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Abstract 

 
Simulation continues to be the primary technique for functional 
validation of designs. It is important that simulation vectors be 
effective in targeting the types of bugs designers expect to find 
rather than some generic coverage metrics. The overall focus of 
our work is to generate a property-specific testbench for guided 
simulation, that is targeted either at proving the correctness of a 
property or at finding a bug. This is facilitated by generation of 
a property-specific model, called a “Witness Graph”, which 
captures interesting paths in the design. Starting from an initial 
abstract model of the design, symbolic model checking, pruning, 
and refinement steps are applied in an iterative manner, until 
either a conclusive result is obtained or computing resources 
are exhausted. This paper describes the theoretical 
underpinnings of generating and using a Witness Graph for CTL 
correctness properties, practical issues related to the generation 
of a testbench, and experiences with an industrial example. We 
have been able to demonstrate on a real in-house design that 
such an approach can lead to significant reduction in the time 
required to analyze the design for a CTL property and find a 
witness. 

1. Introduction 
Functional validation is one of the key problems hindering 
successful design of large and complex hardware or hardware-
software combinations. The technology for formal verification, 
in which the correctness criteria (properties) are specified 
formally, and a tool exhaustively and automatically exercises the 
functionality of the design to prove the properties, has improved 
significantly in the recent past. In particular, the use of 
Computation Tree Logic (CTL) as a way of specifying 
properties and model checking as a method of proving the 
properties has shown the potential to become accepted in 
industry [3]. Unfortunately, formal verification technology, 
including CTL-based model checking, is not robust enough yet 
to be relied upon as the sole validation technology. The primary 
hurdle is the inability of model checking tools to handle large 
state spaces in current designs using reasonable amounts of 
resources. On the other hand, simulation is inherently slow, 
requiring the simulation of billions of vectors for complex 
hardware. Furthermore, the coverage of design functionality 
provided by these vectors remains largely unknown. 
 
A practical alternative is semi-formal verification, where the 
specification of correctness criteria is done formally, as in model 
checking, but checking is done using simulation, which is 
guided by directed vector sequences derived from knowledge of  

the design and/or the property being checked. A typical 
validation framework consists of a language specifying 
correctness criteria and vector generation constraints, where the 
constraints are derived manually according to the property of 
interest, e.g. [14]. As shown in Figure 1, the focus of our work, 
called intelligent testbench generation, is to automatically 
determine the appropriate vector generation constraints, based 
on analysis of both the design and the property being checked.  
 
We use CTL for formal specification of correctness properties; 
our ideas can be applied similarly to other forms of 
specifications such as Linear Temporal Logic (LTL), Z-regular 
automata etc. Furthermore, the properties for which targeted 
vector generation is performed could either be provided 
manually by the user, or be derived automatically from the HDL 
design description, based on generic notions of correctness, e.g. 
through use of assertions.  

Figure 1: Intelligent Testbench Generation 
 
The testbench integrates a test vector generator, and a checker 
module (monitor) that checks for violation or satisfaction of the 
property. The goal for the vector generator is to increase the 
likelihood that either a witness to the property or a counter-
example is generated. This task is facilitated by embedding in 
constraints that are derived from a Witness Graph. Intuitively, a 
Witness Graph represents a collection of states/transitions/paths 
in the design that are useful for enumerating witnesses or 
counter-examples for the required property. In this paper, we 
describe our methods for generating a Witness Graph, and its 
use in searching for witnesses or counter-examples during 
simulation. 

1.1  Related Work  
Our work is broadly related to other efforts that have combined 
formal verification techniques with simulation for functional 
validation. In particular, we also extract an abstract model of the 
design for the purpose of functional validation [7]. However, we 
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focus on correctness properties, rather than simple coverage 
measures such as state/transition/pair-arc coverage, which may 
not always correlate with error coverage. It should also be noted 
that we do not claim to have solved the problem of concretizing 
abstract simulation vectors, which is the primary hindrance in 
the practical application of such techniques. We circumvent the 
concretization problem by focusing not on generation of 
simulation vectors, but on automatic generation of the testbench 
itself. The testbench is organized as a backtracking search 
procedure, where embedded constraints on transitions/paths 
between abstract states can be used to filter (pseudo-) randomly 
generated inputs during simulation. Naturally, the effectiveness 
of our technique depends critically on the practical efficiency of 
this search. Our approach is to use a combination of known 
methods including static analysis of the abstract model, e.g. [9, 
16], hints from the user, trace data from previous simulations 
runs etc. to improve the search.  
 
