
Path Delay Fault Test Generation for Standard Scan Designs
 Using State Tuples *

Yun Shao
1
, Irith Pomeranz

2
 and Sudhakar M. Reddy

1

1: Electrical and Computer Engineering Department

University of Iowa, Iowa City, IA 52242, U.S.A.

2: School of Electrical and Computer Engineering

Purdue University, West Lafayette, IN 47907, U.S.A.

*Research reported was supported in part by SRC Grant 98-TJ-645

 and NSF Grant MIP-9725053.

Abstract

In this work we propose a novel concept called state tuple to
represent the states of lines in a circuit for the generation of two
pattern tests. The proposed approach is described in detail for
generating robust two pattern tests for path delay faults in
standard scan designs. Using the proposed approach we also
report experimental results of a test generator for robust path
delay faults in standard scan designs. The results show that the
test generator achieves high efficiency with reduced
implementation complexity.

1. Introduction

The objective of delay fault testing is to verify the timing

correctness of manufactured circuits. Two main delay fault

models, the gate delay fault model [2-4, 14] and the path delay
fault model [1, 5, 6, 14, 18] have been used for modeling delay

defects. The path delay fault model is used throughout this

paper.

In order to facilitate efficient test generation for delay faults,

several multiple-valued logic systems, which can distinguish

different logic states of circuit lines, were proposed earlier [1, 5,

7, 9, 10, 11-13, 17]. Each logic system is designed to target a

specific problem. For a particular delay fault testing problem,

there usually exists a minimum set of logic states or values that

enables accurate implication of the signal attributes that are

relevant to the problem. Different logic systems differ in the

numbers of logic values and the states of the signal lines those

logic values represent. It is desirable for a delay fault testing tool

to deal with different classes of tests (e.g., robust, non-robust)

and different testing environments (e.g., enhanced-scan,

standard scan). An existing tool may also need to be extended to

solve new problems. Much work is required to implement a new

multiple-valued logic algebra, especially when the number of

logic values is high. As a result, direct application of multiple-

valued logic lacks flexibility and extendibility.

To alleviate the problem above, we propose in this paper an

extendible representation for the logic states of signal lines

called state tuple. States of lines are flexibly represented by state

tuples. The elements included in the state tuples can be adjusted

for a specific problem. Instead of implementing another logic

algebra for each new problem, the same form of a tuple can be

expanded or contracted by adding new elements or suppressing

some elements to accommodate relevant attributes of the states

of circuit lines. Thus, the implementation effort and the system

complexity are reduced by using state tuples.

The paper is organized as follows. In Section 2, some

background on path delay fault testing and an overview of the

proposed approach are given. In Section 3, the state tuples

proposed for use in path delay fault test generation are

discussed. In Section 4 the implementation of a test generator

for path delay faults in a standard scan environment based on

state tuples is described. Experimental results for ISCAS89

benchmark circuits are given in Section 5. Section 6 concludes

the paper.

2. Preliminaries

2.1 Path sensitization

Path delay faults model defects that cause the cumulative

propagation delay of paths to exceed a specified value. A circuit

connection fon is called an on-input of a path P if it belongs to P.

A circuit connection fside is called a side-input of path P if it is

connected to a gate Gi which belongs to path P and fside is not on

path P. For combinational or scanned designs, a two-pattern test

<V1, V2> is used to test a path delay fault. The first pattern V1 is

applied at time t0. After the circuit-under-test has stabilized, the

second pattern V2 is applied at time t1 to propagate a rising or

falling transition from the input of the path-under-test to the

output of the path. The output of the path is sampled at t2, where

(t2 – t1) corresponds to the desired time interval for propagation

of input changes to the outputs. The stabilized logic value of a

line after V1 is applied is called the initial value, and the logic

value that is expected after V2 is applied is called the final value.

 The following necessary and sufficient path sensitization

conditions for a path to be robustly tested were given by Lin and

Reddy [5].

(1) <V1, V2> will launch the desired transition at the input

of the path.

(2) At each gate on the path, the side-inputs have logic

values that are covered by the values indicated in

Table 2.1.

