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Abstract

A cost-efficient realisation of an advanced multimedia
system requires high-level memory optimisations to deal
with the dominant memory cost. This typically results in
more efficient code for both power and system bus load.
However; also significant performance improvement can be
achieved when carefully optimising the address functional-
ity. This paper shows how the nature of this addressing code
and the related control flow allows to transform the complex
index, iterator and condition expressions into efficient arith-
metic. We apply our ADdress OPTimisation (ADOPT) de-
sign technology to a low power memory optimised MPEG-4
decoder. When mapped on popular programmable multi-
media processor architectures, we obtain a factor of 2 in
performance gain.

1. Introduction

New multimedia systems based on novel compression
standards typically use a large amount of data storage and
transfers. However, in an embedded system, this memory
space and bus load consumes most of the energy (between
50 and 80%) [8]. Therefore, optimising the global memory
accesses of an application in a so-called Data Transfer and
Storage Exploration (DTSE) is a crucial task for achieving
effective low power and low cost realisations [4].

DTSE has a positive effect on both energy and system
bus performance, largely independent of the platform where
the application is being mapped on. Some steps of the
DTSE methodology introduce new addressing code, con-
taining more complex (non-linear) arithmetic than the initial
one. This type of functionality is a bottleneck for the linear
nature of all commercial Address Calculation Unit (ACU)
architectures. Moreover, pointer level specific address opti-
misation techniques, like those found in conventional com-
pilers [1] or state-of-the-art automated address optimisation

approaches [13, 14, 6, 17, 18] are ineffective for non-linear
indexing.

Our address optimisation methodology, implemented in
the new ADOPT environment [9, 7], efficiently removes
this bottleneck. The techniques are based on the use of
source code level transformations, largely independent of
the targeted instruction-set architecture. These optimisa-
tions also need to be complemented by more architecture
specific ones. Using these techniques, the addressing code
and related control flow can be optimised at the global
scope, resulting in a relevant gain in execution cycles.

This paper focuses on the optimisation of the addressing
code and related control flow of a MPEG-4 video decoder
(described in Section 2). As the application is memory opti-
mised [5], the gain in execution cycles due to the optimised
addressing arithmetic is not hidden by data transfer over-
head. Section 3 illustrates the systematic application of our
high-level address optimisation technique on the MPEG-4
video decoder. When mapped on a Pentium III and TriMe-
dia TM 1000 platform, these optimisations lead to an overall
performance gain as reported in Section 4.

The contributions of this paper are the relevant perfor-
mance gain for a memory optimised MPEG-4 video de-
coder [5], running on popular multimedia processors and
the systematic code transformation methodology aiming for
performance gain in both address related arithmetic and
control flow. Such systematic approach allows to increase
design productivity when compared to more conventional
(ad-hoc”) code optimisation approaches.

2. Application driver description and analysis

The MPEG-4 (natural visual) video decoder [15] is a
block-based algorithm exploiting temporal and spatial re-
dundancy in subsequent frames. A MPEG-4 Visual Ob-
ject Plane (VOP) is a time instance of a visual object (i.e.
frame). A decompressed VOP is represented as a group of
MacroBlocks (MBs). Each MB contains six blocks of 8 x



8 pixels: 4 luminance (Y), 1 chrominance red (Cr) and 1
chrominance blue (Cb) blocks. Figure 1 shows a simple
profile decoder, supporting rectangular intra-coded (I-VOP)
and predictive coded (P-VOP) VOPs. An I-VOP contains
only independent texture information, decoded separately
by inverse quantisation and IDCT scheme. A P-VOP is
coded using motion compensated prediction from the pre-
vious P or I VOP. Reconstructing a P-VOP implies adding a
motion compensated VOP and a texture decoded error VOP
which is a computationally and memory intensive opera-
tion [5, 12].
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Figure 1. MPEG-4 simple profile natural visual
decoding [5]
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Due to flexibility requirements of the MPEG-4 standard,
an instruction-set processor architecture is preferred over a
fully custom one [2]. Meeting real-time constraints in such
architectures, requires an optimal mapping of the applica-
tion on the target architecture. At IMEC, a considerable ef-
fort has been spent on optimising the MPEG-4 decoder code
at the C level for memory usage [5]. Nevertheless, impor-
tant optimisation techniques oriented to e.g. optimise the
addressing arithmetic of this application are not explored
yet and are the focus of this paper.