Another line of work is based on using symbolic methods within 
simulation to make it more effective [5, 17]. However, this has 
so far been targeted at obtaining better coverage for reachability 
and invariant checking, rather than handling more general 
correctness properties. There have been many efforts based on 
constraint solving for testbench generation, e.g. [8]. These can 
potentially be combined with our techniques based on model 
checking to derive and/or solve embedded constraints in the 
testbench. Finally, the details of our analysis technique are 
similar to other efforts in the area of abstraction, approximate 
model checking, and refinement [4, 10, 11, 12, 13]. A discussion 
of these is deferred to Section 2, where our techniques are 
described in detail. 

2. Witness Graph Generation 
Given a set of atomic propositions A, the set of CTL formulas is 
recursively defined as follows [3]: 
 
CTL formulas = p � A  |  ! f  |  f * g  |  f + g  |  

            EX  f  |  EF  f  |  EG  f  |  E ( f  U g )  | 
            AX  f  |  AF  f  |  AG  f  | A ( f  U g ),  
 

where p denotes an atomic proposition, f and g are CTL 
formulas, and !/*/+ denote the standard Boolean 
negation/conjunction/disjunction operators, respectively. The 
CTL modalities consist of a path quantifier A (all paths) or E 
(exists a path), followed by a temporal operator – X (next time), 
F (eventually), G (globally), U (until). The nesting of these 
modalities can express many correctness properties such as 
safety, liveness, precedence etc. For example, a formula AG f 
expresses that f is true globally in all states on all paths, i.e. f is 
an invariant.  
 
The intended purpose of a Witness Graph is to serve as a 
property-specific abstract model of the design, which captures 
witnesses or counter-examples for the property. Note that for 
full CTL, a witness or counter-example need not be a simple 
path, but may be a general graph. For practical reasons, we focus 
on generation of a small Witness Graph that is also complete, i.e. 
it should include all witnesses or counter-examples. We follow 
an iterative flow for generation of a Witness Graph, as shown 
within the dashed box in Figure 2.  
 

Figure 2: Flow for Witness Graph Generation 
 

Starting from a given design and property, we first obtain an 
abstract model. Next, we perform analysis by model checking 
and pruning, and refine the model to perform analysis again. The 
iterative process is repeated until either a conclusive result is 
obtained, or resource limitations are reached. In the latter case, 
the current abstract model constitutes the Witness Graph. It can 
be represented in any of the standard FSM forms, including a 
control data flow graph (CDFG), an RTL description, or an 
implicit symbolic representation using BDDs [2]. The details of 
this flow are described in the rest of this section. As also shown 
in Figure 2, the Witness Graph is subsequently annotated with 
priorities etc., which is then used for automatic generation of the 
testbench – this is described in Section 3. 

2.1  Initial Abstract Model  
First, we use the cone-of-influence abstraction [1, 10], whereby 
any part of the design that does not affect the property is 
removed. Since the number of control states in a CDFG design 
representation is typically small, we perform explicit traversal 
on the control states to identify irrelevant datapath operations. 
This provides better abstraction than a purely syntactic analysis 
on the next state logic of a standard RTL description. Next, we 
identify datapath variables that do not directly appear as atomic 
propositions in the CTL property, and are therefore potentially 
suitable for abstraction as pseudo-primary inputs. Again, we use 
explicit traversal over the control states to identify datapath 
dependencies for ranking these candidates and abstracting them. 
The resulting model constitutes an upper bound approximation 
of the underlying Kripke structure [10, 11, 12, 13].  
 
Example: As a running example for our techniques, consider 
the CDFG design description shown in Figure 3. It consists of 9 
control states, labeled ST0 through ST8, with initial state ST0. 
The variables i, j, A, B, C, and F are primary inputs, and the rest 
are datapath variables. The light bordered boxes indicate the 
datapath operations performed in each control state, while the 
labels on the edges between control states identify the conditions 
under which those transitions take place. Note that while the 
number of control states is small, the total state space including 
the datapath is actually large. Suppose the correctness property 
is EF (M >= 6), i.e. we want to check the existence of a path 
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starting from ST0 on which eventually some state satisfies M >= 
6. We use cone-of-influence analysis to determine that state ST3 
does not contain any relevant datapath operations. Next, since M 
is the only datapath variable referred to in the atomic 
proposition, we include M and its immediate dependency H as 
state variables. All other data variables are abstracted away as 
pseudo-primary inputs.  

