplanning with Abutment
Constraints and L-shaped/T-shaped Blocks Based on Corner
Block List”, DAC 2001,pp.770-776.

[11] Yingxin Pang, Chung-Kuan Cheng, Koen Lampaert, Weize
Xie” Rectilinear Block Packing Using O-tree
Representation”, ISPD 2001

[12] M.Kang, W.W.M.Dai,” General Floorplanning with L-
shaped, T-shaped and Soft Block Based on Bounded Slicing
Grid Structure”, ASPDAC’1997, pp. 265-270,1997

[13] Kunihiro Fujiyoshi, Hiroshi Murata, ”Arbitrary Convex
and Concave Rectilinear Block Packing using Sequence-
pair”, ISPD’1999

[14] M.Kang, W.W.M.Dai, “Arbitrary Rectilinear Block
Packing Based on Sequence Pair” ICCAD’1998

[15] J.Xu, P.N.Guo, C.K.Cheng: “Rectilinear Block Placement
Using Sequence-Pair” ISPD’1998

[16] F.Y.Young, Hannah H.Yang, D.F. Wong: “On extending
slicing floorplans to handle L/T-shaped blocks and
abutment constraints”, WCC’2000

[17] Jai-Ming Lin and Yao-Wen Chang: “TCG: A
Transitive Closure Graph-Based Representation for
Non-slcing Floorplans”, in DAC’2001,pp.764-769.

area  c om pa re  (ami33 )

1.17

1.22

1.27

1.32

1.37

1.42

0 20 40 60 80 100 120 140
time(sec)

a
r
e
a
(
m
m
2
)

C B L

E C B L

C B L  w i t h  Co mpa cti on

CBL

ECBL

CBL with Compaction

Figure 11. Comparison with the solution quality and run-time

circuits
CBL with

compaction
ECBL CBL O-tree B*-tree TCG

Cluster (size
= 4 blocks)

Ami33 1.192/62 1.192/73 1.201/36 1.242/119 1.27/3417 1.20/306 1.207/603.4
Ami49 36.64/101 36.70/117 38.58/65 37.73/526 36.8/4752 36.77/434 37.69/1861.7

Table 2. The Area(mm2) / Time(Sec) comparison among CBL with compaction(on Sparc 20),
ECBL(on Sparc 20), CBL(on Sparc 20),O-tree(on Ultra60),B*-tree(on Ultra-I),TCG(on Ultra

60),Cluster refinement(on Sparc 20)

CBL with Compaction
circuits Average

area(mm2)/time(Sec)
Minimum

area(mm2)/time(Sec)
apte 47.16/3.2 46.85/5.2

xerox 20.45/3.52 19.95/5.1
hp 9.240/6.76 9.12/12.3

Ami33 1.21/35.43 1.191/62.7
Ami49 37.29/50.46 36.64/101.9

  Table 1. The results of the placement


	Main
	ASP02
	Front Matter
	Table of Contents
	Session Index
	Author Index