To bound the exploration space and select appropriate
candidates for our methodology (see Section 3), the func-
tions with an important cycle-count are targeted by measur-
ing the time of the function and its descendants. It is neces-
sary to focus on both characteristics because functions can
be either time consuming or often called. The analysis is
performed on Pentium IIT using the Rational Quantify envi-
ronment [11].

The identified application core loops over two condi-
tional branches as shown in Figure 2. After applying mem-
ory related transformations, the “if” branch of the applica-
tion core takes about a 65% of execution time, where the
“else” branch takes only about a 15% of execution time for
a test frame sequence of average complexity.

Four functions are selected as the most time consuming
of our application (see Figure 2): the IDCT computation
called by the GetInterMBblockdata function, the
bitstream parsing called by many underlying functions, the
ACDC reconstruction called by the Get IntraMBblock-
data function and the motion compensation (Motion-

DecodeVop ()
loop
if (expr) { // This branch takes a 65% of
// the total number of cycles.
if (comp < 4)
MotionCompensateY () ;
else if (comp == 4)
MotionCompensateUV () ;
else /*comp == 5%/
MotionCompensateUV () ;
GetInterMBblockdata() ;

StoreData () ;
}
else { // This branch takes a 15% of
// the total number of cycles.
GetIntraMBblockdatal() ;
StoreData () ;
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Figure 2. (a) lllustration of MPEG-4 video de-
coder core; (b) Breakdown in execution time
for Pentium Ill @500MHz

CompensateY+UV functions and their descendants).

3. High-level address and control flow optimi-
sation of the MPEG-4 video decoder

Our high-level address optimisation script comprises two
major steps, relatively independent of the processor archi-
tecture. Both are source level code transformations. The
first stage reduces the amount of address arithmetic related
operations as well as the number of times these are executed
(i.e. it reduces the redundant address arithmetic present in
the code) [9]. During the second stage, the strength or com-
plexity of the address arithmetic is reduced by transform-
ing the complex operations into simpler ones for execution
while preserving the functionality [7].

This section describes our optimisation script for the
GetIntraMBblockdata function and its descendants.
Similar optimisation steps are applied to the GetInter-
MBblockdata function and its descendants.

Before applying the different address optimisation steps,
all multi-dimensional arrays need to be single-dimensional.
During this step, a benefit is obtained in execution time



by avoiding a three-level memory indirection dependency
chain for the fetched data. Finally, the address code is ex-
tracted.

3.1. Exposing the opportunities for address arith-
metic optimisation by means of control flow
transformations

Most multimedia applications are typically structured in
a similar program hierarchy: functions containing loops
with conditionals inside. As this hierarchy hides the op-
portunities for program transformations, especially for the
address related code, it is crucial to increase the initially
available search space in the code for arithmetic optimi-
sations (arithmetic cost minimisation, loop-invariant code
motion, etc.). The search space of the video decoder kernel
is increased at different places.

The addressing code containing arrays of constants
within the index expressions hides factorisation opportuni-
ties. For instance, Figure 3 illustrates one case where the
presence of the Xtab, Ytab, Ztab, Xpos and Ypos ar-
rays of constant values block the possibilities for finding
common factors along the different loop iterations.

int *DC_store;

DC_store = (int*)malloc (LB*6*15*sizeof (int)) ;

int Xtab[e6] = 1, 0, 3, 2, 4, 5 };

int Ytab[6] = 2, 3, 0, 1, 4, 5 ;;

int Ztabl[e] = 3, 2,1, 0, 4, 5 ;

int Xposl[6] = {-1, 0,-1, 0,-1,-1 };

int Yposl[e] = {-1,-1, 0, 0,-1,-1 };

loop

{
block A = comp == 1 || comp == 3 ?
DC_store[0 + 15*Xtab[comp] + 90* (((mb_num/MB)*MB
+ (mb_num$MB + Xpos[compl))S%LB)] : mg*8;
block B = comp == 3 ? DC_store[0 + 15*Ztab[comp]
+ 90* (((mb_num/MB + Ypos [comp]) *MB
+ (mb_num$MB + Xpos[compl))S%LB)] : mg*8;
block_C = comp == 2 || comp == 3 ? DC_storel[0
+ 15*Ytab[comp] + 90* (((mb_num/MB + Ypos [comp])*MB
+ mb_num3%MB) $LB)] : mg*8;

mb_num++;

Figure 3. Piece of code from the MPEG-4
video decoder core with conditionals limit-
ing the search space for address arithmetic
optimisation.