2.2  Analysis of the Abstract Model 
The next step is to perform analysis on the abstract model to 
identify states that contribute to any witness/counter-example 
for the property. For formulas starting with an E-type operator, 
we look for all witnesses; while for formulas starting with an A-
type operator, we look for all counter-examples. For rest of this 
discussion, assume that we are interested in finding witnesses – 
the same discussion holds for finding counter-examples. 
 
The pseudo-code for our algorithm, called mc_for_sim 
(model checking for simulation), is shown in Figure 4. Its inputs 
are an abstract model m, which is an upper-bound approximation 
of the concrete design d, and a CTL formula f in negation 
normal form, i.e. where all negations appear only at the atomic 
level. 

Figure 3: Example CDFG and Property 
 
The main idea is to use model checking over m to pre-compute a 
set of abstract states which are likely to constitute witnesses, and 
to use this set for guidance during simulation over d, in order to 
demonstrate a concrete witness. In particular, we target over-
approximate sets of satisfying states during model checking, so 
that we can search through an over-approximate set of witnesses 
during simulation.  
 

The mc_for_sim algorithm works recursively in the standard 
bottom-up manner over the CTL formula f (represented in the 
form of a parse tree, where left / right subformulas of f are 
denoted leftChild(f)/rightChild(f), respectively). It 
associates sets of abstract states called upper/negative 
with subformulas of f (and their negations when needed). 
 
mc_for_sim(model m, ctlFormula f) { 
 ctlFormula f1, f2, negf; 
 states upper,upper1,upper2=NULL,negative=NULL; 
 // handle subformulas recursively 
 if (f1 = leftChild(f)) { 
   mc_for_sim(m,f1); 
   upper1 = get_upper(f1); 

 } 
 if (f2 = rightChild(f)) { 
   mc_for_sim(m,f2)); 
   upper2 = get_upper(f2); 
 } 
 // case analysis on operator at this level 
 switch(type(f)) { 
 case TRUE: upper = ALL; break; 
 case FALSE: upper = NULL; break; 
 case ATOMIC: upper = mc_atomic(m,f); break; 
 case NOT: upper = complement(upper1); break; 
 case AND: upper = and(upper1,upper2); break; 
 case OR: upper = or(upper1,upper2); break; 
 case EX: case EF: case EU: case EG: 
   upper = mc_etype(upper1,upper2); break; 
 default: // A-type operators left 
   switch(type(f)) { 
   case AX: upper = mc_ex(upper1); break; 
   case AF: upper = mc_ef(upper1); break; 
   case AU: upper = mc_eu(upper1,upper2); break; 
   case AG: upper = mc_eg(upper1); break; 
   } 
   // compute negative sets also 
   negf = negate(f); 
   mc_for_sim(m,negf); 
   negative = and(upper,get_upper(negf)); break; 
 } 
 // associate the sets with f 
 associate(f, upper, negative); 
} 

Figure 4: Pseudo-code for mc_for_sim Algorithm 
 
Theorem 1: The set of abstract states upper associated with 
each subformula by the mc_for_sim algorithm corresponds 
to an over-approximation of the set of concrete states that satisfy 
the  subformula.  
 
Proof: The proof is by induction on the structure of the formula. 
Note that atomic propositions (and constants) are computed 
exactly, in the standard manner, providing the basis of the 
induction. Furthermore, since only atomic-level negations are 
allowed in a negation normal form, they too are computed 
exactly. Since other Boolean operators are monotonic, they 
preserve over-approximations of the subformulas. For 
subformulas beginning with an E-type operator (EX, EF, EU, 
EG), standard model checking over m (function mc_etype) 
ensures that the result is an over-approximation over d, since m 
has more paths than d. However, for subformulas beginning 
with an A-type operator (AX, AF, AU, AG), the situation is 
somewhat different. Since m may have many false paths with 
respect to d, standard model checking over m may result in an 
under-approximation over d. Therefore, we compute upper by 
considering the corresponding E-type operator, which is 
guaranteed to result in an over-approximation.  v  
 
The over-approximation for the A-type operators is rather 
coarse. To mitigate this effect, we also compute a set of abstract 
states called negative as shown in Figure 4. It corresponds 
to the intersection of set upper with a set which is recursively 
computed for the negation of the A-type subformula. Though 
not shown in the pseudo-code, an actual implementation of the 
above algorithm keeps track of the visited nodes in the parse 
trees of various CTL subformulas, such that each node is 
explored at most once. Therefore, its overall complexity is the 
same as that of standard symbolic model checking. 
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2.2.1  Conclusive Proof Due to Model Checking 
It is possible that model checking on m itself provides a 
conclusive result for d in some cases. Pseudo-code for 
performing this check is shown in Figure 5, where the 
mc_for_sim algorithm is used to compute the sets upper / 
negative  for the top-level formula. 
 
