
 1

Property-Specific Testbench Generation for Guided Simulation

Aarti Gupta, Albert E. Casavant, and Pranav Ashar X. G. (Sean) Liu
 NEC CCRL, Princeton, NJ, USA University of California, Santa Barbara, CA, USA
 {agupta, aec, ashar}@nec-lab.com xgliu@ece.ucsb.edu

Akira Mukaiyama, and Kazutoshi Wakabayashi

NEC CRL, Kawasaki, Japan
{mukai, wakaba}@ccm.cl.nec.co.jp

Abstract

Simulation continues to be the primary technique for functional
validation of designs. It is important that simulation vectors be
effective in targeting the types of bugs designers expect to find
rather than some generic coverage metrics. The overall focus of
our work is to generate a property-specific testbench for guided
simulation, that is targeted either at proving the correctness of a
property or at finding a bug. This is facilitated by generation of
a property-specific model, called a “Witness Graph”, which
captures interesting paths in the design. Starting from an initial
abstract model of the design, symbolic model checking, pruning,
and refinement steps are applied in an iterative manner, until
either a conclusive result is obtained or computing resources
are exhausted. This paper describes the theoretical
underpinnings of generating and using a Witness Graph for CTL
correctness properties, practical issues related to the generation
of a testbench, and experiences with an industrial example. We
have been able to demonstrate on a real in-house design that
such an approach can lead to significant reduction in the time
required to analyze the design for a CTL property and find a
witness.

1. Introduction
Functional validation is one of the key problems hindering
successful design of large and complex hardware or hardware-
software combinations. The technology for formal verification,
in which the correctness criteria (properties) are specified
formally, and a tool exhaustively and automatically exercises the
functionality of the design to prove the properties, has improved
significantly in the recent past. In particular, the use of
Computation Tree Logic (CTL) as a way of specifying
properties and model checking as a method of proving the
properties has shown the potential to become accepted in
industry [3]. Unfortunately, formal verification technology,
including CTL-based model checking, is not robust enough yet
to be relied upon as the sole validation technology. The primary
hurdle is the inability of model checking tools to handle large
state spaces in current designs using reasonable amounts of
resources. On the other hand, simulation is inherently slow,
requiring the simulation of billions of vectors for complex
hardware. Furthermore, the coverage of design functionality
provided by these vectors remains largely unknown.

A practical alternative is semi-formal verification, where the
specification of correctness criteria is done formally, as in model
checking, but checking is done using simulation, which is
guided by directed vector sequences derived from knowledge of

the design and/or the property being checked. A typical
validation framework consists of a language specifying
correctness criteria and vector generation constraints, where the
constraints are derived manually according to the property of
interest, e.g. [14]. As shown in Figure 1, the focus of our work,
called intelligent testbench generation, is to automatically
determine the appropriate vector generation constraints, based
on analysis of both the design and the property being checked.

We use CTL for formal specification of correctness properties;
our ideas can be applied similarly to other forms of
specifications such as Linear Temporal Logic (LTL), Z-regular
automata etc. Furthermore, the properties for which targeted
vector generation is performed could either be provided
manually by the user, or be derived automatically from the HDL
design description, based on generic notions of correctness, e.g.
through use of assertions.

Figure 1: Intelligent Testbench Generation

The testbench integrates a test vector generator, and a checker
module (monitor) that checks for violation or satisfaction of the
property. The goal for the vector generator is to increase the
likelihood that either a witness to the property or a counter-
example is generated. This task is facilitated by embedding in
constraints that are derived from a Witness Graph. Intuitively, a
Witness Graph represents a collection of states/transitions/paths
in the design that are useful for enumerating witnesses or
counter-examples for the required property. In this paper, we
describe our methods for generating a Witness Graph, and its
use in searching for witnesses or counter-examples during
simulation.

1.1 Related Work
Our work is broadly related to other efforts that have combined
formal verification techniques with simulation for functional
validation. In particular, we also extract an abstract model of the
design for the purpose of functional validation [7]. However, we

Automatic
Constraint
Generation

Simulator

Design
Description

in HDL

Correctness
Criteria

Vector
Generation
Constraints

Simulation
Report

Testbench

Vector
Generator

+
Checker

 2

focus on correctness properties, rather than simple coverage
measures such as state/transition/pair-arc coverage, which may
not always correlate with error coverage. It should also be noted
that we do not claim to have solved the problem of concretizing
abstract simulation vectors, which is the primary hindrance in
the practical application of such techniques. We circumvent the
concretization problem by focusing not on generation of
simulation vectors, but on automatic generation of the testbench
itself. The testbench is organized as a backtracking search
procedure, where embedded constraints on transitions/paths
between abstract states can be used to filter (pseudo-) randomly
generated inputs during simulation. Naturally, the effectiveness
of our technique depends critically on the practical efficiency of
this search. Our approach is to use a combination of known
methods including static analysis of the abstract model, e.g. [9,
16], hints from the user, trace data from previous simulations
runs etc. to improve the search.