In order to substitute the elements of the arrays by their
actual values, it is necessary to “unfold” the conditions de-
pending on the variables indexing these, i.e. the induction
variable comp. The focus is first on the conditional struc-
ture present in the body of the loop. In the example of Fig-
ure 3, several redundant condition tests are present, e.g. for
comp=3, all three condition expressions are tested and exe-
cuted. Such condition structure of the code causes a control
flow overhead and limits the search space (for propagation
of constants contained in arrays). To avoid this, the control

flow is organised to test the comp value only once and to
collect the bodies for the same comp value together (see
Figure 4). In the next step, the propagation of constants
of arrays for Xtab, Ytab, Ztab, Xpos and Ypos is per-
formed.

int Xtabl[6] = { 1, 0, 3, 2, 4, 5 };
int Ytabl[6] = 2, 3, 0, 1, 4, 5 ;;
int Ztable6] = 3, 2,1, 0, 4, 5 };
int Xposl[6] = {-1, 0,-1, 0,-1,-1 };
int Ypos[6] = {-1,-1, 0, 0,-1,-1

loop

if (comp==1) {
block A = DC_store[0 + 15*Xtab[comp]
+ 90* (( (mb_num/MB) *MB
+ (mb_num$MB + Xpos [comp]))$LB)];
block B = block C = mg*8;

else if (comp==2) {
block A = block_B = mg*8;
block C = DC_store[0 + 15*Ytab [comp]
+ 90* (((mb_num/MB + Ypos [comp]) *MB
+ mb_num$MB) $LB) ] ;

}

else if (comp==3) {
block A = DC_store[0 + 15*Xtab[comp]
+ 90* (( (mb_num/MB) *MB
+ (mb_num%MB + Xpos [comp]))%LB)];
block B = DC_store[0 + 15*Ztab[comp]
+ 90* (((mb_num/MB + Ypos [comp] ) *MB
+ (mb_num%MB + Xpos [comp]))%LB)];
block C = DC_store[0 + 15*Ytab[comp]
+ 90* (((mb_num/MB + Ypos [comp] ) *MB

} + mb_num%MB) $LB) ] ;

else
block A = block_B = block C = mg*8;

mb_num++ ;

Figure 4. Piece of code from the MPEG-4
video decoder core with rewritten control-
flow aiming to increase the search space.

3.2. Removing redundancy in the address arith-
metic code

The address arithmetic code obtained after the address
extraction step is still characterised by complex address ex-
pressions as shown in Figure 4. During ADOPT’s Arith-
metic Cost Minimisation (ACM) step, the expressions can
be factorised and simplified by exploiting algebraic and
modulo transformations. The goal is to minimise the num-
ber of operation instances. For our application, this step in-
volves, among other classical optimisations, constant prop-
agation, dead code elimination and common sub-expression
elimination, all performed at the global scope. For other
applications, it is sometimes necessary to re-factorise the
initial arithmetic to expose the opportunities for such opti-
misations [7]. Before applying this step, it is important to
expose the search space for arithmetic exploration properly
(see Section 3.1).

After the propagation of the constants of arrays Xtab,
Ytab, Ztab, Xpos and Ypos, the different common
sub-expressions within the control-flow scopes are detected
and stored in variables (i.e. cse) as shown in Figure 5.



loop
if (comp==1) {
block A = DC_store[90* (mb_num3LB)] ;
block B = block_C = mg*8;

}

else if (comp==2) {

block A = block_B = mg*8;

block_C = DC_store[90* (mb_num$LB)] ;
else if (comp==3) {

cse = 90* (mb_num$LB) ;

block A = DC_store[30 + csel;

block B = DC_store[csel ;

block C = DC_store[l5 + csel;

else
block A = block B = block C = mg*8;

mb_num++;

}

Figure 5. lllustration of ADOPT’s ACM step in
the MPEG-4 video decoder

This step is complemented by an Aggressive Code Hoist-
ing (ACH) step aiming at removing unnecessary common
computations of sub-expressions. These are hoisted across
loops and overlapping control flow branches as high as pos-
sible in the loop and control flow hierarchy [9].