check_mc (model m, ctlFormula f) 
{ 
  mc_for_sim(m, f); 
  if (initState(m) � get_upper(f)) 
    result = PROPERTY_FALSE; 
  else if (A-type(f) &&  

   initState(m) � get_negative(f)) 
    result = PROPERTY_TRUE; 
  else 
    result = INCONCLUSIVE;   
  return result; 
} 

Figure 5: Pseudo-code for check_mc  Algorithm 
 
Theorem 2: The result computed by the check_mc algorithm 
is correct in all cases. 
 
Proof: From Theorem 1, set upper corresponds to an over-
approximate set of satisfying states. Therefore, if the initial state 
does not belong to this set, clearly the property is false. Now, 
assume that the initial state does belong to set upper. Recall 
that for an A-type operator, we also compute the set 
negative. If the initial state does not belong to set 
negative, then there does not exist any path in m starting 
from the initial state that shows negation of the property. 
Therefore, it is guaranteed that no such concrete path exists in d, 
i.e. the property is true. In all other cases, the result from model 
checking is inconclusive.  v                                                  

2.2.2   Partial Proof Due to Model Checking 
When the result due to model checking is inconclusive, we fall 
back upon simulation for generating witnesses/counter-examples 
for the property. For full CTL, we need to handle the alternation 
between E and A quantifiers. In general, handling of “all” paths 
is natural for model checking, but is unsuitable for simulation. 
The purpose of computing negative sets for A-type 
subformulas is to avoid a proof by simulation where possible. 
Note that an abstract state s which belongs to upper, but not to 
negative, is a very desirable state to target as a witness for 
the A-type subformula. This is because the proof of the A-type 
subformula is complete for state s due to model checking itself 
(as described in the proof of Theorem 2). Therefore, as soon as 
state s is reached during simulation, there is no further proof 
obligation. On the other hand, if a state t belongs to negative 
also, our task during simulation is to check whether an abstract 
counter-example for the A-type subformula actually corresponds 
to a concrete path. If a concrete counter-example is found, state t 
is not a true witness state, and can be eliminated from further 
consideration. This observation is used in the witness generation 
algorithm described in Section 3.  

2.2.3   Related Work 
Our abstraction technique and mc_for_sim algorithm are 
similar to other works in the area of abstraction and approximate 

model checking [4, 11, 12, 13]. Like many of these efforts, we 
also use an “existential” abstraction which preserves the atomic 
propositions, and also allows us to compute over-
approximations of satisfying states (sets upper). Furthermore, 
our computation of the negative sets for the A-type 
subformulas is similar to computing under-approximations. (In 
principle, we can compute these for all subformulas.) However, 
our purpose for computing these approximations is not only to 
use these sets for conservative verification for CTL (or its 
existential/universal fragments), or even for iterative refinement. 
Ultimately, these sets are used to provide guidance during 
simulation for designs where it may not be possible to perform 
any symbolic analysis at all. Therefore, unlike existing 
techniques, our mc_for_sim algorithm specifically avoids 
employing existential/universal quantification over the state 
space of concrete variables. Instead, we use much coarser 
approximations � the E-type operators in place of the A-type 
operators. Indeed, it would be appropriate to use any known 
technique for obtaining the tightest approximations. Our 
additional contribution is also in showing how these sets can be 
used to demonstrate concrete witnesses in the context of 
simulation.  

2.3  Pruning of the Abstract Model 
The next step is to prune the abstract model by removing states 
that do not contribute to any witness or counter-example. We 
first mark the required states, and remove any states that are left 
unmarked, by replacing them with a special “sink” state. (In 
order to allow repeated use of model checking on the pruned 
model, every transition out of “sink” state leads back to itself, 
and all atomic propositions in the CTL property are assumed to 
be false in the “sink” state.) The pseudo-code for our state 
marking algorithm is shown in Figure 6.  
 