Another line of work is based on using symbolic methods within
simulation to make it more effective [5, 17]. However, this has
so far been targeted at obtaining better coverage for reachability
and invariant checking, rather than handling more general
correctness properties. There have been many efforts based on
constraint solving for testbench generation, e.g. [8]. These can
potentially be combined with our techniques based on model
checking to derive and/or solve embedded constraints in the
testbench. Finally, the details of our analysis technique are
similar to other efforts in the area of abstraction, approximate
model checking, and refinement [4, 10, 11, 12, 13]. A discussion
of these is deferred to Section 2, where our techniques are
described in detail.

2. Witness Graph Generation
Given a set of atomic propositions A, the set of CTL formulas is
recursively defined as follows [3]:

CTL formulas = p � A | ! f | f * g | f + g |

 EX f | EF f | EG f | E (f U g) |
 AX f | AF f | AG f | A (f U g),

where p denotes an atomic proposition, f and g are CTL
formulas, and !/*/+ denote the standard Boolean
negation/conjunction/disjunction operators, respectively. The
CTL modalities consist of a path quantifier A (all paths) or E
(exists a path), followed by a temporal operator – X (next time),
F (eventually), G (globally), U (until). The nesting of these
modalities can express many correctness properties such as
safety, liveness, precedence etc. For example, a formula AG f
expresses that f is true globally in all states on all paths, i.e. f is
an invariant.

The intended purpose of a Witness Graph is to serve as a
property-specific abstract model of the design, which captures
witnesses or counter-examples for the property. Note that for
full CTL, a witness or counter-example need not be a simple
path, but may be a general graph. For practical reasons, we focus
on generation of a small Witness Graph that is also complete, i.e.
it should include all witnesses or counter-examples. We follow
an iterative flow for generation of a Witness Graph, as shown
within the dashed box in Figure 2.

Figure 2: Flow for Witness Graph Generation

Starting from a given design and property, we first obtain an
abstract model. Next, we perform analysis by model checking
and pruning, and refine the model to perform analysis again. The
iterative process is repeated until either a conclusive result is
obtained, or resource limitations are reached. In the latter case,
the current abstract model constitutes the Witness Graph. It can
be represented in any of the standard FSM forms, including a
control data flow graph (CDFG), an RTL description, or an
implicit symbolic representation using BDDs [2]. The details of
this flow are described in the rest of this section. As also shown
in Figure 2, the Witness Graph is subsequently annotated with
priorities etc., which is then used for automatic generation of the
testbench – this is described in Section 3.

2.1 Initial Abstract Model
First, we use the cone-of-influence abstraction [1, 10], whereby
any part of the design that does not affect the property is
removed. Since the number of control states in a CDFG design
representation is typically small, we perform explicit traversal
on the control states to identify irrelevant datapath operations.
This provides better abstraction than a purely syntactic analysis
on the next state logic of a standard RTL description. Next, we
identify datapath variables that do not directly appear as atomic
propositions in the CTL property, and are therefore potentially
suitable for abstraction as pseudo-primary inputs. Again, we use
explicit traversal over the control states to identify datapath
dependencies for ranking these candidates and abstracting them.
The resulting model constitutes an upper bound approximation
of the underlying Kripke structure [10, 11, 12, 13].

Example: As a running example for our techniques, consider
the CDFG design description shown in Figure 3. It consists of 9
control states, labeled ST0 through ST8, with initial state ST0.
The variables i, j, A, B, C, and F are primary inputs, and the rest
are datapath variables. The light bordered boxes indicate the
datapath operations performed in each control state, while the
labels on the edges between control states identify the conditions
under which those transitions take place. Note that while the
number of control states is small, the total state space including
the datapath is actually large. Suppose the correctness property
is EF (M >= 6), i.e. we want to check the existence of a path

CDFG

Correctness
Property

CTL
Formula

No

Abstract
Model

Refinement

Analysis + Pruning

Abstraction

Yes

Witness
Graph

Annotated
WG

User HintsDesign

Testbench

Conclusive
Result?

Add More
Detail?

No

Property
True / False Yes

 3

starting from ST0 on which eventually some state satisfies M >=
6. We use cone-of-influence analysis to determine that state ST3
does not contain any relevant datapath operations. Next, since M
is the only datapath variable referred to in the atomic
proposition, we include M and its immediate dependency H as
state variables. All other data variables are abstracted away as
pseudo-primary inputs.

2.2 Analysis of the Abstract Model
The next step is to perform analysis on the abstract model to
identify states that contribute to any witness/counter-example
for the property. For formulas starting with an E-type operator,
we look for all witnesses; while for formulas starting with an A-
type operator, we look for all counter-examples. For rest of this
discussion, assume that we are interested in finding witnesses –
the same discussion holds for finding counter-examples.