AND/NAND OR/NOR

Rising U1 S0

Falling S1 U0

Table 2.1 Sensitizing input values

In Table 2.1, U1 (U0) represents the signal on a line with an

unknown initial value and final value 1 (0). S1 (S0) represents a

stable signal for which both the initial and final values are 1 (0).

Signal S1 or S0 is free of hazards, i.e., there are no temporary

transitions to the opposite logic value between the initial and

final values. The robust tests discussed here are also called

general robust tests in [9]. More restricted robust tests are

defined by adding additional constrains on the transitions

propagated along the path [9].

2.2 Test Application for Scan Designs

Three test application methods were proposed to apply a

two-pattern test to a scan design: enhanced scan, functional
justification (also called broadside) and scan-shifting
justification (also called skewed-load) [8, 10, 11]. For the

enhanced scan test application method, each scan element in the

scan chain is designed to store two bits by including an extra

holding latch. Thus, two test patterns with arbitrary values can

be shifted into the scan chain and applied to the combinational

part of the circuit consecutively. Although enhanced scan

enables the highest fault coverage among the three test

application schemes, it has limited use because of the area and

performance overhead incurred by the special scan elements.

Functional justification and scan-shifting justification are used

for standard scan designs, where only one bit can be stored in a

scan element. For both methods, the first pattern V1 of the test is

loaded into the scan chain and held until the circuit stabilizes. In

functional justification, a system clock is applied to load the

present-state values of the second pattern V2. These values are

generated on the inputs of the flip-flops by the application of V1.

In scan-shifting justification, the state values of V2 are obtained

through shifting of the scan chain by one bit. Issues related to

the use of scan justification and functional justification are

discussed in [8, 11]. It is argued in [11] that functional

justification is the preferred method for single clock standard

scan circuits. The test generator discussed in this work uses

functional justification for standard scan designs.

2.3 Overview of the proposed approach

Using a multiple-valued logic system leads to more accurate

implications of the states of lines in the circuit, and allows more

efficient decision-making during test generation. Large sets of

logic values allow for higher precision, however, they also tend

to be difficult to implement. In many cases, a compromise

between the complexity of the chosen logic system and the

implication power of the system has to be made. Furthermore,

rewriting all the procedures for a new logic system is not an

economic way to expand the capabilities of existing tools.

Our objective is to provide a consistent mechanism to

represent the states of lines in a circuit for a wide range of delay

fault testing problems, while providing a simple, extendible way

to imply the states of lines. A representation called state tuples is

proposed for this purpose. A state tuple is composed of

elements. Each element depicts a certain attribute of a signal.

When the state tuple is expanded to add new elements

(corresponding to new signal attributes), the procedures for

manipulating the already existing elements can be reused.

The focus of this paper is on generation of robust tests for

standard scan circuits. In addition to the elements to represent

the logic state of a circuit line, elements that depict the hazard

status of a line are included in the state tuple of a line. As shown

later, the implication of hazard values can be conducted in a

very simply and efficient way. We developed a test generator

based on state tuples with minimal implementation effort, while

having the same implication power provided by the 20-valued

logic system proposed earlier [9].

3. State tuples

The state of a line can be described by an n-tuple (e1, e2, ...,
en). An element ei in the state tuple represents one aspect of the

state of a line. The initial and final values, as well as the hazard

conditions on a line are examples of elements that are of interest

for path delay fault test generation. We use a 4-tuple (v1, v2, h1,
h0) to represent the state of a line for test generation. Logic

status elements v1 and v2 are the initial and final logic values on

the line, respectively. In this work they can have one of the three

logic values {0, 1, X}. The hazard status element h1 (h0) is

called the 1-hazard value (0-hazard value). h1 and h0 can have

one of three values {0, 1, X}. The definition of h1 and h0 are

given next.

Definition 3.1: For a given line l, the 1-hazard value h1 is 0 if

and only if there is a stable 1 on l during the application of a

two-pattern test. If it is known that l cannot assume a stable 1,

the value of h1 is 1. Otherwise h1 is X.