mark_witness_top(model m, ctlFormula f) 
{ 
  reachable = compute_reachable(m,initState(m)); 
  switch(type(f)){ 
  case AX: case AF: case AU: case AG: 
    witness_top= and(get_negative(f),reachable); 
    break; 
  default: 
    witness_top= and(get_upper(f),reachable); 
  } 
  mark_states(witness_top); 
  mark_witness_rec(m, f, witness_top); 
} 
 
mark_witness rec(model m, ctlFormula f, states 
careSet) 
{ 
 states witness, negWitness, subWitness; 
 //  associate witness set for f 
 witness = and(get_upper(f),careSet); 
 associate_witness(f,witness); 
 //  recursive calls with modified careSets  
 switch(type(f)) { 
 case TRUE:case FALSE:case ATOMIC:case NOT: 
   break; 
 case AND: case OR: 
 case EF: case EU: case EG: 
   mark_witness _rec(m,leftChild(f),witness); 
   if (rightChild(f) != NULL) 
     mark_witness_rec(m,rightChild(f),witness); 
   break; 
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 case EX: 
   subWitness = compute_image(m, witness); 
   // mark additional states  
   mark_states(subWitness); 
   mark_witness_rec(m,leftChild(f),subWitness); 
   break; 
 case AX: case AF: case AU: case AG: 
   negWitness = and(get_negative(f),careSet); 
   associate_neg_witness(f,negWitness); 
   mark_witness_rec(m,negate(f),negWitness); 
   break; 
 } 
} 

Figure 6: Pseudo-code for State Marking Algorithm 
 
Theorem 3: The proposed state marking algorithm is 
conservative, i.e. it will not miss any state needed to 
demonstrate a witness or counter-example for the property of 
interest. 
 
Proof: Note that we are interested in states that not only start a 
witness/counter-example, but demonstrate it fully. The crucial 
observation is that for any CTL formula f, except of type 
EX/AX, such states also satisfy f. For atomic propositions and 
Boolean operators, this is trivially true since there are no paths 
to consider. For type EF/EU/EG, the witnesses are paths where 
each state satisfies f. Similarly, for type AF/AU/AG, counter-
examples are paths where each state satisfies !f. Indeed, it is 
only for EX/AX, that we need to mark additional states, i.e. 
those that satisfy the subformula of f. Therefore, it would be 
enough to mark satisfying states once at the top, followed by 
additional marking only in the EX/AX case.  
 
In our method, sets upper and negative correspond to 
over-approximations of concrete satisfying states. Furthermore, 
for A-type subformulas, we need to focus only on states that 
belong to both sets, in order to search for a concrete counter-
example during simulation. Recall that for states that belong to 
upper but not to negative, the proof is complete due to 
model checking itself. Therefore, our marking algorithm uses 
the sets upper/negative to associate sets called 
witness/neg_witness with each required CTL 
subformula. As an additional optimization, since the former sets 
are computed bottom-up, we use the latter sets top-down, as 
care-sets for the subformulas. At the topmost level, the care-set 
consists of the set of states reachable from the initial state. Note 
that the special handling of EX-type subformulas requires an 
extra image computation to exploit the care-set. Since the sets 
upper/negative are over-approximations, and the care-sets 
preserve reachability from the initial state, our state marking 
algorithm is conservative.  v    
 
Returning to our example, for the abstract model of Figure 4, the 
states ST3 and ST6 remain unmarked after performing the above 
analysis. This is because there is no path through these states 
that can demonstrate a witness for the property EF (M>=6). 
Therefore they are pruned, and replaced by the special “sink” 

state.    

2.4 Refinement of the Abstract Model 
The amount of detail that can be allowed in the abstract model 
depends on the level of complexity that can be handled by the 
model checker. However, once pruning is done resulting in a 

smaller model, it may be possible to refine the model and 
perform the analysis again. Recall that our initial abstract model 
was obtained by abstracting away many of the datapath 
variables as pseudo-primary inputs. We perform refinement by 
selectively bringing back some of these datapath variables into 
the state space. Note that pruning reduces the size of the model, 
while refinement increases it. The iterative pruning and 
refinement allows us to model much more of the state space in 
the final Witness Graph than would be possible otherwise. 
 
For our example, we may choose to add datapath variables D 
and K as state, after which model checking and pruning are 
performed again. If we don’t wish to add any more datapath 
state at this point, we obtain the final Witness Graph as shown in 
Figure 7.  

Figure 7: Final Witness Graph 
 
Again, our techniques for iterative refinement are similar to 
those used by other researchers, where lack of a conclusive 
result from the abstract model [11, 12], or some counter-
examples on the abstract model [4, 10] are used to guide further 
refinement. In contrast, we focus on all witnesses/counter-
examples during model checking. Furthermore, we use the 
associated sets for marking states in order to prune the abstract 
model before attempting further refinement. To the best of our 
knowledge, existing techniques do not perform such model 
pruning. This is largely because pruning of states does not 
necessarily lead to compact BDD representations used for 
symbolic manipulation. However, our goal is not only to obtain 
a conclusive result by model checking where possible, but also 
to reduce the gap between the abstraction levels of the final 
Witness Graph and the concrete design to be simulated. Since 
the final simulation is performed on explicit states, rather than 
symbolic sets, such pruning may be very useful in practice. 