The pseudo-code for our algorithm, called mc_for_sim
(model checking for simulation), is shown in Figure 4. Its inputs
are an abstract model m, which is an upper-bound approximation
of the concrete design d, and a CTL formula f in negation
normal form, i.e. where all negations appear only at the atomic
level.

Figure 3: Example CDFG and Property

The main idea is to use model checking over m to pre-compute a
set of abstract states which are likely to constitute witnesses, and
to use this set for guidance during simulation over d, in order to
demonstrate a concrete witness. In particular, we target over-
approximate sets of satisfying states during model checking, so
that we can search through an over-approximate set of witnesses
during simulation.

The mc_for_sim algorithm works recursively in the standard
bottom-up manner over the CTL formula f (represented in the
form of a parse tree, where left / right subformulas of f are
denoted leftChild(f)/rightChild(f), respectively). It
associates sets of abstract states called upper/negative
with subformulas of f (and their negations when needed).

mc_for_sim(model m, ctlFormula f) {
 ctlFormula f1, f2, negf;
 states upper,upper1,upper2=NULL,negative=NULL;
 // handle subformulas recursively
 if (f1 = leftChild(f)) {
 mc_for_sim(m,f1);
 upper1 = get_upper(f1);

 }
 if (f2 = rightChild(f)) {
 mc_for_sim(m,f2));
 upper2 = get_upper(f2);
 }
 // case analysis on operator at this level
 switch(type(f)) {
 case TRUE: upper = ALL; break;
 case FALSE: upper = NULL; break;
 case ATOMIC: upper = mc_atomic(m,f); break;
 case NOT: upper = complement(upper1); break;
 case AND: upper = and(upper1,upper2); break;
 case OR: upper = or(upper1,upper2); break;
 case EX: case EF: case EU: case EG:
 upper = mc_etype(upper1,upper2); break;
 default: // A-type operators left
 switch(type(f)) {
 case AX: upper = mc_ex(upper1); break;
 case AF: upper = mc_ef(upper1); break;
 case AU: upper = mc_eu(upper1,upper2); break;
 case AG: upper = mc_eg(upper1); break;
 }
 // compute negative sets also
 negf = negate(f);
 mc_for_sim(m,negf);
 negative = and(upper,get_upper(negf)); break;
 }
 // associate the sets with f
 associate(f, upper, negative);
}

Figure 4: Pseudo-code for mc_for_sim Algorithm

Theorem 1: The set of abstract states upper associated with
each subformula by the mc_for_sim algorithm corresponds
to an over-approximation of the set of concrete states that satisfy
the subformula.

Proof: The proof is by induction on the structure of the formula.
Note that atomic propositions (and constants) are computed
exactly, in the standard manner, providing the basis of the
induction. Furthermore, since only atomic-level negations are
allowed in a negation normal form, they too are computed
exactly. Since other Boolean operators are monotonic, they
preserve over-approximations of the subformulas. For
subformulas beginning with an E-type operator (EX, EF, EU,
EG), standard model checking over m (function mc_etype)
ensures that the result is an over-approximation over d, since m
has more paths than d. However, for subformulas beginning
with an A-type operator (AX, AF, AU, AG), the situation is
somewhat different. Since m may have many false paths with
respect to d, standard model checking over m may result in an
under-approximation over d. Therefore, we compute upper by
considering the corresponding E-type operator, which is
guaranteed to result in an over-approximation. v

The over-approximation for the A-type operators is rather
coarse. To mitigate this effect, we also compute a set of abstract
states called negative as shown in Figure 4. It corresponds
to the intersection of set upper with a set which is recursively
computed for the negation of the A-type subformula. Though
not shown in the pseudo-code, an actual implementation of the
above algorithm keeps track of the visited nodes in the parse
trees of various CTL subformulas, such that each node is
explored at most once. Therefore, its overall complexity is the
same as that of standard symbolic model checking.

ST 6ST 3ST 2

ST 0

ST 1

ST 4

ST 5

ST 7

G = 0 L = 0
D = 0 K = 0
if (A > 2)

D = 1
H = 0
M = 0

If (G == 1)
L = 1

If (K > 5)
H = 1 + F

H = 2

B
C

A

i != 1

i == 1

j == 1

i == 0

j == 0

i == 1

Property
EF (M >= 6)

F

i == 2

If (D)
K = B + C

ST 8

H = H + 1

M = H + 3

 4

2.2.1 Conclusive Proof Due to Model Checking
It is possible that model checking on m itself provides a
conclusive result for d in some cases. Pseudo-code for
performing this check is shown in Figure 5, where the
mc_for_sim algorithm is used to compute the sets upper /
negative for the top-level formula.

check_mc (model m, ctlFormula f)
{
 mc_for_sim(m, f);
 if (initState(m) � get_upper(f))
 result = PROPERTY_FALSE;
 else if (A-type(f) &&

 initState(m) � get_negative(f))
 result = PROPERTY_TRUE;
 else
 result = INCONCLUSIVE;
 return result;
}

Figure 5: Pseudo-code for check_mc Algorithm

Theorem 2: The result computed by the check_mc algorithm
is correct in all cases.