Definition 3.2: For a given line l, the 0-hazard value h0 is 0 if

and only if there is a stable 0 on l during the application of a

two-pattern test. If it is known that l cannot assume a stable 0,

the value of h0 is 1. Otherwise h0 is X.

It should be noted that if either v1 or v2 of a line is 0(1) then

h1 (h0) of that line is 1, because there cannot be a stable 1 (0) on

the line. Out of the 9 combinations of (h1, h0) only six, shown in

Table 3.1, occur during test generation. The remaining three

combinations (0, 0), (0, X), and (X, 0) are not meaningful. For

example (0, 0) is not meaningful since a line cannot have both a

stable 1 and a stable 0 at the same time. When h1 (h0) is zero, it

implies that a stable 1 (0) is present on the corresponding line

and hence h0 (h1) would be 1 (1). As a result, hazard status

combinations (0, X) and (X, 0) do not occur.

hazard status on the line h1 h0

unknown hazard status X X

hazard 0 X 1

hazard 1 1 X

stable 0 1 0

stable 1 0 1

not a stable value 1 1

Table 3.1 Hazard status indicated by (h1, h0)

The implication rules of h1 and h0 for an AND gate are given

as Lemma 3.1.

Lemma 3.1: For an AND gate with m input lines k1, ..., km and

output line k, let the hazard status value h1 (h0) of line l be H1(l)
(H0(l)). The hazard values of line k are calculated using the

formulas,

H 1(k) = OR(H 1(k 1) , H1 (k 2) , . . . ,H 1(k m)) (3 .1)
H 0(k) = AND(H 0 (k 1) , H 0(k 2) , . . . ,H 0(k m)) (3 .2)

Proof: The output line k has a stable 1 if and only if all the input

lines of the AND gate are at a stable 1. Therefore, H1(k) = 0 ⇔
OR(H 1(k 1) , . . . ,H 1(k m)) = 0. The output line k has a stable 0

value if and only if at least one of the input lines of the AND

gate is at a stable 0. Therefore H0(k) = 0 ⇔
AND(H 1(k 1) , . . . ,H 1 (k m)) = 0.

For an OR gate the following formulas can be derived similarly,

H 1(k) = AND(H 1 (k 1) , H 1(k 2) , . . . ,H 1(k m)) (3 . 3)
H 0(k) = OR(H 0(k 1) , H0 (k 2) , . . . ,H 0(k m)) (3 .4)

For an inverter the following formulas can be derived,

H1(k) = H0(k1)) (3 .5)
H0(k) = H1(k1)) (3 .6)

Implication formulas for NAND and NOR gates can be

derived by combining the formulas for AND and OR gates with

the formulas for the inverter. It can be seen that the implication

rules for hazard status values are very similar to those for logic

values. Therefore, the same implication tables can be used for

both logic and hazard implications.

Schulz et al. [15] proposed a tuple representation for parallel

path delay fault simulation, in which the logic values and hazard

status are separately depicted. This representation is not optimal

for test generation purposes, for the following reason. The

hazard status of a gate output in [15] is a function of both the

logic status and the hazard status of the fan-in lines. Therefore,

the implication formulas of the hazard status are more

complicated than the ones for the 4-tuple representation

proposed here. The proposed 4-tuple format enables simpler and

more efficient ways to calculate the hazard values of lines.

4. Test generation based on state tuples

We developed a test generator for path delay faults based on

the state tuples proposed in this work. It can generate either

robust or nonrobust tests for path delay faults in combinational

circuits (and hence enhanced scan designs) and in standard scan

designs. Our discussion is focused on robust path delay fault test

generation in standard scan designs using functional

justification. As mentioned before, 20 logic values are required

to form a complete logic system for this problem [9]. Due to its

complexity, no implementation of the 20-valued system is given

in [9]. A 29-valued logic system was used in the test generator

Fastpath [10] for industrial scan designs. In the experimental

results section, we will compare the test generator reported here

with the one reported in [10].

In this section the implementation of some key parts of the

test generator based on the state tuple representation are

described.

4.1 Implication procedures

The efficiency of forward and backward implication

procedures are critical in a test generator. In previous works

where multiple-valued logic systems are used, forward

implication is performed using implication tables for logic gates.