2.5  Witness Graph as a Coverage Metric 
Apart from using a Witness Graph for generating a testbench, it 
can also be used as a coverage metric for evaluating the 
effectiveness of a given set of simulation vectors. Most available 
metrics are based either on code (line/branch/toggle) coverage of 
the design description, or on extraction of FSM models with the 
associated state/transition coverage [7]. In contrast, our metric is 
obtained by analysis of the design with respect to the given 
property.  The better the coverage of a given set of simulation 
vectors over the states/transitions/paths of a complete Witness 
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Graph, the more likely it is that simulation will succeed in 
proving/disproving the property. Note that a high coverage still 
does not guarantee correctness in the design – it only provides a 
metric to assess the quality of simulation. Recently, there has 
also been work on specification coverage metrics, which focus 
on how much of the design space is covered by multiple 
properties [6]. We can potentially use these techniques to extend 
our per-property analysis to coverage of overall correctness.  

3. Testbench Design for Witness Generation 
The Witness Graph is used to guide the testbench in searching 
for witnesses or counter-examples during simulation of the 
concrete design. The underlying skeleton of the testbench is a 
backtracking search algorithm, described in detail next.  

3.1  Backtracking Search Algorithm 
The pseudo-code for our search algorithm, called 
search_witness, is shown in Figure 8. It returns SUCCESS 
if it succeeds in finding a concrete witness starting from a given 
state s, in a given concrete design d, for a given CTL formula f; 
and FAILURE otherwise. It uses the witness/ 
neg_witness sets which implicitly constitute the Witness 
Graph. In the pseudo-code, abs(s) denotes the abstract state 
corresponding to a concrete state s.  
 
search_witness(design d, ctlFormula f, state s) 
{ 
  states w, w1; 
  int result, neg_result; 
  w = get_witness(f); 
  w1 = get_witness(leftChild(f)); 
  //  case analysis on operator at this level 
  switch(type(f)) { 
  case TRUE: result= SUCCESS; break; 
  case FALSE: result= FAILURE; break; 
  case ATOMIC: result= satisfies(s,f); break; 
  case NOT: result=satisfies(s,negate(f));break; 
  case AND:  

result= search_witness(d,leftChild(f),s); 
if (result==SUCCESS) 

  result= search_witness(d,rightChild(f),s); 
break; 

  case OR:  

result= search_witness(d,leftChild(f),s); 
if (result==FAILURE) 

  result= search_witness(d,rightChild(f),s); 
    break; 
  case EX: 
    foreach state t, abs(t)� w1, { 
      if (exists_transition(s,t)){ 

       result=search_witness(d,leftChild(f),t); 
       if (result==SUCCESS) break;}} 
    break; 
  case EF: 
    foreach state t, abs(t)� w1, { 
      if (path = find_a_path(s,t)){ 

       result= search_witness(d,leftChild(f),t);         
       if (result==SUCCESS) break; }} 
    break; 
  case EU: 

    result= search_witness(d,rightChild(f),s); 
    if (result==FAILURE){ 
      mark(s,f); 

      result= search_witness(d,leftChild(f),s); 
      if (result==SUCCESS) 
        foreach unmarked state t, abs(t)� w { 
          if (exists_transition(s,t)){ 

            result= search_witness(d,f,t); 
            if (result==SUCCESS) break;}}} 
    break; 
  case EG: 

    result= search_witness(d,leftChild(f),s); 
    if (result==SUCCESS){ 
      mark(s,f); 
      if (exists_transition_to_marked(s,f)) 
        result= SUCCESS; 
      else  
        foreach unmarked state t, abs(t)� w { 
          if (exists_transition(s,t)){ 

            result= search_witness(d,f,t); 
            if (result==SUCCESS) break; }}} 
    break; 
  case AX: case AF: case AU: case AG: 
    if (abs(s) � get_neg_witness(f)) 
      result= SUCCESS; 
    else { 
      // generate counter-example for !f 

      neg_result=search_witness(d,negate(f),s); 
      result = (neg_result == SUCCESS) ? 
        FAILURE : SUCCESS; } 
  } 
  return result; 
} 

Figure 8: Pseudo-code for search_witness  Algorithm 
 
Theorem 4: The search_witness algorithm is complete, i.e. it 
will find a concrete witness or counter-example if it exists. 
 