Proof: From Theorem 1, set upper corresponds to an over-
approximate set of satisfying states. Therefore, if the initial state
does not belong to this set, clearly the property is false. Now,
assume that the initial state does belong to set upper. Recall
that for an A-type operator, we also compute the set
negative. If the initial state does not belong to set
negative, then there does not exist any path in m starting
from the initial state that shows negation of the property.
Therefore, it is guaranteed that no such concrete path exists in d,
i.e. the property is true. In all other cases, the result from model
checking is inconclusive. v

2.2.2 Partial Proof Due to Model Checking
When the result due to model checking is inconclusive, we fall
back upon simulation for generating witnesses/counter-examples
for the property. For full CTL, we need to handle the alternation
between E and A quantifiers. In general, handling of “all” paths
is natural for model checking, but is unsuitable for simulation.
The purpose of computing negative sets for A-type
subformulas is to avoid a proof by simulation where possible.
Note that an abstract state s which belongs to upper, but not to
negative, is a very desirable state to target as a witness for
the A-type subformula. This is because the proof of the A-type
subformula is complete for state s due to model checking itself
(as described in the proof of Theorem 2). Therefore, as soon as
state s is reached during simulation, there is no further proof
obligation. On the other hand, if a state t belongs to negative
also, our task during simulation is to check whether an abstract
counter-example for the A-type subformula actually corresponds
to a concrete path. If a concrete counter-example is found, state t
is not a true witness state, and can be eliminated from further
consideration. This observation is used in the witness generation
algorithm described in Section 3.

2.2.3 Related Work
Our abstraction technique and mc_for_sim algorithm are
similar to other works in the area of abstraction and approximate

model checking [4, 11, 12, 13]. Like many of these efforts, we
also use an “existential” abstraction which preserves the atomic
propositions, and also allows us to compute over-
approximations of satisfying states (sets upper). Furthermore,
our computation of the negative sets for the A-type
subformulas is similar to computing under-approximations. (In
principle, we can compute these for all subformulas.) However,
our purpose for computing these approximations is not only to
use these sets for conservative verification for CTL (or its
existential/universal fragments), or even for iterative refinement.
Ultimately, these sets are used to provide guidance during
simulation for designs where it may not be possible to perform
any symbolic analysis at all. Therefore, unlike existing
techniques, our mc_for_sim algorithm specifically avoids
employing existential/universal quantification over the state
space of concrete variables. Instead, we use much coarser
approximations � the E-type operators in place of the A-type
operators. Indeed, it would be appropriate to use any known
technique for obtaining the tightest approximations. Our
additional contribution is also in showing how these sets can be
used to demonstrate concrete witnesses in the context of
simulation.

2.3 Pruning of the Abstract Model
The next step is to prune the abstract model by removing states
that do not contribute to any witness or counter-example. We
first mark the required states, and remove any states that are left
unmarked, by replacing them with a special “sink” state. (In
order to allow repeated use of model checking on the pruned
model, every transition out of “sink” state leads back to itself,
and all atomic propositions in the CTL property are assumed to
be false in the “sink” state.) The pseudo-code for our state
marking algorithm is shown in Figure 6.

mark_witness_top(model m, ctlFormula f)
{
 reachable = compute_reachable(m,initState(m));
 switch(type(f)){
 case AX: case AF: case AU: case AG:
 witness_top= and(get_negative(f),reachable);
 break;
 default:
 witness_top= and(get_upper(f),reachable);
 }
 mark_states(witness_top);
 mark_witness_rec(m, f, witness_top);
}

mark_witness rec(model m, ctlFormula f, states
careSet)
{
 states witness, negWitness, subWitness;
 // associate witness set for f
 witness = and(get_upper(f),careSet);
 associate_witness(f,witness);
 // recursive calls with modified careSets
 switch(type(f)) {
 case TRUE:case FALSE:case ATOMIC:case NOT:
 break;
 case AND: case OR:
 case EF: case EU: case EG:
 mark_witness _rec(m,leftChild(f),witness);
 if (rightChild(f) != NULL)
 mark_witness_rec(m,rightChild(f),witness);
 break;

 5

 case EX:
 subWitness = compute_image(m, witness);
 // mark additional states
 mark_states(subWitness);
 mark_witness_rec(m,leftChild(f),subWitness);
 break;
 case AX: case AF: case AU: case AG:
 negWitness = and(get_negative(f),careSet);
 associate_neg_witness(f,negWitness);
 mark_witness_rec(m,negate(f),negWitness);
 break;
 }
}

Figure 6: Pseudo-code for State Marking Algorithm

Theorem 3: The proposed state marking algorithm is
conservative, i.e. it will not miss any state needed to
demonstrate a witness or counter-example for the property of
interest.