3.3. Levering the complexity of modulo address op-
erations

The last step, Non-linear Operator Strength Reduction
(NOSR), focuses on substituting the non-linear expressions
that generates piece-wise linear address sequences by a
combination of conditionals and induction variables. In our
example the expression mb_num%LB (see Figure 5) is one
of these cases, where mb_num is a loop iterator and LB is a
data dependent value. This expression can be replaced by
an induction variable p_mb_num that is conditionally reset
whenever it reaches the LB value (see Figure 6) [7]. Note
that although LB is data dependent, its value is defined at
the start of a loop and it remains constant during the whole
loop execution.

3.4. Matching the target instruction set ACU and
controller execution

Processor specific transformations are necessary to
match the addressing code to the targeted ACU instruction
set architecture. This stage contains both data (arithmetic)
and control-flow oriented transformation types. As the Pen-
tium processor is a highly pipelined architecture, control
flow transformations aiming at the reduction of the amount
of branch predictions are very important.

The MPEG-4 video decoder has a condition, with large
corresponding branches in terms of instructions. It is con-
tained in the main loop of the video decoder kernel (see
Figure 2, Figure 7a). As the condition expression is inde-
pendent on the loop (always the same test is done over each
loop iteration), it is possible to push the loop down across

p_nb num = 0;
loop

if (p_nb_num>=LB)
p_nb_num-=LB;

block_A DC_store [90*p_nb_num] ;

if (comp==1) {
block_B = block_C = mg<<3;

else if (comp==2) ({
block A = block B = mg<<3;
block_C = DC_store[90*p_nb_num] ;
else if (comp==3) {
cse = 90*p nb num;
block_A = DC_store[30 + csel;
block B = DC_store([cse] ;
block_C = DC_store[l5 + csel;

}
else
block A = block B = block C = mg<<3;

p_mb_num++;

Figure 6. lllustration of ADOPT’s NOSR
(piece-wise linear) step in the MPEG-4 video
decoder

conditional branches without violating data dependencies.
The goal is to perform the iterations of the loop inside the
branches and not outside (see Figure 7b). In this way, the
impact of the branch prediction is minimised, since the pre-
diction is happening only once instead of for every iteration
of the loop.

loop { if (expr) {
if (expr) { loop
body1l body1l
}
else { else {
body2 loop
) body2
(a) (b)

Figure 7. lllustration of processor specific
transformation in the MPEG-4 video decoder
core: (a) initial code; (b) transformed code

Other type of processor specific transformations incor-
porated for Pentium IIT and TriMedia TM 1000 comprise the
use of customised library functions like memcpy and mem-
set and the use of an auto-increment pointer feature. Call-
ing highly optimised library functions for setting and copy-
ing large data blocks brings a significant gain. However,
this approach cannot always be applied since it requires a
row-major access pattern in both source and destination ar-
rays.

4. Experimental framework and results

This section, measures the performance impact of the
address and control flow optimisations. The memory op-
timised code, obtained by applying the Data Transfer and
Storage Exploration (previously reported in [S]) on the
MPEG-4 verification model, is used as the reference for this
work.



4.1. Test sequences description

The testbench contains three video bitstreams with dif-
ferent motion complexity. Mother and Daughter (m&d) is
a typical head and shoulders sequence with little motion,
Foreman (for) is a real life sequence with medium motion
and Calendar and Mobile (c&m) is a highly complex se-
quence with multiple, heterogeneous motion. All three se-
quences are heavily dominated by P-VOPs. Therefore, the
ACDC reconstruction (see Section 2) has a much smaller

impact in performance that the motion compensation it-
self [12].