The size of an implication table of a two-input gate is quadratic

in the number of logic values in the logic system, which can be

quite large. Furthermore, different implication tables must be

built for different logic systems. During the implication

procedure, new implications must be checked to determine if

they are consistent with the previously assigned values. For a

logic system with a large number of values, consistency

checking can be quite complicated. For example, the value H1 in

the 20-valued logic system conflicts with 10 different logic

values in that system.

The approach taken in this work is to evaluate logic values

and hazard values separately. The events in the circuit can be

classified into logic events and hazard events. A logic event on a

line indicates a change of the logic values (v1, v2) of a line, while

a hazard event indicates a change of its hazard values (h1, h0). A

line may have logic events without hazard events, and vice

versa. Each element in the tuple of a line is checked separately

for consistency. Since the elements in the 4-tuple can only

assume 3 values {0, 1, X}, consistency checking is much

simpler than the procedure for multiple-value logic systems.

In the forward implication procedure, logic and hazard

events are processed from the circuit inputs to its outputs. Logic

events are processed as in any conventional test generator.

Hazard values are computed by applying the formulas described

before. An update of the hazard values on a line may trigger new

hazard events on its fanout lines. On the inputs of the circuit, the

hazard values are derived from the logic values on them using

Table 4.1. The first column presents the initial value v1 and the

final value v2 on an input line, and the second column presents

the corresponding hazard values. It is assumed that there are no

static hazards between the initial and final values applied to the

input lines.

v1, v2 h1, h0

(0, 0) (1, 0)

(1, 1) (0, 1)

(1, 0), (0, 1) (1, 1)

(X, 0), (0, X) (1, X)

(1, X), (X, 1) (X, 1)

Table 4.1 Relations between logic values and hazard
values on inputs

The backward implication procedure for hazard events is

similar to the one for logic values because of the similarity

between their implication formulae. A conflict occurs when

there is either a contradictory logic value assignment or a

contradictory hazard value assignment on a line. By performing

forward and backward implications for hazard values, those

logic assignments that can cause hazard value conflicts can be

avoided or discovered earlier.

An example of implication based on 4-tuples is shown in

Figure 4.1. In Figure 4.1, the current logic and hazard values of

a line are denoted in the form v1, v2 / h1, h0 in plain letters and

the newly implied values are given in bold letters. Consider

justifying line g to 0, 0/1, 0 (i.e., a stable 0). This creates the

backward implications, indicated by the arrows, on lines e and b.

It can be seen that even if the initial or final value of a line is

X, it is still possible to determine the hazard status of the line.

Line f is such an example. Failing to determine the hazard status

on line f can cause a wrong choice to justify line g through line f.

0, 1/1, 1

e

f
g

0, X/1, X →
0, 0 / 1, 0

1, X/X, 1 0, X/1, 1

0, 1/1, 1

a

b

c

d

0, X/1, X →
0, 0 / 1, 0 0, X/1, X →

0, 0 / 1, 0

Figure 4.1 Illustration of backward implication

4.2 Backtracing procedure

During test generation, there may be unjustified lines such

that logic and/or hazard values in their state tuples are not

implied by the values on their fan-in lines. We call the set of

lines on which only the logic values are unjustified the J-
frontier, and the set of lines on which hazard values equal to 0

are unjustified (i.e., lines where stable values are required) the

SJ-frontier. A backtracing procedure described in PODEM [16]

can be used to justify a line in the J-frontier. A path consisting of

lines with X values is backtraced from the objective line in the J-

frontier to an input of the circuit. To justify a line objective in

the SJ-frontier, a similar backtracing procedure can be used to

backtrace through a path consisting of lines on which at least

one of the hazard values (h1, h0) is X.

In the functional justification test environment for standard

scan designs, a scanned circuit can be conceptually expanded

into two time frames as illustrated in Figure 4.2. The primary

inputs (outputs) are denoted as “PIs” (“POs”) and the pseudo-

primary inputs (outputs) are denoted as “PPIs” (“ PPOs”). The

states of the flip-flops in the second time frame are justified by

applying the first test pattern to the first time frame. Each line in

the second time frame has a duplicate in the first time frame.