Proof: Note that we are interested in states that not only start a
witness/counter-example, but demonstrate it fully. The crucial
observation is that for any CTL formula f, except of type
EX/AX, such states also satisfy f. For atomic propositions and
Boolean operators, this is trivially true since there are no paths
to consider. For type EF/EU/EG, the witnesses are paths where
each state satisfies f. Similarly, for type AF/AU/AG, counter-
examples are paths where each state satisfies !f. Indeed, it is
only for EX/AX, that we need to mark additional states, i.e.
those that satisfy the subformula of f. Therefore, it would be
enough to mark satisfying states once at the top, followed by
additional marking only in the EX/AX case.

In our method, sets upper and negative correspond to
over-approximations of concrete satisfying states. Furthermore,
for A-type subformulas, we need to focus only on states that
belong to both sets, in order to search for a concrete counter-
example during simulation. Recall that for states that belong to
upper but not to negative, the proof is complete due to
model checking itself. Therefore, our marking algorithm uses
the sets upper/negative to associate sets called
witness/neg_witness with each required CTL
subformula. As an additional optimization, since the former sets
are computed bottom-up, we use the latter sets top-down, as
care-sets for the subformulas. At the topmost level, the care-set
consists of the set of states reachable from the initial state. Note
that the special handling of EX-type subformulas requires an
extra image computation to exploit the care-set. Since the sets
upper/negative are over-approximations, and the care-sets
preserve reachability from the initial state, our state marking
algorithm is conservative. v

Returning to our example, for the abstract model of Figure 4, the
states ST3 and ST6 remain unmarked after performing the above
analysis. This is because there is no path through these states
that can demonstrate a witness for the property EF (M>=6).
Therefore they are pruned, and replaced by the special “sink”

state.

2.4 Refinement of the Abstract Model
The amount of detail that can be allowed in the abstract model
depends on the level of complexity that can be handled by the
model checker. However, once pruning is done resulting in a

smaller model, it may be possible to refine the model and
perform the analysis again. Recall that our initial abstract model
was obtained by abstracting away many of the datapath
variables as pseudo-primary inputs. We perform refinement by
selectively bringing back some of these datapath variables into
the state space. Note that pruning reduces the size of the model,
while refinement increases it. The iterative pruning and
refinement allows us to model much more of the state space in
the final Witness Graph than would be possible otherwise.

For our example, we may choose to add datapath variables D
and K as state, after which model checking and pruning are
performed again. If we don’t wish to add any more datapath
state at this point, we obtain the final Witness Graph as shown in
Figure 7.

Figure 7: Final Witness Graph

Again, our techniques for iterative refinement are similar to
those used by other researchers, where lack of a conclusive
result from the abstract model [11, 12], or some counter-
examples on the abstract model [4, 10] are used to guide further
refinement. In contrast, we focus on all witnesses/counter-
examples during model checking. Furthermore, we use the
associated sets for marking states in order to prune the abstract
model before attempting further refinement. To the best of our
knowledge, existing techniques do not perform such model
pruning. This is largely because pruning of states does not
necessarily lead to compact BDD representations used for
symbolic manipulation. However, our goal is not only to obtain
a conclusive result by model checking where possible, but also
to reduce the gap between the abstraction levels of the final
Witness Graph and the concrete design to be simulated. Since
the final simulation is performed on explicit states, rather than
symbolic sets, such pruning may be very useful in practice.

2.5 Witness Graph as a Coverage Metric
Apart from using a Witness Graph for generating a testbench, it
can also be used as a coverage metric for evaluating the
effectiveness of a given set of simulation vectors. Most available
metrics are based either on code (line/branch/toggle) coverage of
the design description, or on extraction of FSM models with the
associated state/transition coverage [7]. In contrast, our metric is
obtained by analysis of the design with respect to the given
property. The better the coverage of a given set of simulation
vectors over the states/transitions/paths of a complete Witness

ST 0

ST 1

ST 5

ST 7

H = H + 1

M = H + 3

F

Property
EF (M >= 6)

ST 8

SINK
i != 0 || A<=2

ST 2
D==1

ST 4
K>5

K = B + C

H = 1 + F

B

j == 0 && B+C >5

j == 1

D = 0
if (A > 2)
D = 1

H = 0
M = 0

A

Ci == 0 && A>2

j != 0 || B+C <= 5

 6

Graph, the more likely it is that simulation will succeed in
proving/disproving the property. Note that a high coverage still
does not guarantee correctness in the design – it only provides a
metric to assess the quality of simulation. Recently, there has
also been work on specification coverage metrics, which focus
on how much of the design space is covered by multiple
properties [6]. We can potentially use these techniques to extend
our per-property analysis to coverage of overall correctness.