Proof:  Given the association of witness/neg_witness 
sets with various CTL subformulas, the handling of atomic 
propositions, Boolean operators, and the E-type temporal 
operators is according to their standard characterizations. The 
handling of the A-type operators reflects our earlier remarks – if 
abs(s) does not belong to set negative, the proof of the A-
type subformula is complete due to model checking itself, and 
we can return with SUCCESS. Otherwise, we look for a counter-
example for f starting from s. If such a counter-example is 
found, i.e. neg_result==SUCCESS, then we return 
FAILURE; and vice versa. Recall from the proof of Theorem 3 
that the witness/neg_witness sets correspond to over-
approximations of concrete witness states reachable from the 
initial state. Therefore, a search based on these sets is guaranteed 
to be complete.  v  

3.2 Prioritizing Search for Witnesses 
Though the search_witness algorithm is complete in 
principle, it is impractical to search through all possible concrete 
states in the foreach loops of the pseudo-code. Typically, the 
search would be limited by available resources such as space 
and time.  In practice, any prior information about the existence 
of transitions/paths between two given concrete states can be 
used to prioritize the search. The designer may help in assigning 
priorities by providing hints, i.e. specifying particular control 
states or transitions as intermediate targets. Trace data from 
previous simulation runs which may identify “easy to reach” 
states can also be incorporated. Other schemes, e.g. [9, 16], 
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based on combination of distance to targets, transition 
probabilities, static analysis, hints etc. can also be used. 
 
Basically, two questions must be answered before applying the 
next simulation vector: 

1. What should be the next state? 
2. What inputs are required to reach that state? 
 

To choose the next state in our approach, the fixpoint 
approximations in the symbolic computation of a CTL sub-
formula, called onion rings, are used to determine the shortest 
distance to target. The Witness Graph for each sub formula is 
now stored as a collection of BDDs, where each BDD represents 
the abstract state set with a certain distance tag for that 
subformula. These onion rings are restricted to the reachable 
state sets in the abstract model. In choosing the next abstract 
state, the testbench prioritizes states with lower distance tags.  
 
Once the desired next abstract state is determined, the input 
must be chosen to enable such a transition from the current 
concrete state. Our approach works by generating a candidate 
input vector and simulating it on the entire design. If the abstract 
part of the new concrete state matches the desired next abstract 
state, this candidate is chosen, else a new candidate is attempted. 
A candidate input vector may be chosen randomly or by solving 
circuit constraints using BDD / SAT / LP techniques.  
 
In our approach, candidate input vectors are generated using 
BDDs to solve circuit constraints in the abstract model. Since a 
symbolic analysis of the abstract model was performed during 
Witness Graph generation, the required BDDs are tractable. We 
use BDDs to combine into one step the choice of the next state 
and the input vector, by solving for an input vector that takes the 
abstract model from the current state to any state in the next 
desired onion ring. It is possible that no input vector can be 
obtained in this manner even after many candidates have been 
tried. In such a case, a new desired next state must be chosen. It 
is also possible that a transition to the desired onion ring with a 
smaller tag cannot be obtained after many next states have been 
attempted as targets. In this case, backtracking must be 
performed to return to an older state along the path.  

3.3 Testbench and Simulation Setup 
An outline of the simulation setup is shown in Figure 9. The 
conventional simulator in the setup could be based on Verilog, 
VHDL or a C-based HDL. The testbench code is generated 
automatically after completing symbolic analysis on the abstract 
model which generates the annotated Witness Graph.  The Main 
Loop repeatedly queries the Vector Generator, which uses the 
Witness Graph and circuit constraint BDDs to identify the 
desired next states and input vector candidates to apply.  
 
The entire testbench generation process is completely automatic 
and transparent to the user. The Main Loop is generated in the 
HDL native to the simulator while the Vector Generator is 
written in C. The two communicate through the PLI or other 
API provided by the simulator. The Witness Graph and circuit 
constraint BDDs are stored in compact binary file format to be 
read by the Vector Generator. We currently have 
implementations of this setup for a standard Verilog HDL 
simulator, and also for an in-house C-based-HDL simulator.  

 

Figure 9: Simulation Setup  
 
During simulation, the testbench outputs either a viewable VCD 
(Value Change Dump) file with the waveform corresponding to 
the generated witness, or a report that the witness could not be 
generated and corresponding partial waveforms up to the states 
that were reached.  