The duplicated line in the first time frame of a line l in the

second time frame is denoted as l’. Backtracing for an objective

line in the SJ-frontier starts from the line in the second time

frame. Let (L, V) be an input assignment returned by the

backtracing procedure. Here L is an input line and V is the logic

value to be assigned to L. A full description of the backtracing

procedure for a line in the SJ-frontier is given in Procedure 4.1.

Procedure 4.1: Backtracing for a line in the SJ-frontier

(1) Suppose the hazard value hv of line l is to be justified to 0

(i.e., a stable v is to be justified on line l). Denote the gate

that drives l as Gl. Denote the current line as CL, current

value as CV, current gate as CG. Initially CL = l, CV = v,

and CG = Gl.

(2) If CG has an inverted output, CV is set to its complement

value. Select a fan-in line f of CG whose state tuple hazard

value hcv is an X value. Set CL to be f and set CG to be the

gate driving f.

(3) If the current line CL is an input line of the second time

frame (a primary input or a pseudo-primary input), then

choose one of the following actions. Otherwise go to (2)

(a) If CL is a primary input line, return input assignments

(CL, CV) and (CL’, CV) (i.e., the same value is

assigned to the primary input in both time frames; the

hazard status corresponds to a stable value CV).

(b) If CL is a pseudo-primary input line then perform a

second backtrace from CL with the logic objective CV
on it. Let the input line reached by the second

backtrace be CL1’ with a backtraced value CV1. If CL’
= CL1’ return one input assignment (CL’, CV).

Otherwise, return two input assignments (CL’, CV)

and (CL1’, CV1).

It can be seen from the above procedure that two input lines

can be assigned logic values after a backtrace from a line in the

SJ-frontier. An illustration of the backtrace procedure is given in

Figure 4.2. In this example a stable value on line l is to be

justified. The pseudo-primary input l2 is reached by the first

backtrace with the logic value v. The second backtrace is started

from l2 and reaches an input l1’ in the first time frame with value

v1. The backtrace procedure returns the value v on l2’ and the

value v1 on l1’.

Frame1
PIs

PPIs

Frame2

PPOs

PIs

PPOs

POsPOs

PPIs l

l2’ (v)

l1’ (v1)

l2 (v)

Figure 4.2 Backtrace from a line in the SJ-frontier

4.3 Overall procedure

The overall procedure of robust test generation is based on a

PODEM-like search strategy. For a given path, all its on-inputs

and side-inputs are assigned appropriate state tuples according to

the requirements of a robust test. After that, forward and

backward implications are performed to compute the logic and

hazard values on the circuit lines and check for consistency.

Many untestable paths are discovered at this stage. The

unjustified lines are put into either the SJ-frontier or the J-

frontier. The objective lines in the SJ-frontier have a higher

priority for justification. Backtracing is performed to find a set

of input assignments, which may help to justify an objective.

During test generation, new implications of logic values and

hazard values must be stored for each input assignment. When

backtracking is used to resolve a conflict, the circuit is restored

to the state before the last input assignment.

5. Experimental Results

The test generator described in the previous section was

implemented in C++. Experiments were conducted on a set of

ISCAS89 benchmark circuits using a Pentium IV 1.4 GHz PC

with a Linux operating system. The results for robust test

generation are presented in Table 5.1 and Table 5.2. All the

experiments were done for the functional justification test mode

with a backtrack limit of 100 per path.

Table 5.1 presents the experimental results of the proposed

test generator and the industrial tool Fastpath described in [10].

Fastpath is a test generator capable of generating robust tests for

standard scan designs. It uses a 29-valued logic algebra to

perform implications. Results of robust test generation for 1000

longest paths per circuit under the functional justification mode,

using a backtrack limit of 10,000 per path, were given in [10].