3. Testbench Design for Witness Generation
The Witness Graph is used to guide the testbench in searching
for witnesses or counter-examples during simulation of the
concrete design. The underlying skeleton of the testbench is a
backtracking search algorithm, described in detail next.

3.1 Backtracking Search Algorithm
The pseudo-code for our search algorithm, called
search_witness, is shown in Figure 8. It returns SUCCESS
if it succeeds in finding a concrete witness starting from a given
state s, in a given concrete design d, for a given CTL formula f;
and FAILURE otherwise. It uses the witness/
neg_witness sets which implicitly constitute the Witness
Graph. In the pseudo-code, abs(s) denotes the abstract state
corresponding to a concrete state s.

search_witness(design d, ctlFormula f, state s)
{
 states w, w1;
 int result, neg_result;
 w = get_witness(f);
 w1 = get_witness(leftChild(f));
 // case analysis on operator at this level
 switch(type(f)) {
 case TRUE: result= SUCCESS; break;
 case FALSE: result= FAILURE; break;
 case ATOMIC: result= satisfies(s,f); break;
 case NOT: result=satisfies(s,negate(f));break;
 case AND:

result= search_witness(d,leftChild(f),s);
if (result==SUCCESS)

 result= search_witness(d,rightChild(f),s);
break;

 case OR:

result= search_witness(d,leftChild(f),s);
if (result==FAILURE)

 result= search_witness(d,rightChild(f),s);
 break;
 case EX:
 foreach state t, abs(t)� w1, {
 if (exists_transition(s,t)){

 result=search_witness(d,leftChild(f),t);
 if (result==SUCCESS) break;}}
 break;
 case EF:
 foreach state t, abs(t)� w1, {
 if (path = find_a_path(s,t)){

 result= search_witness(d,leftChild(f),t);
 if (result==SUCCESS) break; }}
 break;
 case EU:

 result= search_witness(d,rightChild(f),s);
 if (result==FAILURE){
 mark(s,f);

 result= search_witness(d,leftChild(f),s);
 if (result==SUCCESS)
 foreach unmarked state t, abs(t)� w {
 if (exists_transition(s,t)){

 result= search_witness(d,f,t);
 if (result==SUCCESS) break;}}}
 break;
 case EG:

 result= search_witness(d,leftChild(f),s);
 if (result==SUCCESS){
 mark(s,f);
 if (exists_transition_to_marked(s,f))
 result= SUCCESS;
 else
 foreach unmarked state t, abs(t)� w {
 if (exists_transition(s,t)){

 result= search_witness(d,f,t);
 if (result==SUCCESS) break; }}}
 break;
 case AX: case AF: case AU: case AG:
 if (abs(s) � get_neg_witness(f))
 result= SUCCESS;
 else {
 // generate counter-example for !f

 neg_result=search_witness(d,negate(f),s);
 result = (neg_result == SUCCESS) ?
 FAILURE : SUCCESS; }
 }
 return result;
}

Figure 8: Pseudo-code for search_witness Algorithm

Theorem 4: The search_witness algorithm is complete, i.e. it
will find a concrete witness or counter-example if it exists.

Proof: Given the association of witness/neg_witness
sets with various CTL subformulas, the handling of atomic
propositions, Boolean operators, and the E-type temporal
operators is according to their standard characterizations. The
handling of the A-type operators reflects our earlier remarks – if
abs(s) does not belong to set negative, the proof of the A-
type subformula is complete due to model checking itself, and
we can return with SUCCESS. Otherwise, we look for a counter-
example for f starting from s. If such a counter-example is
found, i.e. neg_result==SUCCESS, then we return
FAILURE; and vice versa. Recall from the proof of Theorem 3
that the witness/neg_witness sets correspond to over-
approximations of concrete witness states reachable from the
initial state. Therefore, a search based on these sets is guaranteed
to be complete. v

3.2 Prioritizing Search for Witnesses
Though the search_witness algorithm is complete in
principle, it is impractical to search through all possible concrete
states in the foreach loops of the pseudo-code. Typically, the
search would be limited by available resources such as space
and time. In practice, any prior information about the existence
of transitions/paths between two given concrete states can be
used to prioritize the search. The designer may help in assigning
priorities by providing hints, i.e. specifying particular control
states or transitions as intermediate targets. Trace data from
previous simulation runs which may identify “easy to reach”
states can also be incorporated. Other schemes, e.g. [9, 16],

 7

based on combination of distance to targets, transition
probabilities, static analysis, hints etc. can also be used.

Basically, two questions must be answered before applying the
next simulation vector:

1. What should be the next state?
2. What inputs are required to reach that state?

To choose the next state in our approach, the fixpoint
approximations in the symbolic computation of a CTL sub-
formula, called onion rings, are used to determine the shortest
distance to target. The Witness Graph for each sub formula is
now stored as a collection of BDDs, where each BDD represents
the abstract state set with a certain distance tag for that
subformula. These onion rings are restricted to the reachable
state sets in the abstract model. In choosing the next abstract
state, the testbench prioritizes states with lower distance tags.