Table 1. Characteristic of the testbench video
bitstreams

Test case Number | Bitrate | Encoded frame-
of VOPs | (kbps) | rate (fps)

Mother and Daughter | 300 120 30

Foreman 300 450 25

Calendar and Mobile 150 2000 15

Table 1 lists the number of VOPs, bitrate (kilobits per
second) and the encoded framerate (frames per second).
The bitrate (kbps) also gives an idea of the complexity re-
quired during the decoding phase. The smaller the number
of kbps while encoding, the smaller the effort required on
the decoding phase. The results are for the CIF (Common
Interchange Format) (358 x 288) image size. On both plat-
forms, the native compilers with all low-level optimisations
enabled are used for the experiments. This makes our trans-
formations work on top of the traditional low-level compiler
optimisations.

4.2. Speeding up the MPEG-4 video decoder by ad-
dress optimisations

To better illustrate the impact of the ADOPT steps, the
memory optimised reference code is split into an Original
and a DTSE version (see Figure 8). On Trimedia TM 1000,
this breakdown is not available.

The memory bottleneck initially present in the Original
version results in a large power and system bus load over-
head. Applying DTSE removes this and consequently re-
sults in an improved performance.

However, our formalised ADOPT steps bring a cru-
cial gain when applied as a next optimisation stage (the
Addr.Opt. version), especially when meeting real-time con-
straints is an issue (e.g. 30 frames per second (fps) for
mé&d). In Figure 8, this gain varies from 60% to 40% of
the total, decreasing with the input stream complexity.

With exactly the same testbench, our transformations re-
sult in a performance improvement of more than a factor
of two on top of the optimisation effect described by De-
nolf et al. [5]. The authors report similar performance as
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Figure 8. Breakdown in frame rate due to opti-
misations performed at IMEC: (a) Pentium lil;
(b) TriMedia TM1000

the one obtained in the state-of-the-art [3, 10], stressing the
non-straightforward character of the comparison. The per-
formance logically depends on the platform and the coding
characteristics of the test sequences. Unfortunately, insuf-
ficient details about the testbench in [3, 10] are provided to
make a detailed comparison.

4.3. Breakdown between the different address opti-
misation stages

During the address optimisation stage, several types of
optimisations are applied. In general, the gain can be de-
composed in two main stages (see Figure 9): an architecture
independent and an architecture specific address optimisa-
tion stage.

The architecture independent stage is further divided in
two substages: one collecting both ACM+ACH stages, the
other reporting the gain obtained by applying our NOSR
stage to replace the complex modulo operations by a com-
bination of pointers and conditions.

The processor independent stage is followed by a pro-
cessor specific address arithmetic optimisation stage which
brings significant gain (50% over the total address optimi-
sation gain for m&d test sequence). However, its impact
decreases with the test sequence complexity increase (35%
for for and 30% for c&m over the total address optimisation
gain).

When comparing the breakdown obtained for TriMedia
TM1000 with the one for Pentium III, a higher impact of



ADOPT’s NOSR step is observed. This is due to the lack
of modulo acceleration in the TriMedia TM 1000 processor
that could eventually speed-up the computation of the these
operations [16]. Also, the architecture specific optimisa-
tions have a larger impact in this architecture, due to the
larger variety of functional units (up to 27) [16] when com-
pared to the Pentium III architecture. This clearly shows the
importance of adapting the code to the instruction set of the
targeted architecture as modern multimedia processors have
highly specialised instructions.

Speed-gain (fraction
0% over total)
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[ Arch. Indep. (NOSR)
[ Arch. Indep. (ACM+ACH)

50% T— H

29.78% 19.34%
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(a)
Speed-gain (fraction
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60% +—— [ &3 Arch. Indep. (NOSR)
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Figure 9. Breakdown in speed up due to ad-
dress optimisations: (a) Pentium lll; (b) Tri-
Media TM1000

5. Conclusions

A memory optimised MPEG-4 video decoder offers
freedom to exploit address optimisations at the source level
code. We have systematically applied our high-level ad-
dress optimisation methodology on this application. As a
result, the execution time of the most critical function is re-
duced on average by a factor of two for the sequences and
the implementation platforms select. This has lead to a con-
siderable overall speed-up when compared to the reported
state-of-the-art results.
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