4. Case Study: Memory Interface Design 

4.1 Design Details 
We have experimented with the proposed automatic property-
specific testbench generation approach on an in-house memory 
interface design (MIF). The MIF design implements a complex 
arbitration scheme between multiple clients wishing to access 
the memory resource. The algorithm starts with fixed priorities 
for the clients, but dynamically adjusts them based on the state 
of the client, DMA requests, and interrupts. The MIF design is 
fairly complex, with a Verilog implementation consisting of 516 
flip-flops, 1035 primary inputs, and 15989 literals. A 
reachability analysis of the entire MIF design appears to be 
infeasible with current BDD-based or any other technology. 
 
As a result of the complex arbitration, it is very hard to 
manually, or through explicit enumeration of the state space, 
visualize the various scenarios under which a client may or may 
not be granted access. Arising out of this difficulty, the user 
highlighted to us a property he wished to check for this design in 
which he desired to determine if one of the clients, the CPU, 
would ever be required to wait for more than 5 cycles to be 
granted access to the memory. This behavior is described by the 
CTL property EF(cpu_wait_counter > 5), where the signal 
cpu_wait_counter counts the number of cycles that the CPU has 
to wait after making a request. Basically, we would like to find a 
witness input sequence in which the CPU has not been granted 
access within 5 cycles after requesting it.  
 
4.2   Experimental Setup 
Our prototype implementation is based on the publicly available 
symbolic model checker called VIS [1]. Since the Verilog 
description of the MIF design could not be directly read into 
VIS (due to limitations of its Verilog front-end), we started with 
a high-level description of the design written in a C-like HDL, 
which was used as input to an in-house high-level synthesis tool 
called Cyber [14]. An intermediate representation during this 
flow provides a CDFG representation of the design. This 
representation is used to automatically generate an FSM model 
(in VIS’s blif-mv format), which is used for subsequent model 
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checking. We also automatically translated an extended CTL 
syntax which allows arithmetic operators in atomic predicates, 
to VIS’s CTL syntax without arithmetic operators. 
 
4.3   Results 
Verification of the given correctness property with the VIS 
model checker was successful, but took 41 hours of CPU time 
on a 150 MHz Sun UltraSparc workstation with 512 MB of 
RAM. To the credit of our property-specific testbench 
generation approach, consisting of analysis of an abstract model 
followed by intelligent testbench generation, we were able to 
perform the same check in about 1 hour, by generating and 
simulating an input sequence which showed that the CPU had to 
wait for 6 cycles after making a request. 
 
The details of our abstract model analysis are as follows. We 
first used explicit traversal over the control states to determine 
the cone of influence, and to automatically derive an abstract 
model. For this design, flip-flops at levels greater than a 
dependency level of 3 from atomic propositions were abstracted 
by making them free inputs. This led to a reduction in the 
number of flip-flops to 167. The entire abstraction process is 
very fast, and took less than 1 minute. Next, we performed 
model checking on this abstract model including reachability 
analysis. Combined with generation of the Witness Graph 
information in BDD form,  it  took 3779 seconds.  
 
For testbench generation, we experimented with both the 
Verilog simulator (Modeltech) and the in-house C-based HDL 
simulator. The entire testbench source code (written in 
Verilog+C for the former, and C++ for the latter) was 
automatically generated from the Witness Graph, and took 
negligible time. The final simulation, which showed the actual 
witness on the complete MIF design, was also very fast, and 
took less than 1 minute in each case. 
 
A comparison between the performance of VIS on the original 
model, which required 41 hours, and our testbench generation 
prototype on the abstract model, which required about 1 hour, 
highlights the speed advantage to be gained by our approach. 
We hope to demonstrate in the near future that even coarser 
abstractions would have sufficed for this example. 
 
We believe that this experience with the verification of the CTL 
property on a real-life example highlights the viability of our 
approach, and the potential for its incorporation in testbench 
generation flows used in the industry. 

5. Conclusions 
We have presented algorithms for generating a Witness Graph, 
which captures all witnesses or counter-examples in an abstract 
model of a design with respect to a given correctness property. 
These algorithms iteratively employ abstraction, approximate 
model checking, pruning, and refinement, with many novel 
features in comparison to existing techniques. We have also 
presented a backtracking search algorithm that uses the Witness 
Graph for finding a concrete witness or counter-example during 
simulation. Based on these algorithms, we have developed an 
automatic intelligent testbench generation framework 
compatible with generic HDL-based simulation environments. 
We have been able to demonstrate on a real in-house LSI design 

that such an approach can lead to significant reduction in the 
time required to analyze the design for a CTL property and find 
a witness. 
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