Once the desired next abstract state is determined, the input
must be chosen to enable such a transition from the current
concrete state. Our approach works by generating a candidate
input vector and simulating it on the entire design. If the abstract
part of the new concrete state matches the desired next abstract
state, this candidate is chosen, else a new candidate is attempted.
A candidate input vector may be chosen randomly or by solving
circuit constraints using BDD / SAT / LP techniques.

In our approach, candidate input vectors are generated using
BDDs to solve circuit constraints in the abstract model. Since a
symbolic analysis of the abstract model was performed during
Witness Graph generation, the required BDDs are tractable. We
use BDDs to combine into one step the choice of the next state
and the input vector, by solving for an input vector that takes the
abstract model from the current state to any state in the next
desired onion ring. It is possible that no input vector can be
obtained in this manner even after many candidates have been
tried. In such a case, a new desired next state must be chosen. It
is also possible that a transition to the desired onion ring with a
smaller tag cannot be obtained after many next states have been
attempted as targets. In this case, backtracking must be
performed to return to an older state along the path.

3.3 Testbench and Simulation Setup
An outline of the simulation setup is shown in Figure 9. The
conventional simulator in the setup could be based on Verilog,
VHDL or a C-based HDL. The testbench code is generated
automatically after completing symbolic analysis on the abstract
model which generates the annotated Witness Graph. The Main
Loop repeatedly queries the Vector Generator, which uses the
Witness Graph and circuit constraint BDDs to identify the
desired next states and input vector candidates to apply.

The entire testbench generation process is completely automatic
and transparent to the user. The Main Loop is generated in the
HDL native to the simulator while the Vector Generator is
written in C. The two communicate through the PLI or other
API provided by the simulator. The Witness Graph and circuit
constraint BDDs are stored in compact binary file format to be
read by the Vector Generator. We currently have
implementations of this setup for a standard Verilog HDL
simulator, and also for an in-house C-based-HDL simulator.

Figure 9: Simulation Setup

During simulation, the testbench outputs either a viewable VCD
(Value Change Dump) file with the waveform corresponding to
the generated witness, or a report that the witness could not be
generated and corresponding partial waveforms up to the states
that were reached.

4. Case Study: Memory Interface Design

4.1 Design Details
We have experimented with the proposed automatic property-
specific testbench generation approach on an in-house memory
interface design (MIF). The MIF design implements a complex
arbitration scheme between multiple clients wishing to access
the memory resource. The algorithm starts with fixed priorities
for the clients, but dynamically adjusts them based on the state
of the client, DMA requests, and interrupts. The MIF design is
fairly complex, with a Verilog implementation consisting of 516
flip-flops, 1035 primary inputs, and 15989 literals. A
reachability analysis of the entire MIF design appears to be
infeasible with current BDD-based or any other technology.

As a result of the complex arbitration, it is very hard to
manually, or through explicit enumeration of the state space,
visualize the various scenarios under which a client may or may
not be granted access. Arising out of this difficulty, the user
highlighted to us a property he wished to check for this design in
which he desired to determine if one of the clients, the CPU,
would ever be required to wait for more than 5 cycles to be
granted access to the memory. This behavior is described by the
CTL property EF(cpu_wait_counter > 5), where the signal
cpu_wait_counter counts the number of cycles that the CPU has
to wait after making a request. Basically, we would like to find a
witness input sequence in which the CPU has not been granted
access within 5 cycles after requesting it.

4.2 Experimental Setup
Our prototype implementation is based on the publicly available
symbolic model checker called VIS [1]. Since the Verilog
description of the MIF design could not be directly read into
VIS (due to limitations of its Verilog front-end), we started with
a high-level description of the design written in a C-like HDL,
which was used as input to an in-house high-level synthesis tool
called Cyber [14]. An intermediate representation during this
flow provides a CDFG representation of the design. This
representation is used to automatically generate an FSM model
(in VIS’s blif-mv format), which is used for subsequent model

Witness

Main Loop

Vector
Generator

Testbench Complete
Design

Conventional Simulator
Vector

State

Graph &
Circuit
Constraints

 8

checking. We also automatically translated an extended CTL
syntax which allows arithmetic operators in atomic predicates,
to VIS’s CTL syntax without arithmetic operators.

4.3 Results
Verification of the given correctness property with the VIS
model checker was successful, but took 41 hours of CPU time
on a 150 MHz Sun UltraSparc workstation with 512 MB of
RAM. To the credit of our property-specific testbench
generation approach, consisting of analysis of an abstract model
followed by intelligent testbench generation, we were able to
perform the same check in about 1 hour, by generating and
simulating an input sequence which showed that the CPU had to
wait for 6 cycles after making a request.