The paths targeted in [10] were selected using a commercial

timing analyzer. For the experiments on the proposed test

generator reported in Table 5.1, the paths targeted during test

generation are selected in the following way. Let the maximum

propagation delay from the inputs of the circuit-under-test to the

outputs of the circuit be Tmax. The start lines of these paths are

picked randomly out of the set of circuit inputs such that the

longest propagation delays from these inputs to the circuit

outputs are greater than or equal to 0.8Tmax. Each path is selected

to be one of the longest paths from the selected input to the

outputs of the circuit. Thus all the selected paths have

propagation delays that are greater than or equal to 0.8Tmax.

In Table 5.1, the test generation results using the proposed

test generator and the results reported in [10] are listed in the

columns with the headings “prop.” and “[10]”, respectively. The

numbers of detected paths, untestable paths and aborted paths

are reported under the columns with the headings “detected”,

“untest.” and “aborted”, respectively. For each circuit, the total

number of backtracks taken by the proposed test generator for

1000 paths is reported in column “backtrack”. The runtimes for

test generation using the proposed method are reported in the

last column. It can be seen that for all the circuits reported, test

generation is done in a short time by the proposed test generator.

With a backtrack limit of 100, no path is aborted for the reported

circuits except for s5378. Although the results of our

experiments cannot be directly compared to the data in [10]

because of the different paths selected and the different

experimental environments, it can be argued that the proposed

test generator is significantly faster than Fastpath based on the

number of backtracks. With a backtrack limit of 10,000 per path,

Fastpath aborts more paths for the reported circuits. For

example, 281 paths are aborted by Fastpath for s5378, whereas

only 83 paths are aborted by the proposed test generator using a

much smaller backtrack limit of 100. For circuit s5378, no path

is aborted when the backtrack limit is raised to 3,000.

To better demonstrate the effectiveness of the test generation

procedure, experiments were conducted on five different sets of

1000 paths for each circuit. The start lines of these paths are

picked randomly out of the set of inputs of the circuit. Each path

is selected to be one of the longest paths from the selected input

to the outputs of the circuit. It should be noted that the selected

paths are not necessarily the global longest paths in the circuit.

Each path is only the longest one among the paths that start from

the same input. The objective is to select a set of long paths,

while trying to ensure that the selected paths cover different

areas of the circuit. The average numbers over the five sets of

paths for each circuit are reported in Table 5.2. The data in

Table 5.2 provides further evidence that the test generator

achieves high efficiency for a large number of paths in the

circuit. On the average very few backtracks are done per path.

For example, for circuit s38417 an average of 1.1 backtracks per

path are done by the proposed test generator.

6. Concluding remarks

In this work we proposed the use of state tuples to describe

the state of a line in a circuit. A 4-tuple representation was used

for robust path delay fault test generation in scan designs. The

first two elements of a tuple stand for logic values, and the next

two elements stand for hazard states. The effectiveness of the

test generation procedure based on state tuples was supported by

experimental results.

References

[1] G. L. Smith, “Model for Delay Faults Based Upon Paths”,

Proc ITC, pp. 342-349, September 1985.

[2] J. A. Waicukauski, E. Lindbloom, B. K. Rosen, and V. S.

Iyengar, “Transition Fault Simulation”, IEEE Design and
Test, pp. 32-38, April 1987.

[3] A. K. Pramanick and S.M. Reddy, "On the Computation of

the Ranges of Detected Delay Fault Sizes," Proc. ICCAD,
pp. 126-129, November 1989.

[4] V. S. Iyengar, B. K. Rosen, and J. A. Waicukauski, “On

computing the sizes of detected delay faults”, IEEE TCAD,
pp. 299-312, March 1990.

[5] C. J. Lin and S. M. Reddy, “On Delay Fault Testing in

Logic Circuits”, IEEE TCAD, pp. 694-703, September

1987.

[6] K. T. Cheng and H.-C Chen, “Delay Testing For Non-

Robust Untestable Circuits”, Proc. ITC., pp. 954-961,

October 1993.

[7] K. Fuchs, F. Fink, and M. H. Schulz, “DYNAMITE: An

Efficient Automatic Test Pattern Generation System for

Path Delay Faults”, IEEE TCAD, pp. 1323-1335, October

1991.

[8] K.-T. Cheng, S. Devadas, and K. Keutzer, “Delay-Fault

Test Generation and Synthesis for Testability Under a

Standard Scan Design Methodology”, IEEE TCAD, pp.
1217-1231, August 1993.

[9] K. Fuchs, M. Pabst, and T. Rossel, “RESIST: A Recursive

Test Pattern Generation Algorithm for Path Delay Faults

Considering Various Test Classes”, IEEE TCAD, pp. 1550-
1562, December 1994.

[10] B. Underwood, W. O. Law, S. Kang, and H. Konuk,

“Fastpath: A Path-Delay Test Generator for Standard Scan

Designs”, Proc. ITC, pp. 154-163, October 1994.

[11] P. Varma, “On Path Delay Testing in a Standard Scan

Environment”, Proc. ITC., pp. 164-173, October 1994.

[12] S. Bose, P. Agrawal, and V. D. Agrawal, “Generation of

Compact Delay Tests by Multiple Path Activation”, Proc.
ITC, pp. 714-723, October 1993.

[13] S. Bose, P. Agrawal, and V. D. Agrawal, “Deriving Logic

Systems for Path Delay Test Generation”, IEEE Trans. on
Computers, pp. 829-846, August 1998.

[14] A. K. Majhi and V. D. Agrawal, “Tutorial: Delay Fault

Models and Coverage”, Proc. 11th Int’l Conf. on VLSI
Design, pp. 364-369, January 1998.

[15] M. H. Schulz, F. Fink, and K. Fuchs, “Parallel Pattern Fault

Simulation of Path Delay Faults”, Proc. 26th DAC., pp.
357-363, June 1989.

[16] P. Goel, “An implicit enumeration algorithm to generate

tests for combinational logic circuits”, IEEE Trans. on
Computers, pp. 215-222, March 1981.

[17] T. J. Chakraborty, V. D. Agrawal, and M. L. Bushnell,

“Delay Fault Models and Test Generation”, Proc. 29th
DAC, pp. 165-172, June 1992.

[18] R. Desineni, K. N. Dwarkanath, R. D. Blanton, “Universal

Test Generation Using Fault Tuples”, Proc. ITC, pp. 812-
819, October 2000.

Table 5.1 Robust test generation for 1000 paths

circuit
detected

[10]

untest.

[10]

aborted

[10]

detected

(prop.)

untest.

(prop.)

aborted

(prop.)

back-track

(prop.)

runtime

(prop.)

[sec]

s1196 - - - 214 786 0 0 0.71

s1238 151 847 2 159 841 0 0 0.72

s1423 5 993 2 39 961 0 0 0.72

s1488 - - - 157 843 0 264 0.93

s1494 345 655 0 145 855 0 304 0.91

s5378 485 234 281 759 158 83 9384 4.98

s9234 0 1000 0 0 1000 0 0 3.30

s13207 0 1000 0 0 1000 0 0 5.85

s15850 0 1000 0 0 1000 0 0 4.80

s35932 0 1000 0 0 1000 0 0 10.77

s38417 185 732 83 0 1000 0 0 12.77

s38584 58 754 188 0 1000 0 0 12.92

Table 5.2 Average numbers over five sets of 1000 paths for robust test generation

circuit
detected

(prop.)

untest.

(prop.)

aborted

(prop.)

backtrack

(prop.)

runtime

(prop.)

[sec]

s1196 476.2 523.8 0.0 1772.8 0.88

s1238 487.8 512.2 0.0 777.6 0.84

s1423 178.6 821.4 0.0 14.0 0.56

s1488 180.8 819.2 0.0 716.2 1.07

s1494 165.8 834.2 0.0 773.6 1.15

s5378 780.2 207.6 12.2 1420.0 2.94

s9234 223.4 773 3.6 2099.4 3.92

s13207 320.2 679.8 0.0 1.6 4.87

s15850 188.8 810.8 0.4 52.4 5.73

s35932 172.4 827.6 0.0 0.0 13.20

s38417 305.8 686.6 7.6 1104.0 12.71

s38584 262.8 737.2 0.0 161.0 16.25

	Main
	ASP02
	Front Matter
	Table of Contents
	Session Index
	Author Index