The details of our abstract model analysis are as follows. We
first used explicit traversal over the control states to determine
the cone of influence, and to automatically derive an abstract
model. For this design, flip-flops at levels greater than a
dependency level of 3 from atomic propositions were abstracted
by making them free inputs. This led to a reduction in the
number of flip-flops to 167. The entire abstraction process is
very fast, and took less than 1 minute. Next, we performed
model checking on this abstract model including reachability
analysis. Combined with generation of the Witness Graph
information in BDD form, it took 3779 seconds.

For testbench generation, we experimented with both the
Verilog simulator (Modeltech) and the in-house C-based HDL
simulator. The entire testbench source code (written in
Verilog+C for the former, and C++ for the latter) was
automatically generated from the Witness Graph, and took
negligible time. The final simulation, which showed the actual
witness on the complete MIF design, was also very fast, and
took less than 1 minute in each case.

A comparison between the performance of VIS on the original
model, which required 41 hours, and our testbench generation
prototype on the abstract model, which required about 1 hour,
highlights the speed advantage to be gained by our approach.
We hope to demonstrate in the near future that even coarser
abstractions would have sufficed for this example.

We believe that this experience with the verification of the CTL
property on a real-life example highlights the viability of our
approach, and the potential for its incorporation in testbench
generation flows used in the industry.

5. Conclusions
We have presented algorithms for generating a Witness Graph,
which captures all witnesses or counter-examples in an abstract
model of a design with respect to a given correctness property.
These algorithms iteratively employ abstraction, approximate
model checking, pruning, and refinement, with many novel
features in comparison to existing techniques. We have also
presented a backtracking search algorithm that uses the Witness
Graph for finding a concrete witness or counter-example during
simulation. Based on these algorithms, we have developed an
automatic intelligent testbench generation framework
compatible with generic HDL-based simulation environments.
We have been able to demonstrate on a real in-house LSI design

that such an approach can lead to significant reduction in the
time required to analyze the design for a CTL property and find
a witness.

References

[1] R. K. Brayton et al. “VIS: A system for verification and

synthesis”, In Proceedings of CAV, volume 1102 of LNCS,
pages 428-432, June 1996.

[2] R. E. Bryant, “Graph-based algorithms for Boolean function
manipulation”, IEEE Transactions on Computers, C-
35(8):677-691, Aug. 1986.

[3] E. M. Clarke, O. Grumberg, and D. Peled, “Model
Checking”, The MIT Press, 1999.

[4] E. M. Clarke, O. Grumberg, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement”, In
Proceedings of CAV, volume 1855 of LNCS, pages 154-169,
2000.

[5] M. Ganai, A. Aziz, and A. Kuehlmann, “Augmenting
simulation with symbolic algorithms”, In Proceedings of
DAC , June 1999.

[6] Y. Hoskote, T. Kam, P.-H. Ho, and X. Zhao, “Coverage
estimation for symbolic model checking”, In Proceedings
of DAC, pages 300-305, June 1999.

[7] Y. Hoskote, D. Moundanos, and J. A. Abraham, “Automatic
extraction of the control flow machine and application to
evaluating coverage of verification vectors”, In
Proceedings of ICCD, pages 532-537, Oct. 1995.

[8] C.-Y. Huang and K.-T. Cheng, “Assertion checking by
combined word-level ATPG and modular arithmetic
constraint-solving techniques”, In Proceedings of DAC,
pages 118-123, 2000.

[9] A. Kuehlmann, K. McMillan, and R. K. Brayton,
“Probabilistic state space search”, In Proceedings of
ICCAD, 1999.

[10] R. P. Kurshan, Computer-Aided Verification of
Coordinating Processes: The Automata-Theoretic
Approach, Princeton University Press, 1995.

[11] W. Lee, A. Pardo, J. Jang, G. Hachtel, and F. Somenzi,
“Tearing based abstraction for CTL model checking”, In
Proceedings of ICCAD, pages 76-81, Nov. 1996.

[12] J. Lind-Nielsen and H. R. Anderson, “Stepwise CTL model
checking of state/event systems”, In Proceedings of CAV,
volume 1633 of LNCS, pages 316-327, 1999.

[13] D. E. Long, Model Checking, Abstraction and Modular
Verification, PhD thesis, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, July 1993.

[14] Verisity Design, Inc. Specman Elite,
http://www.verisity.com/html/specmanelite.html.

[15] K. Wakabayashi, “C-based Synthesis Experiences with a
Behavior Synthesizer “Cyber” ”, In Proceedings of DATE,
pages 390-393, 1999.

[16] C. Han Yang and David L. Dill, “Validation with guided
search of the state space”, In Proceedings of DAC, June
1998.

[17] J. Yuan, J. Shen, J. Abraham, and A. Aziz, “On combining
formal and informal verification”, In Proceedings of
CAV, volume 1254 of LNCS, pages 376-387, June 1997.

	Main
	ASP02
	Front Matter
	Table of Contents
	Session Index
	Author Index

